Multi-condition sensitivity analysis of proton exchange membrane electrolysis cell using a segmented diagnostic method

Authors

  • Zhi Liu State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin 300350, China
  • Jinde Hao State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
  • Zongyang Yu State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
  • Yanting Ma State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
  • Kang Wang National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin 300350, China; State Power Investment Corporation Science and Technology Research Institute Co., Ltd., South of Park Future Science City, Beijing 100029, China
Article ID: 459
194 Views

DOI:

https://doi.org/10.18686/cest459

Keywords:

proton exchange membrane electrolysis cell; segmented diagnostic method; current density distribution; multi-conditions; sensitivity analysis

Abstract

Understanding the distributions of electrochemical reaction, current density and temperature is important to improve the performance of proton exchange membrane electrolysis cell (PEMEC). Therefore, this study developed a PEMEC testing platform based on a segmented diagnostic technique and systematically analyzed the performance sensitivity and uniformity distribution of the electrolysis cell under varying water flow rates, operating temperatures, and bolt torques. The results indicate that the operating temperature exhibits the highest performance sensitivity while the water flow rate has lowest sensitivity to the PEMEC performance. Increasing water flow rate improves the bubble removal and uniformity distributions of current density and temperature, resulting in improved performance at high current density. A high bolt torque reduces contact resistance and increases uniformity distributions inside electrolyzer, thereby reducing the ohmic losses and output voltage. The elevated temperatures enhance electrochemical kinetics, heat production and uniformity distributions of current density and temperature, indicating performance improvement. The current study consolidates the understanding of influencing mechanisms of different operating conditions on distribution characteristics of multiple physical fields, contributing to enhance electrolyzer performance.

Downloads

Published

2025-09-09

How to Cite

Liu, Z., Hao, J., Yu, Z., Ma, Y., & Wang, K. (2025). Multi-condition sensitivity analysis of proton exchange membrane electrolysis cell using a segmented diagnostic method. Clean Energy Science and Technology, 3(3), 459. https://doi.org/10.18686/cest459

References

1. Atyabi SA, Afshari E. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side. Journal of Cleaner Production. 2019; 214: 738-748. doi: 10.1016/j.jclepro.2018.12.293 DOI: https://doi.org/10.1016/j.jclepro.2018.12.293

2. Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells. Nature. 2021; 595(7867): 361-369. doi: 10.1038/s41586-021-03482-7 DOI: https://doi.org/10.1038/s41586-021-03482-7

3. Jiao K, Wang B, Du Q, et al. Water and thermal management of proton exchange membrane fuel cells. Elsevier; 2021. doi: 10.1016/C2020-0-04110-1 DOI: https://doi.org/10.1016/B978-0-323-91116-0.00006-7

4. Zhang S, Chen W. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nature Communications. 2022; 13(1): 87. doi: 10.1038/s41467-021-27671-0 DOI: https://doi.org/10.1038/s41467-021-27671-0

5. Jang D, Kim J, Kim D, et al. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management. 2022; 258: 115499. doi: 10.1016/j.enconman.2022.115499 DOI: https://doi.org/10.1016/j.enconman.2022.115499

6. Wang Y, Pang Y, Xu H, et al. PEM fuel cell and electrolysis cell technologies and hydrogen infrastructure development—A review. Energy & Environmental Science. 2022; 15(6): 2288-2328. doi: 10.1039/D2EE00790H DOI: https://doi.org/10.1039/D2EE00790H

7. Cullen DA, Neyerlin KC, Ahluwalia RK, et al. New roads and challenges for fuel cells in heavy-duty transportation. Nature Energy. 2021; 6(5): 462-474. doi: 10.1038/s41560-021-00775-z DOI: https://doi.org/10.1038/s41560-021-00775-z

8. Wang Y, Yuan H, Martinez A, et al. Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives. Advances in Applied Energy. 2021; 2: 100011. doi: 10.1016/j.adapen.2021.100011 DOI: https://doi.org/10.1016/j.adapen.2021.100011

9. Lu Z, Yuan X, Jia X, et al. High-performance proton exchange membrane employing water-insoluble hybrid formed by chemically bonding phosphotungstic acid with polydopamine. Clean Energy Science and Technology. 2024; 2: 138. doi: 10.18686/cest.v2i2.138 DOI: https://doi.org/10.18686/cest.v2i2.138

10. Wang Z, Liu Z, Fan L, et al. Application progress of small-scale proton exchange membrane fuel cell. Energy Reviews. 2023; 2(2): 100017. doi: 10.1016/j.enrev.2023.100017 DOI: https://doi.org/10.1016/j.enrev.2023.100017

11. Liu Y, Diankai Q, Xu Z, et al. Comprehensive analysis of the gradient porous transport layer for the proton-exchange membrane electrolyzer. ACS Applied Materials & Interfaces. 2024; 16(36): 47357-47367. doi: 10.1021/acsami.4c00006 DOI: https://doi.org/10.1021/acsami.4c00006

12. Henkensmeier D, Najibah M, Harms C, et al. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis. Journal of Electrochemical Energy Conversion and Storage. 2021; 18(2): 024001-1–024001-18. doi: 10.1115/1.4047963 DOI: https://doi.org/10.1115/1.4047963

13. Ji M. Advances in layered double hydroxides for direct seawater electrolysis: Challenges, strategies, and future perspectives. Clean Energy Science and Technology. 2025; 3: 337. doi: 10.18686/cest337 DOI: https://doi.org/10.18686/cest337

14. Frensch SH, Olesen AC, Araya SS, Kær SK. Model-supported characterization of a PEM water electrolysis cell for the effect of compression. Electrochimica Acta. 2018; 263: 228-236. doi: 10.1016/j.electacta.2018.01.040 DOI: https://doi.org/10.1016/j.electacta.2018.01.040

15. Borgardt E, Giesenberg L, Reska M, et al. Impact of clamping pressure and stress relaxation on the performance of different polymer electrolyte membrane water electrolysis cell designs. International Journal of Hydrogen Energy. 2019; 44(42): 23556-23567. doi: 10.1016/j.ijhydene.2019.07.075 DOI: https://doi.org/10.1016/j.ijhydene.2019.07.075

16. Soriano RM, Rojas N, Nieto E, et al. Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: Bolt torques and operation mode in pre-conditioning. International Journal of Hydrogen Energy. 2021; 46(51): 25944-25953. doi: 10.1016/j.ijhydene.2021.03.076 DOI: https://doi.org/10.1016/j.ijhydene.2021.03.076

17. Bazarah A, Majlan EH, Husaini T, et al. Factors influencing the performance and durability of polymer electrolyte membrane water electrolyzer: A review. International Journal of Hydrogen Energy. 2022; 47(85): 35976-35989. doi: 10.1016/j.ijhydene.2022.08.180 DOI: https://doi.org/10.1016/j.ijhydene.2022.08.180

18. Hu B, He S, Su X, et al. Experimental study of the effect of fastening bolts on PEMEC performance. International Journal of Hydrogen Energy. 2023; 48(90): 35050-35063. doi: 10.1016/j.ijhydene.2023.05.116 DOI: https://doi.org/10.1016/j.ijhydene.2023.05.116

19. Hu B, He S, Zhu D, et al. Study of optimization and prediction methods for PEMEC performance considering the effects of multiple operating parameters. International Journal of Hydrogen Energy. 2024; 55: 1273-1285. doi: 10.1016/j.ijhydene.2023.11.177 DOI: https://doi.org/10.1016/j.ijhydene.2023.11.177

20. Caparros Mancera JJ, Segura Manzano F, Andújar JM, et al. An optimized balance of plant for a medium-size PEM electrolyzer: design, control and physical implementation. Electronics. 2020; 9(5): 871. doi: 10.3390/electronics9050871 DOI: https://doi.org/10.3390/electronics9050871

21. Zhang Z, Xing X. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell. International Journal of Hydrogen Energy. 2020; 45(39): 20184-20193. doi: 10.1016/j.ijhydene.2020.02.102 DOI: https://doi.org/10.1016/j.ijhydene.2020.02.102

22. Kaya MF, Demir N, Rees NV, El-Kharouf A. Improving PEM water electrolyser’s performance by magnetic field application. Applied Energy. 2020; 264: 114721. doi: 10.1016/j.apenergy.2020.114721 DOI: https://doi.org/10.1016/j.apenergy.2020.114721

23. Choi Y, Lee W, Na Y. Effect of gravity and various operating conditions on proton exchange membrane water electrolysis cell performance. Membranes. 2021; 11(11): 822. doi: 10.3390/membranes11110822 DOI: https://doi.org/10.3390/membranes11110822

24. Roenning FH, Roy A, Aaron DS, Mench MW. Mass transport limitations in polymer electrolyte water electrolyzers using spatially-resolved current measurement. Journal of Power Sources. 2022; 542: 231749. doi: 10.1016/j.jpowsour.2022.231749 DOI: https://doi.org/10.1016/j.jpowsour.2022.231749

25. Noor Azam AMI, Li NK, Zulkefli NN, et al. Parametric study and electrocatalyst of polymer electrolyte membrane (PEM) electrolysis performance. Polymers. 2023; 15(3): 560. doi: 10.3390/polym15030560 DOI: https://doi.org/10.3390/polym15030560

26. Möckl M, Bernt M, Schröter J, Jossen A. Proton exchange membrane water electrolysis at high current densities: Investigation of thermal limitations. International Journal of Hydrogen Energy. 2020; 45(3): 1417-1428. doi: 10.1016/j.ijhydene.2019.11.144 DOI: https://doi.org/10.1016/j.ijhydene.2019.11.144

27. Lickert T, Kiermaier ML, Bromberger K, et al. On the influence of the anodic porous transport layer on PEM electrolysis performance at high current densities. International Journal of Hydrogen Energy. 2020; 45(11): 6047-6058. doi: 10.1016/j.ijhydene.2019.12.204 DOI: https://doi.org/10.1016/j.ijhydene.2019.12.204

28. Lee C, Lee JK, George MG, et al. Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers. Energy Conversion and Management. 2020; 213: 112797. doi: 10.1016/j.enconman.2020.112797 DOI: https://doi.org/10.1016/j.enconman.2020.112797

29. Lee CH, Lee JK, Zhao B, et al. Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers. Journal of Power Sources. 2020; 446: 227312. doi: 10.1016/j.jpowsour.2019.227312 DOI: https://doi.org/10.1016/j.jpowsour.2019.227312

30. Dong Y, Gao L, Ma S, et al. Combine impact of power quality and operating temperature on energy efficiency of proton exchange membrane electrolytic cells. IEEE Transactions on Applied Superconductivity. 2024; 34(8): 1–5. doi: 10.1109/TASC.2024.3469851 DOI: https://doi.org/10.1109/TASC.2024.3469851

31. Hu S, Guo B, Ding S, et al. A comprehensive review of alkaline water electrolysis mathematical modeling. Applied Energy. 2022; 327: 120099. doi: 10.1016/j.apenergy.2022.120099 DOI: https://doi.org/10.1016/j.apenergy.2022.120099

32. Wang Z, Wang X, Chen Z, et al. Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling. Renewable Energy. 2021; 180: 1333-1343. doi: 10.1016/j.renene.2021.09.037 DOI: https://doi.org/10.1016/j.renene.2021.09.037

33. Wang K, Feng Y, Xiao F, et al. Operando analysis of through-plane interlayer temperatures in the PEM electrolyzer cell under various operating conditions. Applied Energy. 2023; 348: 121588. doi: 10.1016/j.apenergy.2023.121588 DOI: https://doi.org/10.1016/j.apenergy.2023.121588

34. Selamet OF, Ergoktas MS. Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers. Journal of Power Sources. 2015; 281: 103-113. doi: 10.1016/j.jpowsour.2015.01.162 DOI: https://doi.org/10.1016/j.jpowsour.2015.01.162