Recent advances in catalyst design for light olefin production via the direct Fischer–Tropsch process
DOI:
https://doi.org/10.18686/cest565Keywords:
catalyst , catalyst selectivity , Fischer–Tropsch synthesis , light olefins , material design , support , syngasAbstract
Light olefins are critical building blocks in chemical industry and can be produced using different technologies. Among various approaches, Fischer–Tropsch synthesis from syngas has been considered to be the most attractive due to its obvious advantages, such as achieving carbon neutrality, net-zero emissions, and possibility to produce specific light olefins. However, relatively low conversion, selectivity to olefins, and stability remains a key issue for the proposed heterogeneous catalysts. This review highlights the recent achievements in the conversion of syngas into light olefins in the presence of different catalysts, including conventional Fischer-Tropsch catalysts, promoted catalysts, bifunctional catalysts, and supported metal-based catalysts. The effect of promoters and supports nature as the most critical factor affecting the catalytic performance is discussed meticulously. Incorporation of various promoters is an attractive solution to improve catalysts activity. A significant increase in the chemical and mechanical stability of catalysts is possible by dispersing catalysts on a support material. This work also aims to provide comprehensive insights into mechanistic aspects as well as the challenges, which remain open and need to be addressed in the near future to obtain new efficient materials for Fischer–Tropsch synthesis. The insights gained will help direct future research and development efforts towards more efficient, cost-effective, and sustainable light olefin production processes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Grzegorz Przemyslaw Brudecki

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Zhao S, Li H, Wang B, et al. Recent advances on syngas conversion targeting light olefins. Fuel. 2022; 321: 124124. doi: 10.1016/j.fuel.2022.124124 DOI: https://doi.org/10.1016/j.fuel.2022.124124
2. Mahmodi E, Sayyah A, Farhoudi S, et al. Advances in catalysts for direct syngas conversion to light olefins: A review of mechanistic and performance insights. Journal of CO2 Utilization. 2024; 86: 102893. doi: 10.1016/j.jcou.2024.102893 DOI: https://doi.org/10.1016/j.jcou.2024.102893
3. Biabangard F, Darian JT, Yazd MS. Oxygenate-mediated catalysis for CO2 hydrogenation: a sustainable path to light olefins. Journal of CO2 Utilization. 2025; 98: 103149. doi: 10.1016/j.jcou.2025.103149 DOI: https://doi.org/10.1016/j.jcou.2025.103149
4. Liu K, Nawaz MA, Liao G. Decoding fundamental insights and outlooks on state-of-the-art iron-catalyst design strategies for meliorated CO2 valorization into light olefins. Coordination Chemistry Reviews. 2025; 535: 216611. doi: 10.1016/j.ccr.2025.216611 DOI: https://doi.org/10.1016/j.ccr.2025.216611
5. Kalantari N, Bekheet MF, Delir Kheyrollahi Nezhad P, et al. Effect of chromium and boron incorporation methods on structural and catalytic properties of hierarchical ZSM-5 in the methanol-to-propylene process. Journal of Industrial and Engineering Chemistry. 2022; 111: 168–182. doi: 10.1016/j.jiec.2022.03.049 DOI: https://doi.org/10.1016/j.jiec.2022.03.049
6. Kalantari N, Farzi A, Hamooni F, et al. Simultaneous study of different combinations of ZSM-5 templates and operating conditions in the MTP process; designing, modeling, and optimization by RSM-ANN-GA. Journal of Sol-Gel Science and Technology. 2024; 115(2): 917–936. doi: 10.1007/s10971-024-06424-7 DOI: https://doi.org/10.1007/s10971-024-06424-7
7. Almuqati NS, Aldawsari AM, Alharbi KN, et al. Catalytic production of light olefins: perspective and prospective. Fuel. 2024; 366: 131270. doi: 10.1016/j.fuel.2024.131270 DOI: https://doi.org/10.1016/j.fuel.2024.131270
8. Zhang N, Zhang Y. Recent advances in electrocatalytic conversion of CO2-to-ethylene: from reaction mechanisms to tuning strategies. Applied Catalysis B: Environment and Energy. 2025; 363: 124822. doi: 10.1016/j.apcatb.2024.124822 DOI: https://doi.org/10.1016/j.apcatb.2024.124822
9. Phung TK, Pham TLM, Vu KB, Busca G. (Bio)propylene production processes: a critical review. Journal of Environmental Chemical Engineering. 2021; 9(4): 105673. doi: 10.1016/j.jece.2021.105673 DOI: https://doi.org/10.1016/j.jece.2021.105673
10. Dang HT, Rajendiran S, Kim CU, et al. A low-temperature regenerable catalyst for stable and selective propylene production from ethylene using Ni and P-supported SSZ-13 zeolite. Applied Catalysis B: Environment and Energy. 2024; 358: 124421. doi: 10.1016/j.apcatb.2024.124421 DOI: https://doi.org/10.1016/j.apcatb.2024.124421
11. Chernyak SA, Corda M, Dath JP, et al. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chemical Society Reviews. 2022; 51(18): 7994–8044. doi: 10.1039/d1cs01036k DOI: https://doi.org/10.1039/D1CS01036K
12. Gao Y, Shao L, Yang S, et al. Recent advances in iron-based catalysts for Fischer–Tropsch to olefins reaction. Catalysis Communications. 2023; 181: 106720. doi: 10.1016/j.catcom.2023.106720 DOI: https://doi.org/10.1016/j.catcom.2023.106720
13. Singh O, Khairun HS, Joshi H, et al. Advancing light olefin production: exploring pathways, catalyst development, and future prospects. Fuel. 2025; 379: 132992. doi: 10.1016/j.fuel.2024.132992 DOI: https://doi.org/10.1016/j.fuel.2024.132992
14. Mafat IH, Sharma SK, Surya DV, et al. Development of machine learning model for the prediction of selectivity to light olefins from catalytic cracking of hydrocarbons. Fuel. 2025; 381: 133682. doi: 10.1016/j.fuel.2024.133682 DOI: https://doi.org/10.1016/j.fuel.2024.133682
15. Dang F, Gao Z, Sun Z, et al. Experiment and molecular-level kinetic modeling study of catalytic pyrolysis of heavy oil to light olefin. Fuel. 2025; 381: 133453. doi: 10.1016/j.fuel.2024.133453 DOI: https://doi.org/10.1016/j.fuel.2024.133453
16. Gambo Y, Lucky RA, Ba-Shammakh MS, et al. Integrating dehydrogenation of alkanes with selective hydrogen combustion – A sustainable route for olefin production using tandem catalysis. Molecular Catalysis. 2023; 551: 113554. doi: 10.1016/j.mcat.2023.113554 DOI: https://doi.org/10.1016/j.mcat.2023.113554
17. Zheng Y, Zhang X, Li J, et al. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts. Chinese Journal of Catalysis. 2024; 65: 40–69. doi: 10.1016/s1872-2067(24)60094-x DOI: https://doi.org/10.1016/S1872-2067(24)60094-X
18. dos Santos Lima D, Perez-Lopez OW. Light olefins by methane partial oxidation using hydrated waste eggshell as catalyst. Fuel. 2021; 300: 120947. doi: 10.1016/j.fuel.2021.120947 DOI: https://doi.org/10.1016/j.fuel.2021.120947
19. Zhang X, Liu Y, Wang X, et al. Light-driven methanol-to-olefins catalysis over W18O49/SAPO-34 hierarchical nanocomposite with strong photothermal effect. Journal of Environmental Chemical Engineering. 2024; 12(5): 114099. doi: 10.1016/j.jece.2024.114099 DOI: https://doi.org/10.1016/j.jece.2024.114099
20. Sekyere DT, Zhang J, Chen Y, et al. Production of light olefins and aromatics via catalytic co-pyrolysis of biomass and plastic. Fuel. 2023; 333: 126339. doi: 10.1016/j.fuel.2022.126339 DOI: https://doi.org/10.1016/j.fuel.2022.126339
21. Uykun Mangaloğlu D, Güzel P, Şenkan S, Atakül H. High throughput screening of promoted bimetallic catalysts supported on alumina for production of light olefins via Fischer-Tropsch synthesis with artificial neural network and response surface methodology. Fuel. 2024; 371: 131935. doi: 10.1016/j.fuel.2024.131935 DOI: https://doi.org/10.1016/j.fuel.2024.131935
22. Xing M, Xin Z, Meng F, et al. Role of Ga2O3 crystallite in OX-ZEO catalyst for catalytic CO2 hydrogenation to light olefins. Chemical Engineering Journal. 2025; 520: 166177. doi: 10.1016/j.cej.2025.166177 DOI: https://doi.org/10.1016/j.cej.2025.166177
23. Stauffer JE. Process for producing ethylene by chlorination of ethane and dehydrochlorination of ethyl chloride. US9169168, 10 April 2013.
24. Liu X, Wang M, Yin H, et al. Catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catalysis. 2020; 10(15): 8303–8314. doi: 10.1021/acscatal.0c01579 DOI: https://doi.org/10.1021/acscatal.0c01579
25. Zhang X, Jiye W, Zhang Y, et al. Advances in iron-based Fischer-Tropsch synthesis with high carbon efficiency. Chinese Journal of Catalysis. 2025; 74: 4–21. doi: 10.1016/s1872-2067(25)64738-3 DOI: https://doi.org/10.1016/S1872-2067(25)64738-3
26. Gholami Z, Gholami F, Tišler Z, et al. A review on production of light olefins via fluid catalytic cracking. Energies. 2021, 14(4): 1089. doi: 10.3390/en14041089 DOI: https://doi.org/10.3390/en14041089
27. Mukherjee A, Samanta C, Bordoloi A. On-Purpose Production of Light Olefins Through Oxidative Dehydrogenation: An Overview of Recent Developments. ChemCatChem. 2024; 16(23): e202401187. doi: 10.1002/cctc.202401187 DOI: https://doi.org/10.1002/cctc.202401187
28. Abbas-Abadi MS, Ureel Y, Eschenbacher A, et al. Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: Towards full recyclability. Progress in Energy and Combustion Science. 2023; 96: 101046. doi: 10.1016/j.pecs.2022.101046 DOI: https://doi.org/10.1016/j.pecs.2022.101046
29. Cordero-Lanzac T, Gayubo AG, Aguayo AT, Bilbao J. The MTO and DTO processes as greener alternatives to produce olefins: A review of kinetic models and reactor design. Chemical Engineering Journal. 2024; 494: 152906. doi: 10.1016/j.cej.2024.152906 DOI: https://doi.org/10.1016/j.cej.2024.152906
30. Verkama E, Nestler F. On the co-conversion of methanol and ethanol to olefins and ethers. Fuel. 2026; 406: 137152. doi: 10.1016/j.fuel.2025.137152 DOI: https://doi.org/10.1016/j.fuel.2025.137152
31. Liu K, Liao Y, Wang P, et al. Lattice capacity-dependent activity for CO2 methanation: crafting Ni/CeO2 catalysts with outstanding performance at low temperatures. Nanoscale. 2024; 16(23): 11096–11108. doi: 10.1039/d4nr01409j DOI: https://doi.org/10.1039/D4NR01409J
32. Liu K, Liao L, Liao G. Impact of catalyst support on water-assisted CO oxidation over PdO/MO2 (M = Sn, Ti, and Si) catalysts: experimental and theoretical investigation. Nanoscale. 2024; 16(47): 21783–21793. doi: 10.1039/d4nr03963g DOI: https://doi.org/10.1039/D4NR03963G
33. Liao L, Wang K, Liao G, et al. Oxygen vacancy-dependent low-temperature performance of Ni/CeO2 in CO2 methanation. Catalysis Science & Technology. 2024; 14(22): 6537–6549. doi: 10.1039/d4cy00679h DOI: https://doi.org/10.1039/D4CY00679H
34. Liu K, Nawaz MA, Liao G. Progress and future challenges in designing high-performance Ni/CeO2 catalysts for CO2 methanation: A critical review. Carbon Neutralization. 2025; 4(1): e190. doi: 10.1002/cnl2.190 DOI: https://doi.org/10.1002/cnl2.190
35. Lu F, Sun B, Feng J, Jiang J. Recent progress for boosting CO2 hydrogenation to light olefins. Applied Catalysis A: General. 2024; 687: 119982. doi: 10.1016/j.apcata.2024.119982 DOI: https://doi.org/10.1016/j.apcata.2024.119982
36. Zhai P, Li Y, Wang M, et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem. 2021; 7(11): 3027–3051. doi: 10.1016/j.chempr.2021.08.019 DOI: https://doi.org/10.1016/j.chempr.2021.08.019
37. Blay-Roger R, Nawaz MA, Baena-Moreno FM, et al. Tandem catalytic approaches for CO2 enriched Fischer-Tropsch synthesis. Progress in Energy and Combustion Science. 2024; 103: 101159. doi: 10.1016/j.pecs.2024.101159 DOI: https://doi.org/10.1016/j.pecs.2024.101159
38. Yohannes A, Gates I. A century of evolution: Progress and milestones in fischer-tropsch synthesis. Coordination Chemistry Reviews. 2026; 547: 217096. doi: 10.1016/j.ccr.2025.217096 DOI: https://doi.org/10.1016/j.ccr.2025.217096
39. Guettel R, Kunz U, Turek T. Reactors for Fischer-Tropsch synthesis. Chemical Engineering & Technology. 2008; 31(5): 746–754. doi: 10.1002/ceat.200800023 DOI: https://doi.org/10.1002/ceat.200800023
40. Davis BH. Fischer–Tropsch synthesis: Overview of reactor development and future potentialities. Topics in Catalysis. 2005; 32(3–4): 143–168. doi: 10.1007/s11244-005-2886-5 DOI: https://doi.org/10.1007/s11244-005-2886-5
41. Jones MP, Krexner T, Bismarck A. Repurposing Fischer-Tropsch and natural gas as bridging technologies for the energy revolution. Energy Conversion and Management. 2022; 267: 115882. doi: 10.1016/j.enconman.2022.115882 DOI: https://doi.org/10.1016/j.enconman.2022.115882
42. Schmidbauer H, Rösch A. OPEC news announcements: Effects on oil price expectation and volatility. Energy Economics. 2012; 34(5): 1656–1663. doi: 10.1016/j.eneco.2012.01.006 DOI: https://doi.org/10.1016/j.eneco.2012.01.006
43. Tuo J, Li SQ, Xu H, et al. Research progress of structure design and acidity tuning of zeolites for the catalytic conversion of syngas. Journal of Fuel Chemistry and Technology. 2023; 51(1): 1–17. doi: 10.1016/s1872-5813(22)60035-5 DOI: https://doi.org/10.1016/S1872-5813(22)60035-5
44. Amoo CC, Xing C, Tsubaki N, Sun J. Tandem reactions over zeolite-based catalysts in syngas conversion. ACS Central Science. 2022; 8(8): 1047–1062. doi: 10.1021/acscentsci.2c00434 DOI: https://doi.org/10.1021/acscentsci.2c00434
45. Corda M, Vovk O, Marinova M, et al. Syngas conversion to light olefins over silver metallic nanoparticles in bifunctional catalysts. Chemical Engineering Journal. 2025; 506: 159700. doi: 10.1016/j.cej.2025.159700 DOI: https://doi.org/10.1016/j.cej.2025.159700
46. Pan X, Jiao F, Miao D, Bao X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chemical Reviews. 2021; 121(11): 6588–6609. doi: 10.1021/acs.chemrev.0c01012 DOI: https://doi.org/10.1021/acs.chemrev.0c01012
47. Torres Galvis HM, de Jong KP. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catalysis. 2013; 3(9): 2130–2149. doi: 10.1021/cs4003436 DOI: https://doi.org/10.1021/cs4003436
48. Lee GW, Kim KY, Rhim GB, et al. Effect of Zn promoter on precipitated iron catalyst for linear alpha olefin production via high-temperature Fischer-Tropsch synthesis: Modulating carbon chemical potential. Fuel. 2025; 391: 134748. doi: 10.1016/j.fuel.2025.134748 DOI: https://doi.org/10.1016/j.fuel.2025.134748
49. Song F, Yong X, Wu X, et al. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation. Applied Catalysis B: Environmental. 2022; 300: 120713. doi: 10.1016/j.apcatb.2021.120713 DOI: https://doi.org/10.1016/j.apcatb.2021.120713
50. Okur O, Şakoğlu P. Development of a green catalytic route to light olefins by Fischer-Tropsch synthesis with renewable hydrogen: Investigation of boron doped activated carbon supported iron catalyst. International Journal of Hydrogen Energy. 2024; 55: 1102–1108. doi: 10.1016/j.ijhydene.2023.11.231 DOI: https://doi.org/10.1016/j.ijhydene.2023.11.231
51. Ma H, Yang Y, Fu H, et al. Effect of alkaline-earth metals (Mg, Ca, Sr, and Ba) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis of light olefins. Fuel. 2024; 357: 129605. doi: 10.1016/j.fuel.2023.129605 DOI: https://doi.org/10.1016/j.fuel.2023.129605
52. Garona HA, Cavalcanti FM, de Abreu TF, et al. Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network. Journal of Cleaner Production. 2021; 321: 129003. doi: 10.1016/j.jclepro.2021.129003 DOI: https://doi.org/10.1016/j.jclepro.2021.129003
53. Ali B, Huang J, Zhang J, et al. Iron foam catalysts for forming olefins via Fischer–Tropsch synthesis. Catalysis Science & Technology. 2025; 15(7): 2160–2174. doi: 10.1039/d4cy01086h DOI: https://doi.org/10.1039/D4CY01086H
54. Zhou WG, Liu JY, Wu X, et al. An effective Co/MnOx catalyst for forming light olefins via Fischer–Tropsch synthesis. Catalysis Communications. 2015; 60: 76–81. doi: 10.1016/j.catcom.2014.10.027 DOI: https://doi.org/10.1016/j.catcom.2014.10.027
55. Wang T, Xu Y, Li Y, et al. Sodium-mediated bimetallic Fe–Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite. ACS Catalysis. 2021; 11(6): 3553–3574. doi: 10.1021/acscatal.1c00169 DOI: https://doi.org/10.1021/acscatal.1c00169
56. Yao TZ, An YI, Yu HI, et al. Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins. Journal of Fuel Chemistry and Technology. 2023; 51(10): 1400–1410. doi: 10.1016/s1872-5813(23)60351-2 DOI: https://doi.org/10.1016/S1872-5813(23)60351-2
57. Yang Y, Qian W, Zhang H, et al. Effect of the Zr promoter on precipitated iron-based catalysts for high-temperature Fischer–Tropsch synthesis of light olefins. Catalysis Science & Technology. 2022; 12(14): 4624–4636. doi: 10.1039/d2cy00146b DOI: https://doi.org/10.1039/D2CY00146B
58. Wang C, Zhu H, Zhang J, et al. Tuning Fischer-Tropsch synthesis product distribution toward light olefins over nitrided Fe-Mn bimetallic catalysts. Fuel. 2023; 343: 127977. doi: 10.1016/j.fuel.2023.127977 DOI: https://doi.org/10.1016/j.fuel.2023.127977
59. Akbari M, Mirzaei AA. Fischer-Tropsch to olefin reaction over Fe-based catalysts: Effect of preparation method and synergistic effect of Mn and Zr promoters. Journal of the Taiwan Institute of Chemical Engineers. 2024; 159: 105484. doi: 10.1016/j.jtice.2024.105484 DOI: https://doi.org/10.1016/j.jtice.2024.105484
60. Yang Z, Zhang Z, Liu Y, et al. Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light olefins: Effects of Mn promotion. Applied Catalysis B: Environmental. 2021; 285: 119815. doi: 10.1016/j.apcatb.2020.119815 DOI: https://doi.org/10.1016/j.apcatb.2020.119815
61. Stanke A, Lazdovica K, Gaile A, Laipniece L. Fischer-Tropsch synthesis product selectivity over silica-supported iron-based catalyst: Effect of K/Fe ratio. Fuel. 2025; 387: 134399. doi: 10.1016/j.fuel.2025.134399 DOI: https://doi.org/10.1016/j.fuel.2025.134399
62. Molefe T, Jiang Y, Magubane A, et al. Hollow carbon spheres as catalyst support for Fischer-Tropsch synthesis: synthesis techniques, optimization strategies, and future research. Fuel Processing Technology. 2025; 276: 108285. doi: 10.1016/j.fuproc.2025.108285 DOI: https://doi.org/10.1016/j.fuproc.2025.108285
63. Li L, Zhang M, Wang Y, Fang K. Preparation of Fe/SAPO-34 catalyst and its performance in CO hydrogenation to light olefins. Journal of Fuel Chemistry and Technology. 2025; 53(4): 504–514. doi: 10.1016/s1872-5813(24)60505-0 DOI: https://doi.org/10.1016/S1872-5813(24)60505-0
64. Wang Y, He R, Huo K, et al. Carbon monolith supported Fe-Based catalyst Boosts olefins production performance of Fischer-Tropsch synthesis via enhanced mass-transfer effect. Chemical Engineering Journal. 2025; 512: 162502. doi: 10.1016/j.cej.2025.162502 DOI: https://doi.org/10.1016/j.cej.2025.162502
65. Wu K, Zhang Z, Shan R, et al. Encapsulating Fischer-Tropsch synthesis catalyst with porous graphite-carbon enables ultrahigh activity for syngas to α-olefins. Applied Catalysis B: Environment and Energy. 2024; 353: 124067. doi: 10.1016/j.apcatb.2024.124067 DOI: https://doi.org/10.1016/j.apcatb.2024.124067
66. Abdullaev MUU, Jeon W, Kang Y, et al. Data-driven framework based on machine learning and optimization algorithms to predict oxide-zeolite-based composite and reaction conditions for syngas-to-olefin conversion. Chinese Journal of Catalysis. 2025; 74: 211–227. doi: 10.1016/s1872-2067(25)64733-4 DOI: https://doi.org/10.1016/S1872-2067(25)64733-4
67. Liang H, Zhang S, Zhang R, et al. Strong interaction between Fe and Ti compositions for effective CO2 hydrogenation to light olefins. Chinese Journal of Catalysis. 2025; 71: 146–157. doi: 10.1016/s1872-2067(24)60268-8 DOI: https://doi.org/10.1016/S1872-2067(24)60268-8
68. Zhu YF, Yuwono JA, Wilson M, et al. Visible light contributions transform CO2 into higher hydrocarbons during Fischer Tropsch synthesis over K-Fe catalysts. Applied Catalysis B: Environment and Energy. 2025; 379: 125376. doi: 10.1016/j.apcatb.2025.125736 DOI: https://doi.org/10.1016/j.apcatb.2025.125736
69. Yahyazadeh A, Dalai AK, Ma W, Zhang L. Fischer–Tropsch synthesis for light olefins from syngas: a review of catalyst development. Reactions. 2021; 2(3): 227–257. doi: 10.3390/reactions2030015 DOI: https://doi.org/10.3390/reactions2030015
70. Ma Z, Zhou C, Wang D, et al. Co-precipitated Fe-Zr catalysts for the Fischer-Tropsch synthesis of lower olefins (C2O ∼ C4O): Synergistic effects of Fe and Zr. Journal of Catalysis. 2019; 378: 209–219. doi: 10.1016/j.jcat.2019.08.037 DOI: https://doi.org/10.1016/j.jcat.2019.08.037
71. Yahyazadeh A, Seraj S, Boahene P, Dalai AK. Formulation of KMoFe/CNTs catalyst for production of light olefins and liquid hydrocarbons via Fischer-Tropsch synthesis: fixed-bed reactor simulation. Chemical Engineering Science. 2023; 282: 119300. doi: 10.1016/j.ces.2023.119300 DOI: https://doi.org/10.1016/j.ces.2023.119300
72. Meng F, Li B, Zhang J, et al. Role of Zn-Al oxide structure and oxygen vacancy in bifunctional catalyst for syngas conversion to light olefins. Fuel. 2023; 346: 128351. doi: 10.1016/j.fuel.2023.128351 DOI: https://doi.org/10.1016/j.fuel.2023.128351
73. Teimouri Z, Abatzoglou N, Dalai AK. Green synthesis of Cu-Mo promoted Fe catalyst for production of the gaseous and liquid fuels through Fischer-Tropsch synthesis. Energy Conversion and Management. 2023; 286: 117079. doi: 10.1016/j.enconman.2023.117079 DOI: https://doi.org/10.1016/j.enconman.2023.117079
74. Buthelezi AS, Tucker CL, Heeres HJ, et al. Fischer-tropsch synthesis using promoted, unsupported, supported, bimetallic and spray-dried iron catalysts: a review. Results in Chemistry. 2024; 9: 101623. doi: 10.1016/j.rechem.2024.101623 DOI: https://doi.org/10.1016/j.rechem.2024.101623
75. Liu B, Li W, Xu Y, et al. Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer–Tropsch synthesis. ACS Catalysis. 2019; 9(8): 7073–7089. doi: 10.1021/acscatal.9b00352 DOI: https://doi.org/10.1021/acscatal.9b00352
76. Ordomsky VV, Luo Y, Gu B, et al. Soldering of iron catalysts for direct synthesis of light olefins from syngas under mild reaction conditions. ACS Catalysis. 2017; 7(10): 6445–6452. doi: 10.1021/acscatal.7b01307
77. Shiba NC. Stoichiometric perovskites as new class supports for Fe and Co in Fischer Tropsch Synthesis: A review. Journal of CO2 Utilization. 2025; 99: 103151. doi: 10.1016/j.jcou.2025.103151 DOI: https://doi.org/10.1016/j.jcou.2025.103151
78. Ding G, Li C, Chen L, Liao G. Porphyrin-based metal–organic frameworks for photo(electro)catalytic CO2 reduction. Energy & Environmental Science. 2024; 17(15): 5311-5335. doi: 10.1039/d4ee01748j DOI: https://doi.org/10.1039/D4EE01748J
79. Liao G, Ding G, Yang B, Li C. Challenges in photocatalytic carbon dioxide reduction. Precision Chemistry. 2024; 2(2): 49-56. doi: 10.1021/prechem.3c00112 DOI: https://doi.org/10.1021/prechem.3c00112
80. Xiao Y, Ding G, Tao J, et al. Selective conversion of CO2 to C2H6 in pure water photocatalyzed by fluorobenzene-linked perylene diimide. Nature Communications. 2025; 16(1): 7476. doi: 10.1038/s41467-025-62369-7 DOI: https://doi.org/10.1038/s41467-025-62369-7
81. Zhang J, Yan D, Ding G, et al. Dual Co sites in n-n type heterojunction enable selective electrochemical co-valorization of HMF and CO2. Angewandte Chemie International Edition. 2025; 64(37): e202511448. doi: 10.1002/anie.202511448 DOI: https://doi.org/10.1002/anie.202511448
82. Chen Z, Ding G, Wang Z, et al. Precision molecular engineering of carbon nitride for efficient and selective photoreduction of CO2 to C2H6 in pure water. Advanced Functional Materials. 2025; 35(25): 2423213. doi: 10.1002/adfm.202423213 DOI: https://doi.org/10.1002/adfm.202423213
83. Liu J, Zhang Y, Peng C. Recent advances hydrogenation of carbon dioxide to light olefins over iron-based catalysts via the Fischer–Tropsch synthesis. ACS Omega. 2024; 9(24): 25610-25624. doi: 10.1021/acsomega.4c03075 DOI: https://doi.org/10.1021/acsomega.4c03075
84. Marinho ALA, Panzone C, Chidraoui AM, et al. State-of-the-art direct CO2 hydrogenation to liquid hydrocarbons: Analysis of Fischer–Tropsch and methanol-mediated routes. Journal of CO2 Utilization. 2025; 101: 103189. doi: 10.1016/j.jcou.2025.103189 DOI: https://doi.org/10.1016/j.jcou.2025.103189
85. Li L, Chen D, Anzai A, et al. Operando spectroscopic studies on redox mechanism for CO2 hydrogenation to CO on In2O3 catalysts. Journal of Catalysis. 2024; 439: 115762. doi: 10.1016/j.jcat.2024.115762 DOI: https://doi.org/10.1016/j.jcat.2024.115762
86. Bobadilla LF, Santos JL, Ivanova S, et al. Unravelling the role of oxygen vacancies in the mechanism of the reverse water–gas shift reaction by operando DRIFTS and ultraviolet–visible spectroscopy. ACS Catalysis. 2018; 8(8): 7455-7467. doi: 10.1021/acscatal.8b02121 DOI: https://doi.org/10.1021/acscatal.8b02121
87. Barrios AJ, Gu B, Luo Y, et al. Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental. 2020; 273: 119028. doi: 10.1016/j.apcatb.2020.119028 DOI: https://doi.org/10.1016/j.apcatb.2020.119028
88. Ribeiro MZLL, Souza JC, Gomes IF, et al. Surface chemical effects on Fischer–Tropsch iron oxide catalysts caused by alkali ion (Li, Na, K, Cs) doping. Catalysts. 2024; 14(10): 682. doi: 10.3390/catal14100682 DOI: https://doi.org/10.3390/catal14100682
89. Wang J, Bao Z, Wang P, et al. Study on iron based Fischer–Tropsch synthesis catalyst supported on mesoporous silica promoted by alkali and transition metals. Discover Chemical Engineering. 2025; 5(1): 8. doi: 10.1007/s43938-025-00081-0 DOI: https://doi.org/10.1007/s43938-025-00081-0
90. Wu X, Qian W, Ma H, et al. Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer–Tropsch synthesis of light olefins. Fuel. 2019; 257: 116101. doi: 10.1016/j.fuel.2019.116101 DOI: https://doi.org/10.1016/j.fuel.2019.116101
91. Fallahi Y, Burgun U, Sarioglan A, Atakul H. Effect of sodium incorporation into Fe-Zn catalyst for Fischer-Tropsch synthesis to light olefins. Molecular Catalysis. 2023; 535: 112866. doi: 10.1016/j.mcat.2022.112866 DOI: https://doi.org/10.1016/j.mcat.2022.112866
92. Yahyazadeh A, Borugadda VB, Dalai AL, Zhang L. Optimization of olefins’ yield in Fischer-Tropsch synthesis using carbon nanotubes supported iron catalyst with potassium and molybdenum promoters. Applied Catalysis A: General. 2022; 643: 118759. doi: 10.1016/j.apcata.2022.118759 DOI: https://doi.org/10.1016/j.apcata.2022.118759
93. Yang Y, Zhang H, Ma H, et al. Effect of alkalis (Li, Na, and K) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis. Fuel. 2022; 326: 125090. doi: 10.1016/j.fuel.2022.125090 DOI: https://doi.org/10.1016/j.fuel.2022.125090
94. Nasser AH, El-Bery HM, Elnaggar H, et al. Selective conversion of syngas to olefins via novel Cu-promoted Fe/RGO and Fe–Mn/RGO Fischer–Tropsch catalysts: fixed-bed reactor vs slurry-bed reactor. ACS Omega. 2021; 6(46): 31099–31111. doi: 10.1021/acsomega.1c04476 DOI: https://doi.org/10.1021/acsomega.1c04476
95. Gong W, Ye RP, Ding J, et al. Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission. Applied Catalysis B: Environmental. 2020; 278: 119302. doi: 10.1016/j.apcatb.2020.119302 DOI: https://doi.org/10.1016/j.apcatb.2020.119302
96. Liu Y, Lu F, Tang Y, et al. Effects of initial crystal structure of Fe2O3 and Mn promoter on effective active phase for syngas to light olefins. Applied Catalysis B: Environmental. 2020; 261: 118219. doi: 10.1016/j.apcatb.2019.118219 DOI: https://doi.org/10.1016/j.apcatb.2019.118219
97. Wang C, Chen J, Zhu H, et al. Highly effective MFe2O4 (M=Zn, Mg, Cu and Mn) spinel catalysts for Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology. 2024; 52(5): 667–676. doi: 10.1016/s1872-5813(23)60406-2 DOI: https://doi.org/10.1016/S1872-5813(23)60406-2
98. Li Z, Liu J, Zhao Y, et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins. Advanced Materials. 2018; 30(31): 1800527. doi: 10.1002/adma.201800527 DOI: https://doi.org/10.1002/adma.201800527
99. Wang D, Liu G, Zhang C, et al. Insights into the mechanism of high CO2 selectivity over Co2C-based Fischer–Tropsch to olefins. ACS Catalysis. 2025; 15(9): 7028–7039. doi: 10.1021/acscatal.4c06992 DOI: https://doi.org/10.1021/acscatal.4c06992
100. Tang L, He L, Wang Y, et al. Selective fabrication of χ-Fe5C2 by interfering surface reactions as a highly efficient and stable Fischer-Tropsch synthesis catalyst. Applied Catalysis B: Environment and Energy. 2021; 284: 119753. doi: 10.1016/j.apcatb.2020.119753 DOI: https://doi.org/10.1016/j.apcatb.2020.119753
101. Xu Y, Li Y, Li R, et al. Cost-effective synthesis of Fe5C2 catalyst from nanosized zero-valent iron to achieve efficient photothermocatalytic CO hydrogenation to light olefins. Advanced Science. 2024; 12(4): 2410215. doi: 10.1002/advs.202410215 DOI: https://doi.org/10.1002/advs.202410215
102. Shen X, Li C, Wang Y, et al. The evolution of Fe5C2 with the carburization of N- and K-modified Fe/Fe3C core-shell catalysts during Fischer-Tropsch synthesis. Chemical Engineering Journal. 2025; 505: 159889. doi: 10.1016/j.cej.2025.159889 DOI: https://doi.org/10.1016/j.cej.2025.159889
103. Yin F, Qu F, Wang F, et al. Study on performance of Fe2N catalyst modified by hydrophobic PDVB-DMF for Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology. 2025; 53(5): 663–671. doi: 10.1016/s1872-5813(24)60526-8 DOI: https://doi.org/10.1016/S1872-5813(24)60526-8
104. Zepeda TA. Insights into active iron phosphide as Fischer-Tropsch synthesis catalyst for sustainable light olefins production. Molecular Catalysis. 2025; 574: 114870. doi: 10.1016/j.mcat.2025.114870 DOI: https://doi.org/10.1016/j.mcat.2025.114870
105. Sun F, Yang R, Xia Z, et al. Effects of cobalt carbide on Fischer–Tropsch synthesis with MnO supported Co-based catalysts. Journal of Energy Chemistry. 2020; 42: 227–232. doi: 10.1016/j.jechem.2019.07.007 DOI: https://doi.org/10.1016/j.jechem.2019.07.007
106. Liu Y, He C, Jiang X, et al. Fischer-Tropsch synthesis to α-olefins with low CO2 selectivity on a Co2C catalyst. Chemical Engineering Journal. 2024; 479: 147927. doi: 10.1016/j.cej.2023.147927 DOI: https://doi.org/10.1016/j.cej.2023.147927
107. Ngantsoue-Hoc W, Zhang Y, O’Brien RJ, et al. Fischer−Tropsch synthesis: activity and selectivity for Group I alkali promoted iron-based catalysts. Applied Catalysis A: General. 2002; 236(1–2): 77–89. doi: 10.1016/s0926-860x(02)00278-8 DOI: https://doi.org/10.1016/S0926-860X(02)00278-8
108. Gu B, Peron DV, Barrios AJ, et al. Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas. Chemical Science. 2020; 11(24): 6167–6182. doi: 10.1039/d0sc01600d DOI: https://doi.org/10.1039/D0SC01600D
109. Li Z, Yao N, Cen J, et al. Effects of alkali metal promoters on the structure–performance relationship of CoMn catalysts for Fischer–Tropsch synthesis. Catalysis Science & Technology. 2020; 10(6): 1816–1826. doi: 10.1039/c9cy02441g DOI: https://doi.org/10.1039/C9CY02441G
110. Jeske K, Kizilkaya AC, López-Luque I, et al. Design of cobalt Fischer–Tropsch catalysts for the combined production of liquid fuels and olefin chemicals from hydrogen-rich syngas. ACS Catalysis. 2021; 11(8): 4784–4798. doi: 10.1021/acscatal.0c05027 DOI: https://doi.org/10.1021/acscatal.0c05027
111. Zhang C, Li S, Zhong L, et al. Theoretical insights into morphologies of alkali-promoted cobalt carbide catalysts for Fischer–Tropsch synthesis. The Journal of Physical Chemistry C. 2021; 125(11): 6061–6072. doi: 10.1021/acs.jpcc.0c09164 DOI: https://doi.org/10.1021/acs.jpcc.0c09164
112. Gu B, He S, Zhou W, et al. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas. Journal of Energy Chemistry. 2017; 26(4): 608–615. doi: 10.1016/j.jechem.2017.04.009 DOI: https://doi.org/10.1016/j.jechem.2017.04.009
113. Liu X, Lin T, Liu P, Zhong L. Hydrophobic interfaces regulate iron carbide phases and catalytic performance of FeZnOx nanoparticles for Fischer-Tropsch to olefins. Applied Catalysis B: Environmental. 2023; 331: 122697. doi: 10.1016/j.apcatb.2023.122697 DOI: https://doi.org/10.1016/j.apcatb.2023.122697
114. Jin K, Wen C. Characterization, performance, and strategies for synthesis and stabilization of active iron carbides in Fischer-Tropsch synthesis. Fuel. 2025; 402: 136005. doi: 10.1016/j.fuel.2025.136005 DOI: https://doi.org/10.1016/j.fuel.2025.136005
115. Wang Y, Li Y, Huang S, et al. Insight into CH4 formation and chain growth mechanism of Fischer−Tropsch synthesis on θ-Fe3C(031). Chemical Physics Letters. 2017; 682: 115–121. doi: 10.1016/j.cplett.2017.06.006 DOI: https://doi.org/10.1016/j.cplett.2017.06.006
116. Ordomsky VV, Luo Y, Gu B, et al. Soldering of iron catalysts for direct synthesis of light olefins from syngas under mild reaction conditions. ACS Catalysis. 2017; 7(10): 6445–6452. doi: 10.1021/acscatal.7b01307 DOI: https://doi.org/10.1021/acscatal.7b01307
117. Gu B, Ordomsky VV, Bahri M, et al. Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts. Applied Catalysis B: Environmental. 2018; 234: 153–166. doi: 10.1016/j.apcatb.2018.04.025 DOI: https://doi.org/10.1016/j.apcatb.2018.04.025
118. Opeyemi Otun K, Yao Y, Liu X, Hildebrandt D. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review. Fuel. 2021; 296: 120689. doi: 10.1016/j.fuel.2021.120689 DOI: https://doi.org/10.1016/j.fuel.2021.120689
119. Lin T, Yu F, An Y, et al. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Accounts of Chemical Research. 2021; 54(8): 1961–1971. doi: 10.1021/acs.accounts.0c00883 DOI: https://doi.org/10.1021/acs.accounts.0c00883
120. Liu XW, Zhao S, Meng Y, et al. Mössbauer spectroscopy of iron carbides: From prediction to experimental confirmation. Scientific Reports. 2016; 6(1): 26184. doi: 10.1038/srep26184 DOI: https://doi.org/10.1038/srep26184
121. Yang C, Zhao H, Hou Y, Ma D. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. Journal of the American Chemical Society. 2012; 134(38): 15814–15821. doi: 10.1021/ja305048p DOI: https://doi.org/10.1021/ja305048p
122. Ren J, Ai N, Ou D, Yu Y. Insights into the Fischer–Tropsch mechanism on χ-Fe5C2(510) based on the hydrogen coverage effect. Molecular Catalysis. 2023; 538: 112990. doi: 10.1016/j.mcat.2023.112990 DOI: https://doi.org/10.1016/j.mcat.2023.112990
123. Ren X, Men Z, Wang P, et al. The nature of K promotion of χ-Fe5C2 for high chain-growth probability in the Fischer–Tropsch reaction. Applied Catalysis B: Environment and Energy. 2025; 374: 125403. doi: 10.1016/j.apcatb.2025.125403 DOI: https://doi.org/10.1016/j.apcatb.2025.125403
124. He F, Kong X, Zhang T, et al. Mechanistic insight into accelerating of light olefin products by surface OH* group on the Fe5C2 catalyst. Fuel. 2025; 381: 133635. doi: 10.1016/j.fuel.2024.133635 DOI: https://doi.org/10.1016/j.fuel.2024.133635
125. Huang S, Liu C, Chen Y, et al. Organic-solvent assisted synthesis of highly dispersed iron based Fischer-Tropsch catalysts with MCF support: The effect of organic-solvent. Fuel. 2022; 313: 122666. doi: 10.1016/j.fuel.2021.122666 DOI: https://doi.org/10.1016/j.fuel.2021.122666
126. Suo Y, Yao Y, Zhang Y, et al. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. Journal of Industrial and Engineering Chemistry. 2022; 115: 92–119. doi: 10.1016/j.jiec.2022.08.026 DOI: https://doi.org/10.1016/j.jiec.2022.08.026
127. ten Have IC, Weckhuysen BM. The active phase in cobalt-based Fischer-Tropsch synthesis. Chem Catalysis. 2021; 1(2): 339–363. doi: 10.1016/j.checat.2021.05.011 DOI: https://doi.org/10.1016/j.checat.2021.05.011
128. Zhong L, Yu F, An Y, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature. 2016; 538(7623): 84–87. doi: 10.1038/nature19786 DOI: https://doi.org/10.1038/nature19786
129. Liu P, Lin T, Guo L, et al. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency. Chinese Journal of Catalysis. 2023; 48: 150–163. doi: 10.1016/s1872-2067(23)64410-9 DOI: https://doi.org/10.1016/S1872-2067(23)64410-9
130. Li R, Li Y, Li Z, et al. Unleashing the full potential of photo-driven CO hydrogenation to light olefins over carbon-coated CoMn-based catalysts. Advanced Materials. 2023; 35(44): 2307217. doi: 10.1002/adma.202307217 DOI: https://doi.org/10.1002/adma.202307217
131. Dai Y, Zhao Y, Lin T, et al. Particle size effects of cobalt carbide for Fischer–Tropsch to olefins. ACS Catalysis. 2018; 9(2): 798–809. doi: 10.1021/acscatal.8b03631 DOI: https://doi.org/10.1021/acscatal.8b03631
132. Gorimbo J, Lu X, Liu X, et al. Low-pressure Fischer–Tropsch synthesis: in situ oxidative regeneration of iron catalysts. Industrial & Engineering Chemistry Research. 2017; 56(15): 4267–4274. doi: 10.1021/acs.iecr.7b00008 DOI: https://doi.org/10.1021/acs.iecr.7b00008
133. Arce-Ramos JM, Li WQ, Lim SH, et al. Investigating the deactivation and regeneration mechanism of Fe-based catalysts during CO2 reduction to chemicals. Applied Catalysis B: Environment and Energy. 2024; 347: 123794. doi: 10.1016/j.apcatb.2024.123794 DOI: https://doi.org/10.1016/j.apcatb.2024.123794
134. Wentrup J, Pesch GR, Thöming J. Dynamic operation of Fischer-Tropsch reactors for power-to-liquid concepts: A review. Renewable and Sustainable Energy Reviews. 2022; 162: 112454. doi: 10.1016/j.rser.2022.112454 DOI: https://doi.org/10.1016/j.rser.2022.112454
135. Song D, Li J. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of Molecular Catalysis A: Chemical. 2006; 247(1–2): 206–212. doi: 10.1016/j.molcata.2005.11.021 DOI: https://doi.org/10.1016/j.molcata.2005.11.021
136. Chen L, Song W, Zhang Y, et al. Nanowire accumulated Fe2O3/SiO2 spherical catalyst for Fischer-Tropsch synthesis. Chinese Journal of Catalysis. 2014; 35(10): 1661–1668. doi: 10.1016/s1872-2067(14)60135-2 DOI: https://doi.org/10.1016/S1872-2067(14)60135-2
137. Han Z, Ying W, Zhang H, et al. Role of SiO2 in different iron-based catalysts for Fischer-Tropsch synthesis to light olefins. Fuel. 2023; 338: 127257. doi: 10.1016/j.fuel.2022.127257 DOI: https://doi.org/10.1016/j.fuel.2022.127257
138. Liu Y, Pan C, Zou Y, et al. Nano-Fe/SiO2 catalysts prepared by facile colloidal deposition: enhanced durability in Fischer-Tropsch synthesis. Fuel. 2023; 333: 126514. doi: 10.1016/j.fuel.2022.126514 DOI: https://doi.org/10.1016/j.fuel.2022.126514
139. Peron DV, Barrios AJ, Taschin A, et al. Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin. Applied Catalysis B: Environmental. 2021; 292: 120141. doi: 10.1016/j.apcatb.2021.120141 DOI: https://doi.org/10.1016/j.apcatb.2021.120141
140. Liu Y, Wu F, You Z, Li J. Comparative study of different mesostructured silica-supported nano-iron catalysts for Fischer–Tropsch synthesis. Catalysis Letters. 2024; 154(10): 5508–5520. doi: 10.1007/s10562-024-04764-1 DOI: https://doi.org/10.1007/s10562-024-04764-1
141. Arsalanfar M, Nouri A, Abdouss M, Rezazadeh E. Fischer–Tropsch synthesis over the Co–Ni/Al2O3 nanocatalyst: influence of process variables, modeling and optimization using response surface methodology. Journal of Chemical Technology and Biotechnology. 2023; 99(1): 133–148. doi: 10.1002/jctb.7516 DOI: https://doi.org/10.1002/jctb.7516
142. Zarin Torang H, Atashi H, Zohdi-Fasaei H, Meshkani F. Investigating catalytic performance of Ag/Ce promoted Fe/Al2O3 catalyst in the CO hydrogenation process: Selectivity modeling and optimization using response surface methodology. International Journal of Energy Research. 2021; 45(10): 14518–14529. doi: 10.1002/er.6667 DOI: https://doi.org/10.1002/er.6667
143. Zhao M, Sun J, Li X, Zhang Q. Synthesis of light olefins from syngas catalyzed by supported iron-based catalysts on alumina. Catalysis Today. 2022; 402: 300–309. doi: 10.1016/j.cattod.2022.05.015 DOI: https://doi.org/10.1016/j.cattod.2022.05.015
144. Liu Z, Jia G, Zhao C, Xing Y. Efficient Fischer-Tropsch to light olefins over iron-based catalyst with low methane selectivity and high olefin/paraffin ratio. Fuel. 2021; 288: 119572. doi: 10.1016/j.fuel.2020.119572 DOI: https://doi.org/10.1016/j.fuel.2020.119572
145. Dolsiririttigul N, Numpilai T, Faungnawakij K, et al. Unraveling the complex interactions between structural features and reactivity of iron-based catalysts across various supports in the synthesis of light olefins from syngas. Chemical Engineering Journal. 2024; 480: 148196. doi: 10.1016/j.cej.2023.148196 DOI: https://doi.org/10.1016/j.cej.2023.148196
146. Chen M, Wang Q, Liang D, et al. Insight of the effect of Fe content in Fe/biochar on the conversion of syngas to olefins via Fischer-Tropsch synthesis. Journal of Analytical and Applied Pyrolysis. 2025; 186: 106973. doi: 10.1016/j.jaap.2025.106973 DOI: https://doi.org/10.1016/j.jaap.2025.106973
147. Li X, Nisa MU, Chen Y, Li Z. Co-based catalysts supported on silica and carbon materials: effect of support property on cobalt species and Fischer–Tropsch synthesis performance. Industrial & Engineering Chemistry Research. 2019; 58(8): 3459–3467. doi: 10.1021/acs.iecr.8b05451 DOI: https://doi.org/10.1021/acs.iecr.8b05451
148. Qiu T, Wang L, Lv S, et al. SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel. 2017; 203: 811–816. doi: 10.1016/j.fuel.2017.05.043 DOI: https://doi.org/10.1016/j.fuel.2017.05.043
149. Zhu C, Huang C, Zhang M, et al. Rational design of hierarchical zeolite encapsulating FeMnK architecture to enhance light olefins selectivity in Fischer-Tropsch synthesis. Fuel. 2022; 309: 122075. doi: 10.1016/j.fuel.2021.122075 DOI: https://doi.org/10.1016/j.fuel.2021.122075
150. Zhu C, Huang C, Zhang M, Fang K. Design of ZSM-5 encapsulating FeMnK nanocatalysts for light olefins synthesis with enhanced carbon utilization efficiency. Fuel. 2023; 335: 126745. doi: 10.1016/j.fuel.2022.126745 DOI: https://doi.org/10.1016/j.fuel.2022.126745
151. da Silva LA, Heczko V, Schmal M, et al. Catalytic and kinetic evaluation of Fe/HZSM-5 catalyst for Fischer-Tropsch synthesis. Chemical Engineering Journal. 2025; 505: 159203. doi: 10.1016/j.cej.2025.159203 DOI: https://doi.org/10.1016/j.cej.2025.159203
152. Burgun U, Zonouz HR, Okutan H, et al. Effects of rare earth metal promotion over zeolite-supported Fe–Cu-based catalysts on the light olefin production performance in Fischer–Tropsch synthesis. ACS Omega. 2023; 8(1): 648–662. doi: 10.1021/acsomega.2c05795 DOI: https://doi.org/10.1021/acsomega.2c05795
153. Jeong W, Kim J, Cho K, Kim JC. Fischer-Tropsch synthesis performance of iron Nanocatalyst confined in mesopores of MFI zeolite nanosponge. Fuel. 2025; 381: 133673. doi: 10.1016/j.fuel.2024.133673 DOI: https://doi.org/10.1016/j.fuel.2024.133673
154. Frng Q, Wei F, Chen Z, et al. Mesoporous silica-based catalysts for photocatalytic CO2 reduction. Microporous and Mesoporous Materials. 2024; 366: 112947. doi: 10.1016/j.micromeso.2023.112947 DOI: https://doi.org/10.1016/j.micromeso.2023.112947
155. Liew WM, Ainirazali N, Jusoh R. Silica-supported nickel based catalysts for bio-alcohol dry reforming (2005–2025): a two-decade bibliometric map and roadmap to net-zero hydrogen. International Journal of Hydrogen Energy. 2025; 166: 150921. doi: 10.1016/j.ijhydene.2025.150921 DOI: https://doi.org/10.1016/j.ijhydene.2025.150921
156. Bukur DB, Ma WP, Carreto-Vazquez V, et al. Attrition resistance and catalytic performance of spray-dried iron Fischer–Tropsch catalysts in a stirred-tank slurry reactor. Industrial & Engineering Chemistry Research. 2004; 43(6): 1359–1365. doi: 10.1021/ie034056o DOI: https://doi.org/10.1021/ie034056o
157. Dad M, Lancee RJ, Janse van Vuuren M, et al. SiO2-supported Fe & FeMn colloids—Fischer-Tropsch synthesis on 3D model catalysts. Applied Catalysis A: General. 2017; 537: 83–92. doi: 10.1016/j.apcata.2017.02.023 DOI: https://doi.org/10.1016/j.apcata.2017.02.023
158. Suo H, Wang S, Zhang C, et al. Chemical and structural effects of silica in iron-based Fischer–Tropsch synthesis catalysts. Journal of Catalysis. 2012; 286: 111–123. doi: 10.1016/j.jcat.2011.10.024 DOI: https://doi.org/10.1016/j.jcat.2011.10.024
159. Chernavskii PA, Kazak VO, Pankina GV, et al. Mechanistic aspects of the activation of silica-supported iron catalysts for Fischer–Tropsch synthesis in carbon monoxide and syngas. ChemCatChem. 2015; 8(2): 390–395. doi: 10.1002/cctc.201500811 DOI: https://doi.org/10.1002/cctc.201500811
160. Zhang R, Li J, Tonkovich AL, et al. Highly productive and robust core@shell heatpath SiC-Al2O3 @Co/Re/Al2O3 catalyst for Fischer–Tropsch synthesis. Applied Catalysis A: General. 2023; 666: 119419. doi: 10.1016/j.apcata.2023.119419 DOI: https://doi.org/10.1016/j.apcata.2023.119419
161. Liu K, Shen H, Xin J, et al. Graphitic carbon-confined Ru1Con single-atom alloy boosts olefin production from Fischer-Tropsch synthesis. Applied Catalysis B: Environment and Energy. 2026; 383: 126146. doi: 10.1016/j.apcatb.2025.126146 DOI: https://doi.org/10.1016/j.apcatb.2025.126146
162. Shinde PS, Suryawanshi PS, Patil KK, et al. A brief overview of recent progress in porous silica as catalyst supports. Journal of Composites Science. 2021; 5(3): 75. doi: 10.3390/jcs5030075 DOI: https://doi.org/10.3390/jcs5030075
163. Wei Y, Yang W, Yang Z. An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. International Journal of Hydrogen Energy. 2022; 47(16): 9537–9565. doi: 10.1016/j.ijhydene.2022.01.048 DOI: https://doi.org/10.1016/j.ijhydene.2022.01.048
164. Nugraha RE, Fauziyah NA, Nurherdiana SD, et al. Recent strategy on green synthesis of mesoporous silica from waste for a sustainable and circular economy. Journal of Environmental Chemical Engineering. 2025; 13(5): 118288. doi: 10.1016/j.jece.2025.118288 DOI: https://doi.org/10.1016/j.jece.2025.118288
165. Xu JD, Chang ZY, Zhu KT, et al. Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer–Tropsch synthesis. Applied Catalysis A: General. 2016; 514: 103–113. doi: 10.1016/j.apcata.2015.12.023 DOI: https://doi.org/10.1016/j.apcata.2015.12.023
166. Bartholomew CH, Agrawal PK, Katzer JR. Sulfur poisoning of metals. In: Advances in Catalysis. Elsevier; 1982. pp. 135–242. DOI: https://doi.org/10.1016/S0360-0564(08)60454-X
167. Cheng K, Ordomsky VV, Virginie M, et al. Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General. 2014; 488: 66–77. doi: 10.1016/j.apcata.2014.09.033 DOI: https://doi.org/10.1016/j.apcata.2014.09.033
168. Khan N, Gupta A, Ahamad S, et al. Functionalized biochar catalysts: advancing green chemistry in synthesis of O- and N-heterocycles. Environmental Research. 2025; 284: 122136. doi: 10.1016/j.envres.2025.122136 DOI: https://doi.org/10.1016/j.envres.2025.122136
169. Hama Aziz KH, Mustafa FS, Karim MAH, Hama S. Biochar-based catalysts: an efficient and sustainable approach for water remediation from organic pollutants via advanced oxidation processes. Journal of Environmental Management. 2025; 390: 126245. doi: 10.1016/j.jenvman.2025.126245 DOI: https://doi.org/10.1016/j.jenvman.2025.126245
170. Huang J, Jiang S, Wang M, et al. Dynamic evolution of Fe and carbon species over different ZrO2 supports during CO prereduction and their effects on CO2 hydrogenation to light olefins. ACS Sustainable Chemistry & Engineering. 2021; 9(23): 7891–7903. doi: 10.1021/acssuschemeng.1c01777 DOI: https://doi.org/10.1021/acssuschemeng.1c01777
171. Gholami Z, Gholami F, Tišler Z, et al. Production of light olefins via Fischer-Tropsch process using iron-based catalysts: A review. Catalysts. 2022; 12(2): 174. doi: 10.3390/catal12020174 DOI: https://doi.org/10.3390/catal12020174
172. Chai J, Jiang J, Gong Y, et al. Recent mechanistic understanding of Fischer-Tropsch synthesis on Fe-carbide. Catalysts. 2023; 13(7): 1052. doi: 10.3390/catal13071052 DOI: https://doi.org/10.3390/catal13071052
173. Poodine M, Mirzaei AA, Mollashahi E, et al. Enhanced Fischer-Tropsch synthesis via hierarchical MOF-derived FeCo nanocatalysts: A MOF-on-MOF strategy. Molecular Catalysis. 2026; 588: 115556. doi: 10.1016/j.mcat.2025.115556 DOI: https://doi.org/10.1016/j.mcat.2025.115556
174. Chen J, Xu W, Miao W, et al. Exploiting Co-C interface and graphitic carbon belts for enhanced structural stability of a porous layered Co-C catalyst for CO2 hydrogenation. Chemical Engineering Journal. 2024; 490: 151673. doi: 10.1016/j.cej.2024.151673 DOI: https://doi.org/10.1016/j.cej.2024.151673
175. Xu F, Meng X, Zhao R, et al. Metal-organic framework-derived Fe3O4-FeCx catalyst for direct CO2 hydrogenation to light olefins. Applied Catalysis A: General. 2024; 670: 119537. doi: 10.1016/j.apcata.2023.119537 DOI: https://doi.org/10.1016/j.apcata.2023.119537
176. Belousov AS, Fukina DG, Koryagin AV. Metal–organic framework-based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. Journal of Chemical Technology & Biotechnology. 2022; 97(10): 2675–2693. doi: 10.1002/jctb.7091 DOI: https://doi.org/10.1002/jctb.7091
177. Júnior EBS, de Sousa LA, Almeida LC, et al. Enhanced Fischer-Tropsch synthesis through structured bed configurations and zeolite integration. Catalysis Today. 2025; 443: 114985. doi: 10.1016/j.cattod.2024.114985 DOI: https://doi.org/10.1016/j.cattod.2024.114985
178. Zormpa F, Treu P, Saraçi E. Advancing biomass valorization with zeolite catalysts: Focus on oxidative transformations. Sustainable Chemistry for the Environment. 2025; 10: 100249. doi: 10.1016/j.scenv.2025.100249 DOI: https://doi.org/10.1016/j.scenv.2025.100249
179. Wang H, Wu Q, Xiao FS. Design of zeolite-based catalysts by Le Chatelier’s principle. Applied Catalysis B: Environment and Energy. 2025; 379: 125671. doi: 10.1016/j.apcatb.2025.125671 DOI: https://doi.org/10.1016/j.apcatb.2025.125671
180. Li Y, Ma Z, Shang J ,et al. Rational design of zeolite-based composite catalysts in catalytic cracking of polyethylene. Fuel. 2026; 403: 136056. doi: 10.1016/j.fuel.2025.136056 DOI: https://doi.org/10.1016/j.fuel.2025.136056
181. Luk HT, Mondelli C, Mitchell S, et al. Impact of carrier acidity on the conversion of syngas to higher alcohols over zeolite-supported copper-iron catalysts. Journal of Catalysis. 2019; 371: 116–125. doi: 10.1016/j.jcat.2019.01.021 DOI: https://doi.org/10.1016/j.jcat.2019.01.021
182. Zhai P, Xu C, Gao R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angewandte Chemie International Edition. 2016; 55(34): 9902–9907. doi: 10.1002/anie.201603556 DOI: https://doi.org/10.1002/anie.201603556
183. Xu Y, Zhai P, Deng Y, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives. Angewandte Chemie International Edition. 2020; 59(48): 21736–21744. doi: 10.1002/anie.202009620 DOI: https://doi.org/10.1002/anie.202009620
184. Balasundram V, Ibrahim N, Kasmani RM, et al. Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil. Applied Energy. 2018; 220: 787–799. doi: 10.1016/j.apenergy.2018.03.141 DOI: https://doi.org/10.1016/j.apenergy.2018.03.141
185. Yang H, Du X, Zhou L, et al. Enhanced deoxygenation performance and coke resistance of Ni-based catalysts for jatropha oil conversion by rare earth elements. Fuel. 2023; 334: 126779. doi: 10.1016/j.fuel.2022.126779 DOI: https://doi.org/10.1016/j.fuel.2022.126779
186. Elmhamdi A, Khaleel M. Recent innovations in spinel oxide-based catalysts for CO2 hydrogenation to olefins. Carbon Capture Science & Technology. 2025; 14: 100367. doi: 10.1016/j.ccst.2025.100367 DOI: https://doi.org/10.1016/j.ccst.2025.100367
187. Tai JZ, Alias H, Shamjuddin A, et al. Fundamentals and advances in photothermal CO2 hydrogenation to renewable fuels over MOF-hybrid catalysts: A review. Journal of Environmental Chemical Engineering. 2025; 13(3): 116291. doi: 10.1016/j.jece.2025.116291 DOI: https://doi.org/10.1016/j.jece.2025.116291
188. Hwang SY, Yun G, Yeo BS, Sohn Y. Electrochemical Fischer–Tropsch chemistry. Chemical Engineering Journal. 2025; 520: 165806. doi: 10.1016/j.cej.2025.165806 DOI: https://doi.org/10.1016/j.cej.2025.165806
189. Cui HF, Liu XJ, Liu C, et al. Recent progress on Cu-based MOF electrocatalysts for CO2 reduction. Fuel. 2026; 403: 136133. doi: 10.1016/j.fuel.2025.136133 DOI: https://doi.org/10.1016/j.fuel.2025.136133
190. Rey JRC, Longo A, Rijo B, et al. A review of cleaning technologies for biomass-derived syngas. Fuel. 2024; 377: 132776. doi: 10.1016/j.fuel.2024.132776 DOI: https://doi.org/10.1016/j.fuel.2024.132776
191. Jung HS, Kim BG, Kwon JH, Bae JW. Thermocatalytic technologies for syngas production from greenhouse gases and biomass-derived renewable oxygenates. Renewable and Sustainable Energy Reviews. 2025; 216(C): 115711. doi: 10.1016/j.rser.2025.115711 DOI: https://doi.org/10.1016/j.rser.2025.115711




.jpg)
.jpg)
