利用太赫兹光谱和氧化石墨烯传感器实现对芒果皮上农药残留的高灵敏度检测

作者

  • 王希祖 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
  • 杨爵远 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
  • 张楠 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
  • 邢珍相 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
  • 朱强 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
  • 柯琳 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
Ariticle ID: 67
54 Views, 4 PDF Downloads

DOI:

https://doi.org/10.18686/zhfnc.v1i2.67

关键词:

太赫兹光谱学;农药监测;等离子体传感器;农作物;衰减全反射

摘要

在农业农田中定期监测农药是防止有毒农药化学品滥用的关键。由于通常需要分解农作物样本以提取农药残留物以进行色谱分析,因此寻找非破坏性的农药监测技术对于防止不必要的农作物破坏至关重要。然而,这需要具备能够检测微量农药的分析技术。在本篇文章中,我们展示了太赫兹(THz)光谱在衰减全反射模式下与低成本的氧化石墨烯(GO)等离子传感器相结合,可用于对芒果皮上的农药进行敏感、快速且非破坏性的检测。在将农药溶液涂抹在芒果皮上后,通过将其与芒果皮表面接触并施加压力,将干燥的农药残留物转移到了氧化石墨烯传感器上。由于农药分子吸附到富含氧的氧化石墨烯表面上,因此获得了在太赫兹范围内对应于农药化学指纹的信号。借助这种技术,可以检测到芒果皮上约1 µg/cm2的农药表面浓度。

参考

Aktar WM, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology 2009; 2(1): 1–12. doi: 10.2478/v10102-009-0001-7

Kayawe B. Widespread use of DDT for malaria control worries environmentalist. Available online: https://www.un.org/africarenewal/magazine/january-2022/widespread-use-ddt-malaria-control-worries-environmentalist (accessed on 14 February 2023).

González-Curbelo MÁ, Varela-Martínez DA, Riaño-Herrera DA. Pesticide-residue analysis in soils by the QuEChERS method: A review. Molecules 2022; 27(13): 4323. doi: 10.3390/molecules27134323

Hua Y, Zhang H. Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy. IEEE Transactions on Microwave Theory and Techniques 2010; 58(7): 2064–2070. doi: 10.1109/TMTT.2010.2050184

Xu W, Wang S, Li W, et al. Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosensors and Bioelectronics 2022; 209: 114274. doi: 10.1016/j.bios.2022.114274

Peng Y, Shi C, Zhu Y, et al. Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement. PhotoniX 2020; 1: 12. doi: 10.1186/s43074-020-00011-z

Komatsu K, Iwamoto T, Ito H, Saitoh H. THz gas sensing using terahertz time-domain spectroscopy with ceramic architecture. ACS Omega 2022; 7(35): 30768–30772. doi: 10.1021/acsomega.2c01635

Lee SH, Choe JH, Kim C, et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing. Sensors and Actuators B: Chemical 2020; 310: 127841. doi: 10.1016/j.snb.2020.127841

Lee DK, Kim G, Kim C, et al. Ultrasensitive detection of residual pesticides using THz near-field enhancement. IEEE Transactions on Terahertz Science and Technology 2016; 6(3): 389–395. doi: 10.1109/TTHZ.2016.2538731

Qin G, Zou K, Li Y, et al. Pesticide residue determination in vegetables from western China applying gas chromatography with mass spectrometry. Biomedical Chromatography 2016; 30(9): 1430–1440. doi: 10.1002/bmc.3701

Ye Y, Zhang Y, Zhao Y, et al. Sensitivity influencing factors during pesticide residue detection research via a terahertz metasensor. Optics Express 2021; 29(10): 15255–15268. doi: 10.1364/OE.424367

Tyurnina AV, Tzanakis I, Morton J, et al. Ultrasonic exfoliation of graphene in water: A key parameter study. Carbon 2020; 168: 737–747. doi: 10.1016/j.carbon.2020.06.029

Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. Journal of the American Chemical Society 1958; 80(6): 1339–1339. doi: 10.1021/ja01539a017

Yu H, Zhang B, Bulin C, et al. High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports 2016; 6(1): 36143. doi: 10.1038/srep36143

Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology 2011; 6(10): 630–634. doi: 10.1038/nnano.2011.146

Ranjan P, Gaur S, Yadav H, et al. 2D materials: Increscent quantum flatland with immense potential for applications. Nano Convergence 2022; 9: 26. doi: 10.1186/s40580-022-00317-7

Chiu NF, Huang TY. Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors. Sensors and Actuators B: Chemical 2014: 197: 35–42. doi: 10.1016/j.snb.2014.02.033

Cittadini M, Bersani M, Perrozzi F, et al. Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 2014; 69: 452–459. doi: 10.1016/j.carbon.2013.12.048

Wu T, Liu S, Luo Y, et al. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: Using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale 2011; 3(5): 2142–2144. doi: 10.1039/c1nr10128e

Mencarelli D, Nishina Y, Ishikawa A, et al. THz plasmonic resonances in hybrid reduced-graphene-oxide and graphene patterns for sensing applications 2017; 3(1), 89–96. doi: 10.1515/odps-2017-0011

Zhang X, Xiang D, Wu Y, et al. High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Composites Part A: Applied Science and Manufacturing 2021; 151: 106665. doi: 10.1016/j.compositesa.2021.106665

Justino CIL, Gomes AR, Freitas AC, et al. Graphene based sensors and biosensors. TrAC Trends in Analytical Chemistry 2017; 91: 53–66. doi: 10.1016/j.trac.2017.04.003

Ananda Murthy HC, Gebremedhn Kelele K, Ravikumar CR, et al. Graphene-supported nanomaterials as electrochemical sensors: A mini review. Results in Chemistry 2021; 3: 100131. doi: 10.1016/j.rechem.2021.100131

Shao Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010; 22(10): 1027–1036. doi: 10.1002/elan.200900571

Chi SC, Lee CL, Chang CM. Adsorption of pesticides, antibiotics and microcystin-lr by graphene and hexagonal boron nitride nano-systems: A semiempirical PM7 and theoretical HSAB study. Crystals 2022; 12(8): 1068. doi: 10.3390/cryst12081068

Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry 2016; 85(Part A): 73–82. doi: 10.1016/j.trac.2016.06.017

Chinn C, Lund AE, Yim GKW. The central actions of lidocaine and a pesticide, chlordimeform. Neuropharmacology 1977; 16(12): 867–871. doi: 10.1016/0028-3908(77)90150-2

Lapied B, Grolleau F, Sattelle DB. Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels. British Journal of Pharmacology 2001; 132(2): 587–595. doi: 10.1038/sj.bjp.0703853.

Cote LJ, Kim F, Huang J. Langmuir-blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society 2009; 131(3): 1043–1049. doi: 10.1021/ja806262m

Cote LJ, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society 2009; 131(31): 11027–11032. doi: 10.1021/ja902348k

Kim J, Cote LJ, Kim F, et al. Graphene oxide sheets at interfaces. Journal of the American Chemical Society 2010; 132(23): 8180–8186. doi: 10.1021/ja102777p

Carvalho A, Costa MCF, Marangoni VS, et al. The degree of oxidation of graphene oxide. Nanomaterials 2021; 11(3): 560. doi: 10.3390/nano11030560

Obradovic J, Newnham DA, Taday PF. Attenuated total reflection explores the terahertz region. Available online: https://www.americanlaboratory.com/913-Technical-Articles/1457-Attenuated-Total-Reflection-Explores-the-Terahertz-Region/ (accessed on 9 February 2023).

Holm RT, Palik ED. Thin-film absorption coefficients by attenuated-total-reflection spectroscopy. Apploed Optics 1978; 17(3): 394–403. doi: 10.1364/AO.17.000394

Hirori H, Yamashita K, Nagai M, Tanaka K. Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses. Japanese Journal of Applied Physics 2004; 43(10A): L1287. doi: 10.1143/JJAP.43.L1287

Lai WE, Zhang HW, Zhu YH, Wen QY. A novel method of terahertz spectroscopy and imaging in reflection geometry. Applied Spectroscopy 2013; 67(1): 36–39. doi: 10.1366/12-06713

Cruz-Silva R, Endo M, Terrones M. Graphene oxide films, fibers, and membranes. Nanotechnology Reviews 2016; 5(4): 377–391. doi: 10.1515/ntrev-2015-0041

Tardani F, Neri W, Zakri C, et al. Shear rheology control of wrinkles and patterns in graphene oxide films. Langmuir 2018; 34(9): 2996–3002. doi: 10.1021/acs.langmuir.7b04281

Gengenbach TR, Major GH, Linford MR, Easton CD. Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. Journal of Vacuum Science & Technology A 2021; 39(1): 013204. doi: 10.1116/6.0000682

Lee AY, Yang K, Anh ND, et al. Raman study of D* band in graphene oxide and its correlation with reduction. Applied Surface Science 2021; 536: 147990. doi: 10.1016/j.apsusc.2020.147990

Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by raman spectroscopy. Nano Letters 2012; 12(8): 3925–3930. doi: 10.1021/nl300901a

López-Díaz D, López Holgado M, García-Fierro JL, Velázquez MM. Evolution of the raman spectrum with the chemical composition of graphene oxide. The Journal of Physical Chemistry C 2017; 121(37): 20489–20497. doi: 10.1021/acs.jpcc.7b06236

Muzyka R, Drewniak S, Pustelny T, et al. Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using raman spectroscopy. Materials 2018; 11(7): 1050. doi: 10.3390/ma11071050

Claramunt S, Varea A, López-Díaz D, et al. The importance of interbands on the interpretation of the raman spectrum of graphene oxide. The Journal of Physical Chemistry C 2015; 119(18): 10123–10129. doi: 10.1021/acs.jpcc.5b01590

##submission.downloads##

已出版

2023-09-27

文章引用

王希祖, 杨爵远, 张楠, 邢珍相, 朱强, & 柯琳. (2023). 利用太赫兹光谱和氧化石墨烯传感器实现对芒果皮上农药残留的高灵敏度检测. 食品营养化学, 1(2), 67. https://doi.org/10.18686/zhfnc.v1i2.67

栏目

原创研究型文章