Building environment control for advanced precision instruments - state-of-the-art and future perspectives

Authors

  • Xiuming Li Liaoning Engineering Research Center of Process Industry Energy Saving and Low-carbon Technologies, School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Haoxue Liu Liaoning Engineering Research Center of Process Industry Energy Saving and Low-carbon Technologies, School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Siqi Liu Liaoning Engineering Research Center of Process Industry Energy Saving and Low-carbon Technologies, School of Metallurgy, Northeastern University, Shenyang 110819, China; State Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
  • Haiyang Zhang State Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China; TIPC-LNE Joint Laboratory on Cryogenic Metrology Science and Technology, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), Beijing 100190, China
  • Zongwei Han Liaoning Engineering Research Center of Process Industry Energy Saving and Low-carbon Technologies, School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Bo Gao State Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China; TIPC-LNE Joint Laboratory on Cryogenic Metrology Science and Technology, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), Beijing 100190, China
  • Lun Zhang School of Energy and Environment, Southeast University, Nanjing 210096, China
  • Wei Ye School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Article ID: 460
293 Views

DOI:

https://doi.org/10.18686/cest460

Keywords:

precision instrument; building environment; high-precision control; ventilation air conditioning

Abstract

With the development of modern science, sensitive precision instrumentations, which require a reliable and ultra-high precision building environment of temperature, humidity, vibration, cleanliness, and much more, have been increasingly concerned in high-tech scenarios such as advanced metrology, scientific instrumentations, and high-tech fabrications. Nowadays, there is a lack of systematic reviews on advanced building environment control technologies for precision instruments, which have huge differences from widely-used comfort air-conditioning systems. Firstly, requirements and problems for the design in different application scenarios are discussed. Then, challenges and limitations for operation control are demonstrated. According to existing studies, the convective-radiant combined supply cooling mode may be a potential technology, and yet there are still unsolved problems including micro-vibration, multi-parameter cooperative precision control, fluctuation suppression, and dehumidification of ultra-low humidity environment. This review is expected to provide the reference for researchers, designers, and builders to design and implement building environment solutions for advanced precision instruments.

Downloads

Published

2025-10-15

How to Cite

Li, X., Liu, H., Liu, S., Zhang, H., Han, Z., Gao, B., Zhang, L., & Ye, W. (2025). Building environment control for advanced precision instruments - state-of-the-art and future perspectives. Clean Energy Science and Technology, 3(4), 460. https://doi.org/10.18686/cest460

Issue

Section

Review

References

1. Soueid A, Teague EC, Murday J (editors). Buildings for Advanced Technology. Springer International Publishing; 2015. doi: 10.1007/978-3-319-24892-9 DOI: https://doi.org/10.1007/978-3-319-24892-9

2. Soueid A, Amick H, Zsirai T. Addressing the environmental challenges of the NIST Advanced Measurement Laboratory. In: Amick H (editor). Proceedings of the Buildings for Nanoscale Research and Beyond; 31 July–4 August 2005; San Diego, California, USA. doi: 10.1117/12.618915 DOI: https://doi.org/10.1117/12.618915

3. Lassila A, Kari M, Koivula H, et al. Design and performance of an advanced metrology building for MIKES. Measurement. 2011; 44(2): 399-425. doi: 10.1016/j.measurement.2010.10.013 DOI: https://doi.org/10.1016/j.measurement.2010.10.013

4. Yashchuk VV, Artemiev NA, Lacey I, et al. Advanced environmental control as a key component in the development of ultrahigh accuracy ex situ metrology for x-ray optics. Optical Engineering. 2015; 54(10): 104104. doi: 10.1117/1.OE.54.10.104104 DOI: https://doi.org/10.1117/1.OE.54.10.104104

5. Muller DA, Kirkland EJ, Thomas MG, et al. Room design for high-performance electron microscopy. Ultramicroscopy. 2006; 106(11-12): 1033-1040. doi: 10.1016/j.ultramic.2006.04.017 DOI: https://doi.org/10.1016/j.ultramic.2006.04.017

6. Chen H. Multidisciplinary Research Platform. In: Chen H (editor). Large Research Infrastructures Development in China: A Roadmap to 2050. Springer Berlin Heidelberg; 2011, pp. 55-93. doi: 10.1007/978-3-642-19368-2_6 DOI: https://doi.org/10.1007/978-3-642-19368-2_6

7. Zhao W. Zhentang Zhao: past and future of the Shanghai Synchrotron Radiation Facility. National Science Review. 2021; 8(12): nwab185. doi: 10.1093/nsr/nwab185 DOI: https://doi.org/10.1093/nsr/nwab185

8. Da Silva JC, Pacureanu A, Yang Y, et al. High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF. In: Lai B, Somogyi A (editors). X-Ray Nanoimaging: Instruments and Methods III, Proceedings of the SPIE 10389; 6-10 August 2017; San Diego, United States. p. 14. doi: 10.1117/12.2275739 DOI: https://doi.org/10.1117/12.2275739

9. Martin AA, Wang J, DePond PJ, et al. A laser powder bed fusion system for operando synchrotron x-ray imaging and correlative diagnostic experiments at the Stanford Synchrotron Radiation Lightsource. Review of Scientific Instruments. 2022; 93: 043702. doi: 10.1063/5.0080724 DOI: https://doi.org/10.1063/5.0080724

10. Yin J, Liu X, Guan B, Zhang T. Performance and improvement of cleanroom environment control system related to cold-heat offset in clean semiconductor fabs. Energy and Buildings. 2020; 224: 110294. doi: 10.1016/j.enbuild.2020.110294 DOI: https://doi.org/10.1016/j.enbuild.2020.110294

11. Cummings CM, Wang H, Smith MT. Transient thermal modeling of bioprocess equipment. International Journal of Heat and Mass Transfer. 2022; 184: 122064. doi: 10.1016/j.ijheatmasstransfer.2021.122064 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122064

12. Veronica N, Heng PWS, Liew CV. Relative Humidity Cycling: Implications on the Stability of Moisture-Sensitive Drugs in Solid Pharmaceutical Products. Mol Pharmaceutics. 2023; 20: 1072-1085. doi: 10.1021/acs.molpharmaceut.2c00812 DOI: https://doi.org/10.1021/acs.molpharmaceut.2c00812

13. Gao J, Luo X, Fang F, Sun J. Fundamentals of atomic and close-to-atomic scale manufacturing: A review. International Journal of Extreme Manufacturing. 2022; 4: 012001. doi: 10.1088/2631-7990/ac3bb2 DOI: https://doi.org/10.1088/2631-7990/ac3bb2

14. Huseynov EM, Jazbec A. Application of neutron transmutation technology to control the physical properties of nanoparticles at the atomic scale. Carbon. 2024; 229: 119568. doi: 10.1016/j.carbon.2024.119568 DOI: https://doi.org/10.1016/j.carbon.2024.119568

15. Yuan Y, Lanza M. The Effect of Relative Humidity in Conductive Atomic Force Microscopy. Advanced Materials. 2024; 36(51): 2405932. doi: 10.1002/adma.202405932 DOI: https://doi.org/10.1002/adma.202405932

16. Martínez-Criado G, Villanova J, Tucoulou R, et al. ID16B: a hard X-ray nanoprobe beamline at the ESRF for nano-analysis. Journal of Synchrotron Radiation. 2016; 23: 344–352. doi: 10.1107/S1600577515019839 DOI: https://doi.org/10.1107/S1600577515019839

17. Cramer SP. X-Ray Spectroscopy with Synchrotron Radiation: Fundamentals and Applications. Springer International Publishing; 2020. doi: 10.1007/978-3-030-28551-7 DOI: https://doi.org/10.1007/978-3-030-28551-7_3

18. Stucki C, Sautter A-M, Favet J, Bonnabry P. Microbial contamination of syringes during preparation: The direct influence of environmental cleanliness and risk manipulations on end-product quality. American Journal of Health-System Pharmacy. 2009; 66(22): 2032-2036. doi: 10.2146/ajhp070681 DOI: https://doi.org/10.2146/ajhp070681

19. Xu X. Design of temperature and humidity control system for semiconductor manufacturing workshop. In: Proceedings of the Third International Conference on New Materials, Machinery, and Vehicle Engineering (NMMVE 2024); Dalian, China; 19-21 July 2024. doi: 10.1117/12.3055249 DOI: https://doi.org/10.1117/12.3055249

20. Zhao Y, Trumper DL, Heilmann RK, Schattenburg ML. Optimization and temperature mapping of an ultra-high thermal stability environmental enclosure. Precision Engineering. 2010; 34(1): 164-170. doi: 10.1016/j.precisioneng.2009.05.006 DOI: https://doi.org/10.1016/j.precisioneng.2009.05.006

21. Su X, Geng Y, Huang L, et al. Review on dehumidification technology in low and extremely low humidity industrial environments. Energy. 2024; 302: 131793. doi: 10.1016/j.energy.2024.131793 DOI: https://doi.org/10.1016/j.energy.2024.131793

22. Yin W, Chen L, Li F, Jin G. Development of front-end waveform digitizer for filter-fluorescer x-ray diagnostic in Shenguang laser facility. Review of Scientific Instruments 2020; 91(7): 076104. doi: 10.1063/5.0012449 DOI: https://doi.org/10.1063/5.0012449

23. He M. Jiangmen Underground Neutrino Observatory. Nuclear and Particle Physics Proceedings. 2015; 265-266: 111-113. doi: 10.1016/j.nuclphysbps.2015.06.027 DOI: https://doi.org/10.1016/j.nuclphysbps.2015.06.027

24. Wu C, Zhi C, Ye W, Zhang X. Scale modeling study of airflow distribution uniformity in large spaces with high heat flux. Applied Thermal Engineering. 2022; 205: 118027. doi: 10.1016/j.applthermaleng.2021.118027 DOI: https://doi.org/10.1016/j.applthermaleng.2021.118027

25. Sun Y, Zhang Y, Guo D, et al. Intelligent Distributed Temperature and Humidity Control Mechanism for Uniformity and Precision in the Indoor Environment. IEEE Internet of Things Journal. 2022; 9: 19101–19115. doi: 10.1109/JIOT.2022.3163772 DOI: https://doi.org/10.1109/JIOT.2022.3163772

26. He W, Xu G, Shen R. Control of temperature uniformity in the temperature chamber with centrifugal acceleration. Journal of Process Control. 2014; 24: 1-6. doi: 10.1016/j.jprocont.2014.09.007 DOI: https://doi.org/10.1016/j.jprocont.2014.09.007

27. Kosfeld M, Westphal B, Kwade A. Moisture behavior of lithium-ion battery components along the production process. Journal of Energy Storage. 2023; 57: 106174. doi: 10.1016/j.est.2022.106174. DOI: https://doi.org/10.1016/j.est.2022.106174

28. Ma C, Du Z, Wang X, et al. Corrosion of stainless steels and corrosion protection strategies in the semiconductor manufacturing industry: a review. Corrosion Reviews. 2024; 42: 127-161. doi: 10.1515/corrrev-2023-0051 DOI: https://doi.org/10.1515/corrrev-2023-0051

29. Mehta N, Patel V, Patel H, Patoliya J. Clean Room Indicator for Pharmaceutical production. In: Proceedings of the 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB); 27-28 February 2016; Chennai, India. pp. 305-309. doi: 10.1109/AEEICB.2016.7538296 DOI: https://doi.org/10.1109/AEEICB.2016.7538296

30. Li L, Wang L, Yuan L, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica. 2021; 180: 417-428. doi: 10.1016/j.actaastro.2020.12.054 DOI: https://doi.org/10.1016/j.actaastro.2020.12.054

31. Jiao X, Zhang J, Li W, et al. Advances in spacecraft micro-vibration suppression methods. Progress in Aerospace Sciences. 2023; 138: 100898. doi: 10.1016/j.paerosci.2023.100898 DOI: https://doi.org/10.1016/j.paerosci.2023.100898

32. Daneman HL. Environmental Control of the Metrology Laboratory. In: Proceedings of the 1st International Conference on Vibrational Control in Optics and Metrology; 25-26 February 1987; London, UK. pp. 58-65. doi: 10.1117/12.937907 DOI: https://doi.org/10.1117/12.937907

33. Braudway DW. A new state of the art standards facility. In: Proceedings of the [1992] Conference Record IEEE Instrumentation and Measurement Technology Conference; 12-14 May 1992; Metropolitan, NY, USA. pp. 499-502. doi: 10.1109/IMTC.1992.245088 DOI: https://doi.org/10.1109/IMTC.1992.245088

34. Gordon CG. Generic criteria for vibration-sensitive equipment. In: Gordon CG (editor). Vibration Control in Microelectronics, Optics, and Metrology, Proceedings of the SPIE Technical: OPTCON '91; 1-30 November 1991; San Jose, CA, United States. pp. 71-85. doi: 10.1117/12.56826 DOI: https://doi.org/10.1117/12.56826

35. Amick H, Gendreau M, Busch T, Gordon C. Evolving criteria for research facilities: vibration. In: Amick H (editor). Buildings for Nanoscale Research and Beyond, Proceedings of the Optics and Photonics 2005; 31 July–4 August 2005; San Diego, California, United States. pp. 16-28. doi: 10.1117/12.617970 DOI: https://doi.org/10.1117/12.617970

36. Bessason B, Madshus C, Frøystein HA, Kolbjørnsen H. Vibration criteria for metrology laboratories. Meas Sci Technol. 1999; 10: 1009-1014. doi: 10.1088/0957-0233/10/11/306 DOI: https://doi.org/10.1088/0957-0233/10/11/306

37. Menant N, Faye D, Nouet P, et al. Monitoring of particle deposition in cleanrooms: State-of-the-art. In: Proceedings of the 2014 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP); 1-4 April 2014; Cannes, France. pp. 1-4. doi: 10.1109/DTIP.2014.7056699 DOI: https://doi.org/10.1109/DTIP.2014.7056699

38. Gatzen HH, Saile V, Leuthold J. Micro and Nano Fabrication: Tools and Processes. Springer Berlin Heidelberg; 2015. doi: 10.1007/978-3-662-44395-8 DOI: https://doi.org/10.1007/978-3-662-44395-8

39. Whyte W. Classification of air cleanliness by particle concentration according to ISO 14644-1. Clean Air and Containment Review. 2024; 51: 4-7.

40. Xiao J, Shi F, Glossmann T, Burnett C, Liu Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nature Energy. 2023; 8: 329–339. doi: 10.1038/s41560-023-01221-y DOI: https://doi.org/10.1038/s41560-023-01221-y

41. Valeriy V. Yashchuk, Nikolay A. et al. A new x-ray optics laboratory (XROL) at the ALS: Mission, arrangement, metrology capabilities, performance, and future plans. In: Assoufid L, Ohashi H, Asundi AK (editors). Advances in Metrology for X-Ray and EUV Optics V, Proceedings of the SPIE Optical Engineering + Applications; 17-21 August 2014; San Diego, California, United States. doi: 10.1117/12.2062042 DOI: https://doi.org/10.1117/12.2062042

42. Behrens D, Schaefer J, Keck CM, Runkel FE. Effects of different air change rates on cleanroom ‘in operation’ status. Drug Development and Industrial Pharmacy. 2021; 47: 1643-1655. doi: 10.1080/03639045.2022.2043352 DOI: https://doi.org/10.1080/03639045.2022.2043352

43. Cheng X, Li C, Ma X, Shao X. Differential pressure control method for pharmaceutical cleanrooms under variable air supply conditions. Building and Environment. 2022; 213: 108849. doi: 10.1016/j.buildenv.2022.108849 DOI: https://doi.org/10.1016/j.buildenv.2022.108849

44. Peng J, Jia S, Bian J, Zhang S, Liu J, Zhou X. Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors. Sensors. 2019; 19: 2860. doi: 10.3390/s19132860. DOI: https://doi.org/10.3390/s19132860

45. Raftery P, Bauman F, Schiavon S, Epp T. Laboratory testing of a displacement ventilation diffuser for underfloor air distribution systems. Energy and Buildings. 2015; 108: 82-91. doi: 10.1016/j.enbuild.2015.09.005. DOI: https://doi.org/10.1016/j.enbuild.2015.09.005

46. Bhattacharya A, Nikoopayan Tak MS, Shoai-Naini S, et al. A Systematic Literature Review of Cleanroom Ventilation and Air Distribution Systems. Aerosol Air Qual Res. 2023; 23: 220407. doi: 10.4209/aaqr.220407

47. Liu K, Hao M, Li B, et al. Optimization on flow field in an operational cleanroom subject to kinematic component and structural parameters. Journal of Building Engineering. 2022; 59: 105152. doi: 10.1016/j.jobe.2022.105152 DOI: https://doi.org/10.1016/j.jobe.2022.105152

48. Hviid CA, Svendsen S. Experimental study of perforated suspended ceilings as diffuse ventilation air inlets. Energy and Buildings. 2013; 56: 160-168. doi: 10.1016/j.enbuild.2012.09.010 DOI: https://doi.org/10.1016/j.enbuild.2012.09.010

49. Hou F, Shen C, Cheng Q. Research on a new optimization method for airflow organization in breeding air conditioning with perforated ceiling ventilation. Energy. 2022; 254: 124279. doi: 10.1016/j.energy.2022.124279 DOI: https://doi.org/10.1016/j.energy.2022.124279

50. Lyu J, Feng X, Cheng Y, Liao C. Experimental and numerical analysis of air temperature uniformity in occupied zone under stratum ventilation for heating mode. Journal of Building Engineering. 2021; 43: 103016. doi: 10.1016/j.jobe.2021.103016 DOI: https://doi.org/10.1016/j.jobe.2021.103016

51. Yang Z, Hao Y, Shi W, et al. Field test of pharmaceutical cleanroom cleanliness subject to multiple disturbance factors. Journal of Building Engineering. 2021; 42: 103083. doi: 10.1016/j.jobe.2021.103083 DOI: https://doi.org/10.1016/j.jobe.2021.103083

52. Sandle T. Cleanrooms and Air Quality—A Risk-Based Approach. Available online: https://www.researchgate.net/publication/267555139_Cleanrooms_and_Air_Quality_-_A_Risk-Based_Approach (accessed on 13 October 2025).

53. Mičko P, Hečko D, Kapjor A, et al. Impact of the Speed of Airflow in a Cleanroom on the Degree of Air Pollution. Applied Sciences. 2022; 12: 2466. doi: 10.3390/app12052466 DOI: https://doi.org/10.3390/app12052466

54. Han G, Feng G, Tang C, et al. Evaluation of the ventilation mode in an ISO class 6 electronic cleanroom by the AHP-entropy weight method. Energy. 2023; 284: 128586. doi: 10.1016/j.energy.2023.128586 DOI: https://doi.org/10.1016/j.energy.2023.128586

55. Mathanlal T, Zorzano M-P, Martin-Torres J. Design, development, and operation of an ISO class 5 cleanroom for planetary instrumentation and planetary protection protocols. Heliyon. 2024; 10: e36276. doi: 10.1016/j.heliyon.2024.e36276 DOI: https://doi.org/10.1016/j.heliyon.2024.e36276

56. Gormley T, Markel TA, Jones H, et al. Cost-benefit analysis of different air change rates in an operating room environment. American Journal of Infection Control. 2017; 45: 1318-13123. doi: 10.1016/j.ajic.2017.07.024 DOI: https://doi.org/10.1016/j.ajic.2017.07.024

57. Scislo L, Szczepanik-Scislo N. Influence of mechanical ventilation and cooling systems on vibrations of high precision machines. E3S Web Conf. 2019; 100: 00080. doi: 10.1051/e3sconf/201910000080 DOI: https://doi.org/10.1051/e3sconf/201910000080

58. Nandagopal NS. HVACR Principles and Applications. Springer Nature Switzerland; 2024. doi: 10.1007/978-3-031-45267-3 DOI: https://doi.org/10.1007/978-3-031-45267-3

59. Schaffer ME. Controlling HVAC system noise and vibration. Ashrae Journal. 1993; 35: 39-44.

60. Bessason B, Madshus C. Evaluation of site vibrations for metrology laboratories. Measurement Science and Technology. 2000; 11: 1527–1536. doi: 10.1088/0957-0233/11/10/315 DOI: https://doi.org/10.1088/0957-0233/11/10/315

61. Shimizu Y, Chen LC, Kim DW, et al. An insight on optical metrology in manufacturing. Measurement Science and Technology. 2020; 32(4): 042003. doi: 10.1088/1361-6501/abc578 DOI: https://doi.org/10.1088/1361-6501/abc578

62. Liu R, Wen J, Zhou X, Klaassen C. Stability and accuracy of variable air volume box control at low flows. Part 1: Laboratory test setup and variable air volume sensor test. HVAC&R Research. 2014; 20: 3-18. doi: 10.1080/10789669.2013.790736 DOI: https://doi.org/10.1080/10789669.2013.790736

63. Mousavi ES, Godri Pollitt KJ, Sherman J, Martinello RA. Performance analysis of portable HEPA filters and temporary plastic anterooms on the spread of surrogate coronavirus. Building and Environment. 2020; 183: 107186. doi: 10.1016/j.buildenv.2020.107186 DOI: https://doi.org/10.1016/j.buildenv.2020.107186

64. Yao C, Lee S, Wen X, et al. A numerical study on effective arrangement of fan-filter units in a semiconductor cleanroom: Control of hazardous gas leakage from a process instrument. Building and Environment. 2025; 267: 112301. doi: 10.1016/j.buildenv.2024.112301 DOI: https://doi.org/10.1016/j.buildenv.2024.112301

65. Pan Y, Pei J. SO2 removal performance and breakthrough prediction of activated carbon-based chemical filters for electronics cleanroom air purification. Building and Environment. 2024; 266: 112042. doi: 10.1016/j.buildenv.2024.112042 DOI: https://doi.org/10.1016/j.buildenv.2024.112042

66. Guo W, Hong Y, Wei Y, et al. Stabilizing chilled water temperature for constant temperature air conditioning: A unified step perturbation transfer model for Widening end control margins with two-stage control. Energy and Buildings. 2025; 330: 115367. doi: 10.1016/j.enbuild.2025.115367 DOI: https://doi.org/10.1016/j.enbuild.2025.115367

67. Liang N, Shao S, Xu H, Tian C. Instability of refrigeration system - A review. Energy Conversion and Management. 2010; 51: 2169-2178. doi: 10.1016/j.enconman.2010.03.010 DOI: https://doi.org/10.1016/j.enconman.2010.03.010

68. Olszewski P. Experimental analysis of ON/OFF and variable speed drive controlled industrial chiller towards energy efficient operation. Applied Energy. 2022; 309: 118440. doi: 10.1016/j.apenergy.2021.118440 DOI: https://doi.org/10.1016/j.apenergy.2021.118440

69. Lu Y, Cui J, Tan J, et al. Temperature Fluctuation Attenuation of Circulating Cooling Water Using Dynamic Thermal Filtering. Applied Sciences. 2020; 10: 5338. doi: 10.3390/app10155338 DOI: https://doi.org/10.3390/app10155338

70. Guo W, Hong Y, Chen D, et al. Frequency-domain analysis of two controllable attenuators for control processes and perturbations in a constant temperature chilled-water system. Applied Thermal Engineering. 2024; 252: 123663. doi: 10.1016/j.applthermaleng.2024.123663 DOI: https://doi.org/10.1016/j.applthermaleng.2024.123663

71. Li X, Lin S, Zhang J, Zhao T. Model parameter identification of indoor temperature lag characteristic based on hysteresis relay feedback control in VAV systems. Journal of Building Engineering. 2019; 25: 100839. doi: 10.1016/j.jobe.2019.100839. DOI: https://doi.org/10.1016/j.jobe.2019.100839

72. Li X, Zhang C, Zhao T, Han Z. Adaptive predictive control method for improving control stability of air-conditioning terminal in public buildings. Energy and Buildings. 2021; 249: 111261. doi: 10.1016/j.enbuild.2021.111261 DOI: https://doi.org/10.1016/j.enbuild.2021.111261

73. Li X, Zhao T, Zhang J, Chen T. Predication control for indoor temperature time-delay using Elman neural network in variable air volume system. Energy and Buildings. 2017; 154: 545-552. doi: 10.1016/j.enbuild.2017.09.005 DOI: https://doi.org/10.1016/j.enbuild.2017.09.005

74. Han Y, Hu Y, Qian F. Effects of air temperature and humidity on particle deposition. Chemical Engineering Research and Design. 2011; 89: 2063-2069. doi: 10.1016/j.cherd.2011.02.001 DOI: https://doi.org/10.1016/j.cherd.2011.02.001

75. Li J, Wang Y, Hu J, Liu Y. Diffusion characteristics of indoor pollutants from incense sticks combustion in Tibetan Plateau buildings: An experimental study. Journal of Building Engineering. 2024; 94: 110035. doi: 10.1016/j.jobe.2024.110035 DOI: https://doi.org/10.1016/j.jobe.2024.110035

76. Wang Y, Chen Z, Jiang Y, Liu T. High-order neural-network-based multi-model nonlinear adaptive decoupling control for microclimate environment of plant factory. Sensors. 2023; 23: 8323. doi: 10.3390/s23198323 DOI: https://doi.org/10.3390/s23198323

77. Han Y, Lu B, Hu Y, Chen D. Temperature and humidity decoupling control based on diagonal matrix and information entropy for spinning air-conditioning, Energy and Built Environment. Energy and Built Environment. 2025; in press. doi: 10.1016/j.enbenv.2025.07.001 DOI: https://doi.org/10.1016/j.enbenv.2025.07.001

78. Bakhoum EG, Cheng MHM. High-Accuracy Miniature Dew Point Sensor and Instrument. IEEE Sensors Journal. 2015; 15: 1482–1488. doi: 10.1109/JSEN.2014.2364187 DOI: https://doi.org/10.1109/JSEN.2014.2364187

79. Han B, Rupam TH, Chakraborty A, Saha BB. A comprehensive review on VOCs sensing using different functional materials: Mechanisms, modifications, challenges and opportunities. Renewable and Sustainable Energy Reviews. 2024; 196: 114365. doi: 10.1016/j.rser.2024.114365 DOI: https://doi.org/10.1016/j.rser.2024.114365

80. Jalal AH, Alam F, Roychoudhury S, et al. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sensors. 2018; 3: 1246–1263. doi: 10.1021/acssensors.8b00400 DOI: https://doi.org/10.1021/acssensors.8b00400

81. Shen TS, Huang JB, Menq CH. Multiple-sensor integration for rapid and high-precision coordinate metrology. IEEE/ASME Transactions on Mechatronics. 2000; 5: 110-121. doi: 10.1109/3516.847084 DOI: https://doi.org/10.1109/3516.847084

82. Merlone A, Lopardo G, Sanna F, et al. The MeteoMet project - metrology for meteorology: challenges and results. Meteorological Applications. 2015; 22: 820-829. doi: 10.1002/met.1528 DOI: https://doi.org/10.1002/met.1548

83. Guan B, Liu X, Zhang T, et al. Experimental and numerical investigation of a novel hybrid deep-dehumidification system using liquid desiccant. Energy Conversion and Management. 2019; 192: 396-411. doi: 10.1016/j.enconman.2019.04.043 DOI: https://doi.org/10.1016/j.enconman.2019.04.043

84. Su B, Qu W, Han W, Jin H. Feasibility of a hybrid photovoltaic/thermal and liquid desiccant system for deep dehumidification. Energy Conversion and Management. 2018; 163: 457-467. doi: 10.1016/j.enconman.2018.02.018 DOI: https://doi.org/10.1016/j.enconman.2018.02.018

85. Zheng X, Ge TS, Wang RZ. Recent progress on desiccant materials for solid desiccant cooling systems. Energy. 2014; 74: 280-294. doi: 10.1016/j.energy.2014.07.027 DOI: https://doi.org/10.1016/j.energy.2014.07.027

86. Wu XN, Ge TS, Dai YJ, Wang RZ. Review on substrate of solid desiccant dehumidification system. Renewable and Sustainable Energy Reviews. 2018; 82: 3236-3249. doi: 10.1016/j.rser.2017.10.021 DOI: https://doi.org/10.1016/j.rser.2017.10.021

87. Sarmiento AP, De Sá Sarmiento FIP, Shooshtari A, Ohadi M. A review of recent progress in active frost prevention/control techniques in refrigeration and HVAC systems. Applied Thermal Engineering. 2024; 253: 123680. doi: 10.1016/j.applthermaleng.2024.123680 DOI: https://doi.org/10.1016/j.applthermaleng.2024.123680

88. Chan WS, Chang JC, Chen CS, et al. The Strategy between High Precision Temperature Control and Energy Saving for Air-Conditioning System. In: Proceedings of the 3rd International Conference on Particle accelerator (IPAC 2012); 20-25 May 2012; New Orleans, USA.

89. Zhao W, Li H, Wang S. Energy performance and energy conservation technologies for high-tech cleanrooms: State of the art and future perspectives. Renewable and Sustainable Energy Reviews. 2023; 183: 113532. doi: 10.1016/j.rser.2023.113532

90. Ma Z, Guan B, Liu X, Zhang T. Performance analysis and improvement of air filtration and ventilation process in semiconductor clean air-conditioning system. Energy and Buildings. 2020; 228: 110489. doi: 10.1016/j.enbuild.2020.110489 DOI: https://doi.org/10.1016/j.enbuild.2020.110489

91. Bhattacharya A, Tak MSN, Shoai-Naini S, et al. A systematic literature review of cleanroom ventilation and air distribution systems. Aerosol and Air Quality Research. 2023; 23: 220407. doi: 10.4209/aaqr.220407 DOI: https://doi.org/10.4209/aaqr.220407

92. Zhao W, Li H, Wang S. Energy performance and energy conservation technologies for high-tech cleanrooms: State of the art and future perspectives. Renewable & Sustainable Energy Reviews. 2023; 183: 113532. doi: 10.1016/j.rser.2023.113532 DOI: https://doi.org/10.1016/j.rser.2023.113532

93. Hu S-C, Tsao J-M. A comparative study on energy consumption for HVAC systems of high-tech FABs. Applied Thermal Engineering. 2007; 27: 2758-2766. doi: 10.1016/j.applthermaleng.2007.03.016 DOI: https://doi.org/10.1016/j.applthermaleng.2007.03.016

94. Zhao J, Liang C, Wang H, et al. Control strategy of fan filter units based on personnel position in semiconductor fabs. Building and Environment. 2022; 223: 109420. doi: 10.1016/j.buildenv.2022.109420 DOI: https://doi.org/10.1016/j.buildenv.2022.109420

95. Meng H, Liu J, Shang W, et al. Multi-agent distributed control method for clean air-conditioning systems: Balancing cleanliness, pressure and energy consumption. Journal of Building Engineering. 2025; 107: 112806. doi: 10.1016/j.jobe.2025.112806 DOI: https://doi.org/10.1016/j.jobe.2025.112806

96. Sharma A, Jain S, Kaushik SC, Kakkar A. Potential of U-Shaped Heat Pipe Heat Exchanger in Tropical Climates for Low Sensible Heat Ratio Applications. Ashrae Transactions 2017, Vol 123, Pt 1. https://www.proquest.com/scholarly-journals/potential-u-shaped-heat-pipe-exchanger-tropical/docview/1881714994/se-2.

97. Zhuang C, Wang S, Shan K. Adaptive full-range decoupled ventilation strategy and air-conditioning systems for cleanrooms and buildings requiring strict humidity control and their performance evaluation. Energy. 2019; 168: 883-896. doi: 10.1016/j.energy.2018.11.147 DOI: https://doi.org/10.1016/j.energy.2018.11.147

98. Shan K, Wang S. Energy efficient design and control of cleanroom environment control systems in subtropical regions - A comparative analysis and on-site validation. Applied Energy. 2017; 204: 582-595. doi: 10.1016/j.apenergy.2017.07.050 DOI: https://doi.org/10.1016/j.apenergy.2017.07.050

99. Cheng J, Ma X, Wang Y, et al. Experimental and simulation study on fresh air dehumidifier with separated heat pipe. Applied Thermal Engineering. 2025; 268: 125962. doi: 10.1016/j.applthermaleng.2025.125962 DOI: https://doi.org/10.1016/j.applthermaleng.2025.125962

100. Li H, Lee WL, Jia J. Applying a novel extra-low temperature dedicated outdoor air system in office buildings for energy efficiency and thermal comfort. Energy Conversion and Management. 2016; 121: 162-173. doi: 10.1016/j.enconman.2016.05.036 DOI: https://doi.org/10.1016/j.enconman.2016.05.036

101. Ahmed S, Nelson PA, Dees DW. Study of a dry room in a battery manufacturing plant using a process model. Journal of Power Sources. 2016; 326: 490-497. doi: 10.1016/j.jpowsour.2016.06.107 DOI: https://doi.org/10.1016/j.jpowsour.2016.06.107

102. Kircher K, Shi X, Patil S, Zhang KM. Cleanroom energy efficiency strategies: Modeling and simulation. Energy and Buildings. 2010; 42: 282-289. doi: 10.1016/j.enbuild.2009.09.004 DOI: https://doi.org/10.1016/j.enbuild.2009.09.004

103. Hu S-C, Wu J-S, Chan DY-L, et al. Power consumption benchmark for a semiconductor cleanroom facility system. Energy and Buildings. 2008; 40: 1765-1770. doi: 10.1016/j.enbuild.2008.03.006 DOI: https://doi.org/10.1016/j.enbuild.2008.03.006

104. Wang F, Liang C, Zhang X. Research of anti-frosting technology in refrigeration and air conditioning fields: A review. Renewable and Sustainable Energy Reviews. 2018; 81: 707-722. doi: 10.1016/j.rser.2017.08.046 DOI: https://doi.org/10.1016/j.rser.2017.08.046

105. Liu J, Sun C, Chen Q. Experimental study of desiccant-coated heat exchangers for deep dehumidification. Energy and Buildings. 2024; 319: 114554. doi: 10.1016/j.enbuild.2024.114554 DOI: https://doi.org/10.1016/j.enbuild.2024.114554

106. Cheng J, Wang Z, Cao X, et al. Achieving deep dehumidification through a heat pump-boosted desiccant wheel system. Energy Conversion and Management. 2024; 313: 118604. doi: 10.1016/j.enconman.2024.118604 DOI: https://doi.org/10.1016/j.enconman.2024.118604

107. Rhee K-N, Kim KW. A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment. Building and Environment. 2015; 91: 166-190. doi: 10.1016/j.buildenv.2015.03.040 DOI: https://doi.org/10.1016/j.buildenv.2015.03.040

108. Hu R, Niu JL. A review of the application of radiant cooling & heating systems in Mainland China. Energy and Buildings. 2012; 52: 11-19. doi: 10.1016/j.enbuild.2012.05.030 DOI: https://doi.org/10.1016/j.enbuild.2012.05.030

109. Khatri R, Khare VR, Kumar H. Spatial distribution of air temperature and air flow analysis in radiant cooling system using CFD technique. Energy Reports. 2020; 6: 268-275. doi: 10.1016/j.egyr.2019.11.073 DOI: https://doi.org/10.1016/j.egyr.2019.11.073

110. Roulet C-A, Rossy J-P, Roulet Y. Using large radiant panels for indoor climate conditioning. Energy and Buildings. 1999; 30: 121-126. doi: 10.1016/S0378-7788(98)00079-6 DOI: https://doi.org/10.1016/S0378-7788(98)00079-6

111. Cacho-Nerin F, Parker JE, Quinn PD. A passive hutch-cooling system for achieving high thermal-stability operation at the Nanoprobe beamline, Diamond Light Source. Journal of Synchrotron Radiation. 2020; 27: 912–922. doi: 10.1107/S1600577520004932 DOI: https://doi.org/10.1107/S1600577520004932

112. Liu J, Ding Y, Feng Y. A novel research for restraining the condensation of radiant air conditioner by superhydrophobic surface. Energy and Buildings. 2023; 296: 113398. doi: 10.1016/j.enbuild.2023.113398 DOI: https://doi.org/10.1016/j.enbuild.2023.113398

113. Tang H, Liu X-H, Jiang Y. Theoretical and experimental study of condensation rates on radiant cooling surfaces in humid air. Building and Environment. 2016; 97: 1-10. doi: 10.1016/j.buildenv.2015.12.003 DOI: https://doi.org/10.1016/j.buildenv.2015.12.003

114. Andrés-Chicote M, Tejero-González A, Velasco-Gómez E, Rey-Martínez FJ. Experimental study on the cooling capacity of a radiant cooled ceiling system. Energy and Buildings. 2012; 54: 207-214. doi: 10.1016/j.enbuild.2012.07.043 DOI: https://doi.org/10.1016/j.enbuild.2012.07.043

115. Zhao K, Liu X-H, Jiang Y. Cooling capacity prediction of radiant floors in large spaces of an airport. Solar Energy. 2015; 113: 221-235. doi: 10.1016/j.solener.2015.01.003 DOI: https://doi.org/10.1016/j.solener.2015.01.003

116. Ning B, Chen Y, Liu H, Zhang S. Cooling capacity improvement for a radiant ceiling panel with uniform surface temperature distribution. Building and Environment. 2016; 102: 64-72. doi: 10.1016/j.buildenv.2016.03.009 DOI: https://doi.org/10.1016/j.buildenv.2016.03.009

117. Liu D, Li G, Wu X, et al. Comparative analysis of heating characteristics of convective-radiant systems using various terminal air source heat pumps. Energy and Buildings. 2023; 301: 113701. doi: 10.1016/j.enbuild.2023.113701 DOI: https://doi.org/10.1016/j.enbuild.2023.113701

118. Jayaram S, Gonzalez E. Design and construction of a low‐cost economical thermal vacuum chamber for spacecraft environmental testing. Journal of Engineering, Design and Technology. 2011; 9: 47-62. doi: 10.1108/17260531111121468 DOI: https://doi.org/10.1108/17260531111121468

119. Almeida JS, Santos MB, Panissi DL, Garcia EC. Effectiveness of low-cost thermal vacuum tests of a micro-satellite. Acta Astronautica. 2006; 59: 483-489. doi: 10.1016/j.actaastro.2006.03.003 DOI: https://doi.org/10.1016/j.actaastro.2006.03.003

120. Le Graverend J-B, Wojnar CS, Kochmann DM. Broadband Electromechanical Spectroscopy: characterizing the dynamic mechanical response of viscoelastic materials under temperature and electric field control in a vacuum environment. Journal of Materials Science. 2015; 50: 3656–3685. doi: 10.1007/s10853-015-8928-x DOI: https://doi.org/10.1007/s10853-015-8928-x

121. Birch J, Horkley BM, Veselka HD. Renovation of Thermal Vacuum Chambers at Idaho National Laboratory for Testing of Radioisotope Power Systems. In: Proceedings of the 30th Space Simulation Conference: Mission Success Through Testing of Critical Challenges; 5-8 November 2018; Annapolis, United States.

122. Hashmi AR, Wang B, Saadat F, Gan Z. Progress in measuring techniques and thermal radiative properties of metals at cryogenic temperatures: A review. Cryogenics. 2024; 143: 103950. doi: 10.1016/j.cryogenics.2024.103950 DOI: https://doi.org/10.1016/j.cryogenics.2024.103950

123. Dixit T, Ghosh I. Cooling capacity of high porosity open-cell metal foams as passive cryogenic radiators. Cryogenics. 2017; 84: 81-88. doi: 10.1016/j.cryogenics.2017.04.005 DOI: https://doi.org/10.1016/j.cryogenics.2017.04.005

124. Liu H, Liu S, Li X, et al. Simulation analysis for controlling temperature stability of a radiant-board system served for thermodynamic temperature measurement laboratory. Building Simulation. 2024; 17: 1515-1529. doi: 10.1007/s12273-024-1151-4 DOI: https://doi.org/10.1007/s12273-024-1151-4

125. Zeng Z, Zhang W, Cao D, et al. Achieving high-precision supply air temperature in cleanrooms: Modeling and validation of air-water heat exchange process. International Journal of Heat and Mass Transfer. 2024; 232: 125951. doi: 10.1016/j.ijheatmasstransfer.2024.125951 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2024.125951

126. Peng P, Gong G, Deng X, Liang C, Li W. Field study and numerical investigation on heating performance of air carrying energy radiant air-conditioning system in an office. Energy and Buildings. 2020; 209: 109712. doi: 10.1016/j.enbuild.2019.109712 DOI: https://doi.org/10.1016/j.enbuild.2019.109712

127. Bogatu D-I, Kazanci OB, Olesen BW. An experimental study of the active cooling performance of a novel radiant ceiling panel containing phase change material (PCM). Energy and Buildings. 2021; 243: 110981. doi: 10.1016/j.enbuild.2021.110981 DOI: https://doi.org/10.1016/j.enbuild.2021.110981

128. Jiang M, Wu J, Wang R, Xu Y. Research on the control laws of the electronic expansion valve for an air source heat pump water heater. Building and Environment. 2011; 46: 1954-1961. doi: 10.1016/j.buildenv.2011.04.003 DOI: https://doi.org/10.1016/j.buildenv.2011.04.003