Next-generation photoelectrocatalysts: Real-time characterization and applications in sustainable energy and environment

Authors

  • Ganeshraja Ayyakannu Sundaram Energy and Environmental Nanomaterials Laboratory (E2Nano Lab), Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai 600 077, Tamil Nadu, India
  • Junhu Wang Mössbauer Effect Data Center, CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116 023, China
Article ID: 455
238 Views

DOI:

https://doi.org/10.18686/cest455

Keywords:

electrocatalytic water splitting; hydrogen evolution reaction; oxygen evolution reaction; transition metal dichalcogenides; electrocatalytic performance

Abstract

The twin global challenges of energy scarcity and environmental pollution call for innovative and sustainable technological solutions. Photoelectrocatalysis has emerged as a promising strategy for solar-driven water splitting and environmental remediation, offering an eco-friendly route for hydrogen production and pollutant degradation. At the heart of this progress are hybrid catalysts, which integrate multiple material components to synergistically enhance light absorption, charge separation, and catalytic efficiency. However, optimizing these intricate systems requires a thorough understanding of their behaviour under real-world operating conditions. This review provides a critical overview of the design principles, classifications, and synthesis methods of hybrid photoelectrocatalysts, with particular attention to their applications in water splitting and environmental cleanup. Special emphasis is placed on the use of real-time (in-situ and operando) spectroscopic techniques such as X-ray absorption, Raman, Mössbauer and transient absorption spectroscopies, which offer vital insights into active sites, reaction intermediates, and structure–performance relationships. These advanced tools are essential for guiding the rational design of catalysts and enhancing their durability. We also address current challenges, including issues of material stability and the intricacies of real-time analysis, and highlight emerging directions such as artificial intelligence-driven catalyst discovery and the integration of multiple spectroscopic methods. By bridging materials engineering with mechanistic insight, this review outlines a roadmap for developing next-generation photoelectrocatalysts aimed at scalable, sustainable solutions for energy and environmental needs.

Downloads

Published

2025-09-29

How to Cite

Ayyakannu Sundaram, G., & Wang, J. (2025). Next-generation photoelectrocatalysts: Real-time characterization and applications in sustainable energy and environment. Clean Energy Science and Technology, 3(3), 455. https://doi.org/10.18686/cest455

References

1. Zhang J. Energy access challenge and the role of fossil fuels in meeting electricity demand: Promoting renewable energy capacity for sustainable development. Geoscience Frontiers. 2024; 15(5): 101873. doi: 10.1016/j.gsf.2024.101873. DOI: https://doi.org/10.1016/j.gsf.2024.101873

2. Global Energy Review 2025. IEA. Available online: https://www.iea.org/reports/global-energy-review-2025 (accessed on 5th August 2025).

3. Vilanova A, Dias P, Lopes T, et al. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges. Chemical Society Reviews. 2024; 53(5): 2388-2434. doi: 10.1039/D1CS01069G DOI: https://doi.org/10.1039/D1CS01069G

4. Zhao Y, Niu Z, Zhao J, et al. Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochemical Energy Reviews. 2023; 6(1): 14. doi: 10.1007/s41918-022-00153-7 DOI: https://doi.org/10.1007/s41918-022-00153-7

5. Liu D, Kuang Y. Particle‐based photoelectrodes for PEC water splitting: concepts and perspectives. Advanced Materials. 2024; 36(37): 2311692. doi: 10.1002/adma.202311692 DOI: https://doi.org/10.1002/adma.202311692

6. Yao T, An X, Han H, et al. Photoelectrocatalytic materials for solar water splitting. Advanced Energy Materials. 2018; 8(21): 1800210. doi: 10.1002/aenm.201800210 DOI: https://doi.org/10.1002/aenm.201800210

7. Cao S, Wang C J, Fu W F, et al. Metal phosphides as co‐catalysts for photocatalytic and photoelectrocatalytic water splitting. ChemSusChem. 2017; 10(22): 4306-4323. doi: 10.1002/cssc.201701450 DOI: https://doi.org/10.1002/cssc.201701450

8. Senthilkumar P, Jency D A, Kavinkumar T, et al. Built-in electric field assisted photocatalytic dye degradation and photoelectrochemical water splitting of ferroelectric Ce doped BaTiO3 nanoassemblies. ACS Sustainable Chemistry & Engineering. 2019; 7(14): 12032-12043. doi: 10.1021/acssuschemeng.9b00679 DOI: https://doi.org/10.1021/acssuschemeng.9b00679

9. Louis J, Padmanabhan NT, Jayaraj MK, et al. Exploring enhanced interfacial charge separation in ZnO/reduced graphene oxide hybrids on alkaline photoelectrochemical water splitting and photocatalytic pollutant degradation. Materials Research Bulletin. 2024; 169: 112542. doi: 10.1016/j.materresbull.2023.112542 DOI: https://doi.org/10.1016/j.materresbull.2023.112542

10. Van Pham V, Bui TK, Nguyen TTT, et al. Bifunctional photocatalysis toward efficient NOx removal performance and water splitting activity: a case of TiO2/g-C3N4. Topics in Catalysis. 2024; 67(17): 1055-1065. doi: 10.1007/s11244-024-01937-5 DOI: https://doi.org/10.1007/s11244-024-01937-5

11. El Idrissi A, Ait Ahsaine H, BaQais A, et al. Current advances on nanostructured oxide photoelectrocatalysts for water splitting: A comprehensive review. Surfaces and Interfaces. 2024; 45: 103850. doi: 10.1016/j.surfin.2024.103850 DOI: https://doi.org/10.1016/j.surfin.2024.103850

12. Wang Z, Huang X, Wang X. Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catalysis Today. 2019; 335: 31-38. doi: 10.1016/j.cattod.2019.01.067 DOI: https://doi.org/10.1016/j.cattod.2019.01.067

13. Chen TW, Chen SM, Kalimuthu P, et al. Two-dimensional nanocomposite materials for photoelectrochemical water-splitting applications: An overview. International Journal of Electrochemical Science. 2024; 19(5): 100576. doi: 10.1016/j.ijoes.2024.100576 DOI: https://doi.org/10.1016/j.ijoes.2024.100576

14. Guru S, Rao GR. Strategic design of layered double hydroxides and graphitic carbon nitride heterostructures for photoelectrocatalytic water splitting applications. Journal of The Electrochemical Society. 2022; 169(4): 046515. doi: 10.1149/1945-7111/ac65b8 DOI: https://doi.org/10.1149/1945-7111/ac65b8

15. Khan MS, Noor T, Pervaiz E, et al. Fabrication of MoS2/rGO hybrids as electrocatalyst for water splitting applications. RSC advances. 2024; 14(18): 12742-12753. doi: 10.1039/D4RA00697F DOI: https://doi.org/10.1039/D4RA00697F

16. Sohail U, Pervaiz E, Khosa R, et al. Electrocatalytic activity of tungsten carbide hybrids with two different MOFs for water splitting: a comparative analysis. Nanoscale Advances. 2024; 6(20): 5092-5105. doi: 10.1039/D4NA00289J DOI: https://doi.org/10.1039/D4NA00289J

17. Jin L, Wu Y, Zhang H, et al. In‐situ synthesis of the thinnest In2Se3/In2S3/In2Se3 sandwich‐like heterojunction for photoelectrocatalytic water splitting. Chemistry–A European Journal. 2022; 28(14): e202104428. doi: 10.1002/chem.202104428 DOI: https://doi.org/10.1002/chem.202104428

18. Venkatesvaran H, Balu S, Do Van K, et al. Rational synthesis of highly efficient dual–Z–scheme InVO4/FeVO4/Ex–CQDs–g–C3N4 heterojunction for photo (electro) chemical water splitting and pollutant removal applications. Journal of the Taiwan Institute of Chemical Engineers. 2024; 164: 105686. doi: 10.1016/j.jtice.2024.105686 DOI: https://doi.org/10.1016/j.jtice.2024.105686

19. Zakeri F, Javid A, Orooji Y, et al. Al-Ce co-doped BaTiO3 nanofibers as a high-performance bifunctional electrochemical supercapacitor and water-splitting electrocatalyst. Scientific Reports. 2024; 14(1): 9833. doi: 10.1038/s41598-024-54561-4 DOI: https://doi.org/10.1038/s41598-024-54561-4

20. Gao H, Zhang Y, Xia H, et al. In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023; 663: 131030. doi: 10.1016/j.colsurfa.2023.131030 DOI: https://doi.org/10.1016/j.colsurfa.2023.131030

21. Hu L, Zhang C, Wen SH, et al. Two-dimensional In2Se3/In2SeTe heterojunction: Water-splitting photocatalyst with Ultra-low exciton binding and Ultra-high solar-to-hydrogen efficiency. International Journal of Hydrogen Energy. 2024; 92: 721-727. doi: 10.1016/j.ijhydene.2024.10.315 DOI: https://doi.org/10.1016/j.ijhydene.2024.10.315

22. Feng B, Yang H, Zhang Y, et al. A visual COD sensor based on the magnetically oriented graphite flake-enhanced photoelectrochromic effect. Microchimica Acta. 2025; 192(4): 1-11. doi: 10.1007/s00604-025-07088-y DOI: https://doi.org/10.1007/s00604-025-07088-y

23. Li Z, Fang S, Sun H, et al. Solar hydrogen. Advanced Energy Materials. 2023; 13(8): 2203019. doi: 10.1002/aenm.202203019 DOI: https://doi.org/10.1002/aenm.202203019

24. Barawi M, Mesa CA, Collado L, et al. Latest advances in in situ and operando X-ray-based techniques for the characterisation of photoelectrocatalytic systems. Journal of Materials Chemistry A. 2024; 12(35): 23125-23146. doi: 10.1039/D4TA03068K DOI: https://doi.org/10.1039/D4TA03068K

25. Cao L, Liu X, Shen X, et al. Uncovering the nature of active sites during electrocatalytic reactions by in situ synchrotron-based spectroscopic techniques. Accounts of Chemical Research. 2022; 55(18): 2594-2603. doi: 10.1021/acs.accounts.2c00212 DOI: https://doi.org/10.1021/acs.accounts.2c00212

26. Chen GZ, Chen KJ, Fu JW, et al. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Metals. 2020; 39(6): 607-609. doi: 10.1007/s12598-020-01416-2 DOI: https://doi.org/10.1007/s12598-020-01416-2

27. Weidinger IM, Ly HK, Ramuglia A, et al. Understanding Active Sites in Molecular (Photo) Electrocatalysis through Vibrational Spectroelectrochemistry. In: Electrochemical Society Meeting Abstracts. 2022; 241(49): 2103-2103. The Electrochemical Society, Inc.. doi: 10.1149/MA2022-01492103mtgabs DOI: https://doi.org/10.1149/MA2022-01492103mtgabs

28. Tinnemans SJ, Mesu JG, Kervinen K, et al. Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis. Catalysis Today. 2006; 113(1-2): 3-15. doi: 10.1016/j.cattod.2005.11.076 DOI: https://doi.org/10.1016/j.cattod.2005.11.076

29. Li R, Li C. Photocatalytic water splitting on semiconductor-based photocatalysts. In: Advances in catalysis. 2017; 60: 1-57. Academic Press. doi: 10.1016/bs.acat.2017.09.001 DOI: https://doi.org/10.1016/bs.acat.2017.09.001

30. Zhang H, Chen G, Bahnemann D W. Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry. 2009; 19(29): 5089-5121. doi: 10.1039/B821991E DOI: https://doi.org/10.1039/b821991e

31. Opoku F, Govender KK, van Sittert CGCE, et al. Recent progress in the development of semiconductor‐based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Advanced Sustainable Systems. 2017; 1(7): 1700006. doi: 10.1002/adsu.201700006 DOI: https://doi.org/10.1002/adsu.201700006

32. Goodarzi N, Ashrafi-Peyman Z, Khani E, et al. Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts. 2023; 13(7): 1102. doi: 10.3390/catal13071102 DOI: https://doi.org/10.3390/catal13071102

33. Pan L, Sun S, Chen Y, et al. Advances in piezo‐phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials. 2020; 10(15): 2000214. doi: 10.1002/aenm.202000214 DOI: https://doi.org/10.1002/aenm.202000214

34. Zhang H, Chen G, Bahnemann DW. Environmental photo (electro) catalysis: fundamental principles and applied catalysts. Electrochemistry for the Environment. 2009; 371-442. doi: 10.1007/978-0-387-68318-8_16 DOI: https://doi.org/10.1007/978-0-387-68318-8_16

35. Sun S, Zhang X, Liu X, et al. Design and construction of cocatalysts for photocatalytic water splitting. Acta Phys.-Chim. Sin. 2020; 36(3): 1905007. doi: 10.3866/PKU.WHXB201905007 DOI: https://doi.org/10.3866/PKU.WHXB201905083

36. Chen TW, Ramachandran R, Chen SM, et al. An overview of semiconductor electrode materials for photoelectrochemical water splitting and CO2 conversion. International Journal of Electrochemical Science. 2024; 19(5): 100542. doi: 10.1016/j.ijoes.2024.100542 DOI: https://doi.org/10.1016/j.ijoes.2024.100542

37. Liu B, Wang X, Zhang Y, et al. A BiVO4 photoanode with a VOx layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angewandte Chemie. 2023; 135(10): e202217346. doi: 10.1002/anie.202217346 DOI: https://doi.org/10.1002/ange.202217346

38. Jung JY, Kim DW, Shinde SS, et al. Bipolar energetics and bifunctional catalytic activity of a nanocrystalline Ru thin-film enable high-performance photoelectrochemical water reduction and oxidation. ACS Applied Materials & Interfaces. 2020; 12(14): 16402-16410. doi: 10.1021/acsami.0c00367 DOI: https://doi.org/10.1021/acsami.0c00367

39. Diao P. Composite photoelectrodes composed of semiconductor nanomaterials and oxygen/hydrogen evolving catalysts: Preparation and application in photoelectrochemical water splitting. In: Electrochemical Society Meeting Abstracts ecee2014. 2014; 3: 475-475. The Electrochemical Society, Inc. doi: 10.1149/MA2014-03/3/475 DOI: https://doi.org/10.1149/MA2014-03/3/475

40. Bai L, Jia S, Gao Y, et al. A p‐n WO3/SnSe2 heterojunction for efficient photo‐assisted electrocatalysis of the oxygen evolution reaction. Energy & Environmental Materials. 2023; 6(5): e12456. doi: 10.1002/eem2.12456 DOI: https://doi.org/10.1002/eem2.12456

41. Liu Y, Li M, Ju S, et al. Photo-assistant electrocatalytic activity improvement towards oxygen evolution. Advanced Powder Technology. 2021; 32(11): 4042-4048. doi: 10.1016/j.apt.2021.09.005 DOI: https://doi.org/10.1016/j.apt.2021.09.005

42. Xu Y, Li D, Zeng Q, et al. Type-II 2D AgBr/SiH van der Waals heterostructures with tunable band edge positions and enhanced optical absorption coefficients for photocatalytic water splitting. RSC advances. 2023; 13(40): 27676-27685. doi: 10.1039/D3RA05079C DOI: https://doi.org/10.1039/D3RA05079C

43. Jayaraman JP, Hamdan M, Velpula M, et al. BiVO4/Cs2PtI6 vacancy-ordered halide perovskite heterojunction for panchromatic light harvesting and enhanced charge separation in photoelectrochemical water oxidation. ACS Applied Materials & Interfaces. 2021; 13(14): 16267-16278. doi: 10.1021/acsami.0c22654 DOI: https://doi.org/10.1021/acsami.0c22654

44. Wang Y, Chen C, Tian W, et al. Designing WO3/CdIn2S4 type-II heterojunction with both efficient light absorption and charge separation for enhanced photoelectrochemical water splitting. Nanotechnology. 2019; 30(49): 495402. doi: 10.1088/1361-6528/ab4084 DOI: https://doi.org/10.1088/1361-6528/ab4084

45. Liu Z, Zhang J, Yan W. Enhanced photoelectrochemical water splitting of photoelectrode simultaneous decorated with cocatalysts based on spatial charge separation and transfer. ACS Sustainable Chemistry & Engineering. 2018; 6(3): 3565-3574. doi: 10.1021/acssuschemeng.7b03894 DOI: https://doi.org/10.1021/acssuschemeng.7b03894

46. Hao C, Zhang R, Wang W, et al. Efficient charge transfer and separation of TiO2@ NiCo-LDH core-shell nanowire arrays for enhanced photoelectrochemical water-splitting. Journal of Solid State Electrochemistry. 2019; 23(8): 2343-2353. doi: 10.1007/s10008-019-04304-7 DOI: https://doi.org/10.1007/s10008-019-04304-7

47. Moon HS, Hsiao KC, Wu MC, et al. Spatial separation of cocatalysts on Z‐scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in‐depth analysis of the charge‐transfer mechanism. Advanced Materials. 2023; 35(4): 2200172. doi: 10.1002/adma.202200172 DOI: https://doi.org/10.1002/adma.202200172

48. Bai S, Yang X, Liu C, et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustainable Chemistry & Engineering. 2018; 6(10): 12906-12913. doi: 10.1021/acssuschemeng.8b02267 DOI: https://doi.org/10.1021/acssuschemeng.8b02267

49. Kumar M, Subrahmanyam C. 2D Molybdenum Disulfide Nanosheets As Cocatalyst and Passivation Layer over CuInS2 Based Photocathode for Solar Hydrogen Evolution. In: Electrochemical Society Meeting Abstracts. 2023; 243(51): 2751-2751. The Electrochemical Society, Inc. doi: 10.1149/MA2023-01512751mtgabs DOI: https://doi.org/10.1149/MA2023-01512751mtgabs

50. Goodman ED, Zhou C, Cargnello M. Design of organic/inorganic hybrid catalysts for energy and environmental applications. ACS Central Science. 2020; 6(11): 1916-1937. doi: 10.1021/acscentsci.0c01046 DOI: https://doi.org/10.1021/acscentsci.0c01046

51. Valkenberg MH, Hölderich W F. Preparation and use of hybrid organic–inorganic catalysts. Catalysis Reviews. 2002; 44(2): 321-374. doi: 10.1081/CR-120003497 DOI: https://doi.org/10.1081/CR-120003497

52. Ward TR, Pordea A. Enantioselective Hybrid Catalysts, In: Carreira EM, Yamamoto H (editors). Comprehensive Chirality. Elsevier. 2012; pp. 516-552. doi: 10.1016/B978-0-08-095167-6.00734-5. DOI: https://doi.org/10.1016/B978-0-08-095167-6.00734-5

53. Wang Y, Chen L, Hou CC, et al. Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic & Biomolecular Chemistry. 2020; 18(42): 8508-8525. doi: 10.1039/D0OB01729A DOI: https://doi.org/10.1039/D0OB01729A

54. Mukoyoshi M, Kitagawa H. Nanoparticle/metal–organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications. 2022; 58(77): 10757-10767. doi: 10.1039/D2CC03233C DOI: https://doi.org/10.1039/D2CC03233C

55. Lei Y, Huang JF, Li XA, et al. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution. Chinese Journal of Catalysis. 2022; 43(8): 2249-2258. doi: 10.1016/S1872-2067(22)64109-3 DOI: https://doi.org/10.1016/S1872-2067(22)64109-3

56. Zhang T, Meng F, Gao M, et al. Porous host–guest MOF‐semiconductor hybrid with multisites heterojunctions and modulable electronic band for selective photocatalytic CO2 conversion and H2 evolution. Small. 2023; 19(39): 2301121. doi: 10.1002/smll.202301121 DOI: https://doi.org/10.1002/smll.202301121

57. Xu S, Li X, Li S, et al. Recent advances of photocatalytic CO2 reduction based on hybrid molecular catalyst/semiconductor photocatalysts: A review. Small. 2025; 21(4): 2408075. doi: 10.1002/smll.202408075 DOI: https://doi.org/10.1002/smll.202408075

58. Ali M, Pervaiz E, Rabi O. Enhancing the overall electrocatalytic water-splitting efficiency of Mo2C nanoparticles by forming hybrids with UiO-66 MOF. ACS omega. 2021; 6(50): 34219-34228. doi: 10.1021/acsomega.1c03115 DOI: https://doi.org/10.1021/acsomega.1c03115

59. Sakai T, Tsutsumi Y, Ema T. Highly active and robust organic–inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chemistry. 2008; 10(3): 337-341. doi: 10.1039/B718321F DOI: https://doi.org/10.1039/b718321f

60. Tajgardoon R, Zarnegaryan A, Elhamifar D. A Lindqvist type hexamolybdate [Mo6O19]-modified graphene oxide hybrid catalyst: Highly efficient for the synthesis of benzimidazoles. Journal of Photochemistry and Photobiology A: Chemistry. 2022; 430: 113960. doi: 10.1016/j.jphotochem.2022.113960 DOI: https://doi.org/10.1016/j.jphotochem.2022.113960

61. Lotfian N, Heravi MM, Mirzaei M, et al. Applications of inorganic‐organic hybrid architectures based on polyoxometalates in catalyzed and photocatalyzed chemical transformations. Applied Organometallic Chemistry. 2019; 33(4): e4808. doi: 10.1002/aoc.4808 DOI: https://doi.org/10.1002/aoc.4808

62. Ngo HL, Lin W. Hybrid organic-inorganic solids for heterogeneous asymmetric catalysis. Topics in catalysis. 2005; 34(1): 85-92. doi: 10.1007/s11244-005-3792-6 DOI: https://doi.org/10.1007/s11244-005-3792-6

63. Colmenares J C, Kuna E. Photoactive hybrid catalysts based on natural and synthetic polymers: A comparative overview. Molecules. 2017; 22(5): 790. doi: 10.3390/molecules22050790 DOI: https://doi.org/10.3390/molecules22050790

64. Yang LX, Wu HQ, Gao HY, et al. Hybrid catalyst of a metal–organic framework, metal nanoparticles, and oxide that enables strong steric constraint and metal–support interaction for the highly effective and selective hydrogenation of cinnamaldehyde. Inorganic Chemistry. 2018; 57(20): 12461-12465. doi: acs.inorgchem.8b01922 DOI: https://doi.org/10.1021/acs.inorgchem.8b01922

65. Wang H, Su S, Yu T, et al. FeNi/NiFe2O4 hybrids confined in N-doped carbon sponge derived from Hofmann-type MOFs for oxygen electrocatalysis. Applied Surface Science. 2022; 596: 153522. doi: j.apsusc.2022.153522 DOI: https://doi.org/10.1016/j.apsusc.2022.153522

66. Bai Y, Zhang W, Zhang Z, et al. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization. Journal of the American Chemical Society. 2014; 136(42): 14650-14653. doi: 10.1021/ja506269y DOI: https://doi.org/10.1021/ja506269y

67. Liu P, Cai Z, You Y, et al. Surface modification on Pd‐TiO2 hybrid nanostructures towards highly efficient H2 production from catalytic formic acid decomposition. Chemistry–A European Journal. 2018; 24(69): 18398-18402. doi: 10.1002/chem.201803267 DOI: https://doi.org/10.1002/chem.201803267

68. Hu S, Zhang W, Bai J, et al. Construction of a 2D/2D gC3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Advances. 2016; 6(31): 25695-25702. doi: 10.1039/C5RA28123G DOI: https://doi.org/10.1039/C5RA28123G

69. Montero J, Welearegay T, Thyr J, et al. Copper–zinc oxide heterojunction catalysts exhibiting enhanced photocatalytic activity prepared by a hybrid deposition method. RSC advances. 2021; 11(17): 10224-10234. doi: 10.1039/D1RA00691F DOI: https://doi.org/10.1039/D1RA00691F

70. Jun H, Choi S, Lee JB, et al. Plasmonic heterostructure functionalized with a carbene-linked molecular catalyst for sustainable and selective carbon dioxide reduction. ACS Applied Materials & Interfaces. 2020; 12(30): 33817-33826. doi: 10.1021/acsami.0c09517 DOI: https://doi.org/10.1021/acsami.0c09517

71. Shao Z, Sun J, Guo N, et al. Boosting electrocatalysis by heteroatom doping and oxygen vacancies in hierarchical Ni-Co based nitride phosphide hybrid. Journal of Power Sources. 2019; 422: 33-41. doi: 10.1016/j.jpowsour.2019.03.036 DOI: https://doi.org/10.1016/j.jpowsour.2019.03.036

72. Zhou Q, Feng J, Peng X, et al. Porous carbon coupled with an interlaced MoP–MoS2 heterojunction hybrid for efficient hydrogen evolution reaction. Journal of Energy Chemistry. 2020; 45: 45-51. doi: 10.1016/j.jechem.2019.09.010 DOI: https://doi.org/10.1016/j.jechem.2019.09.010

73. Styskalik A, Kordoghli I, Poleunis C, et al. Non-hydrolytic sol–gel route to a family of hybrid mesoporous aluminosilicate ethanol dehydration catalysts. Journal of Materials Science. 2021; 56(25): 14001-14018. doi: 10.1007/s10853-021-06166-9 DOI: https://doi.org/10.1007/s10853-021-06166-9

74. Isimjan TT, Rasul S, Nasser Aloufi M, et al. Rational design of Pd-TiO2/g-C3N4 heterojunction with enhanced photocatalytic activity through interfacial charge transfer. Clean Energy. 2019; 3(1): 59-68. doi: 10.1093/ce/zky021 DOI: https://doi.org/10.1093/ce/zky021

75. Saka C. Facile oxygen doped heterojunction structured hybrid particles with γ-aluminium oxide dispersed over graphitic carbon nitride for dehydrogenation of sodium borohydride in methanol: catalytic properties and mechanism. International Journal of Hydrogen Energy. 2024; 51: 1089-1098. doi: 10.1016/j.ijhydene.2023.10.340 DOI: https://doi.org/10.1016/j.ijhydene.2023.10.340

76. Wu D, Jiang J, Tian N, et al. Highly efficient heterogeneous photo-Fenton BiOCl/MIL-100 (Fe) nanoscaled hybrid catalysts prepared by green one-step coprecipitation for degradation of organic contaminants. RSC advances. 2021; 11(51): 32383-32393. doi: 10.1039/D1RA06549A DOI: https://doi.org/10.1039/D1RA06549A

77. Liu L, Li S, An Y, et al. Hybridization of nanodiamond and CuFe-LDH as heterogeneous photoactivator for visible-light driven photo-fenton reaction: Photocatalytic activity and mechanism. Catalysts. 2019; 9(2): 118. doi: 10.3390/catal9020118 DOI: https://doi.org/10.3390/catal9020118

78. Sattler J, González-Jiménez ID, Mens AM, et al. Operando UV-Vis spectroscopy of a catalytic solid in a pilot-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst. Chemical Communications. 2013; 49(15): 1518-1520. doi: 10.1039/C2CC38978A DOI: https://doi.org/10.1039/c2cc38978a

79. Schilling C, Hess C. CO oxidation on ceria supported gold catalysts studied by combined operando raman/UV–Vis and IR spectroscopy. Topics in Catalysis. 2017; 60(1): 131-140. doi: 10.1007/s11244-016-0732-6 DOI: https://doi.org/10.1007/s11244-016-0732-6

80. Brückner A, Kondratenko E. Simultaneous operando EPR/UV–vis/laser–Raman spectroscopy—A powerful tool for monitoring transition metal oxide catalysts during reaction. Catalysis today. 2006; 113(1-2): 16-24. doi: 10.1016/j.cattod.2005.11.006 DOI: https://doi.org/10.1016/j.cattod.2005.11.006

81. Rabeah J, Briois V, Adomeit S, et al. Multivariate Analysis of Coupled Operando EPR/XANES/EXAFS/UV–Vis/ATR‐IR Spectroscopy: A New Dimension for Mechanistic Studies of Catalytic Gas‐Liquid Phase Reactions. Chemistry–A European Journal. 2020; 26(33): 7395-7404. doi: /10.1002/chem.202000436 DOI: https://doi.org/10.1002/chem.202000436

82. Gomes LLA, Sanctis V, Dai H, et al. Shedding light on lithium-sulfur battery dynamics: Real-time insights through in-situ UV-Vis spectroscopy on modified lab equipment. In: Electrochemical Society Meeting Abstracts. 2024; 245(53): 2773-2773. The Electrochemical Society, Inc.. 10.1149/MA2024-01532773mtgabs DOI: https://doi.org/10.1149/MA2024-01532773mtgabs

83. Fischer JWA, Brenig A, Klose D, et al. Methane Oxidation over Cu2+/[CuOH]+ pairs and site‐specific kinetics in copper mordenite revealed by operando electron paramagnetic resonance and UV/Visible spectroscopy. Angewandte Chemie. 2023; 135(34): e202303574. doi: 10.1002/ange.202303574 DOI: https://doi.org/10.1002/ange.202303574

84. Ahmad I, Muneer M, Khder AS, et al. Novel type-II heterojunction binary composite (CdS/AgI) with outstanding visible light-driven photocatalytic performances toward methyl orange and tetracycline hydrochloride. ACS omega. 2023; 8(25): 22708-22720. doi: 10.1021/acsomega.3c01517 DOI: https://doi.org/10.1021/acsomega.3c01517

85. Kaur A, Kansal SK. Insitu synthesis, characterization of Z-scheme g-C3N4/Bi2O3 as photocatalyst for degradation of azo dye, Amido black-10B under solar irradiation. Ceramics International. 2022; 48(19): 29445-29459. doi: 10.1016/j.ceramint.2022.07.008 DOI: https://doi.org/10.1016/j.ceramint.2022.07.008

86. Ishak N, Galář P, Mekkat R, et al. Fine-tuning photoluminescence and photocatalysis: Exploring the effects of carbon quantum dots synthesis and purification on g-C3N4. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2025; 706: 135789. doi: 10.1016/j.colsurfa.2024.135789 DOI: https://doi.org/10.1016/j.colsurfa.2024.135789

87. Li R, Kodaira T, Kawanami H. In situ formic acid dehydrogenation observation using a UV-vis-diffuse-reflectance spectroscopy system. Chemical Communications. 2022; 58(79): 11079-11082. doi: 10.1039/D2CC03768H DOI: https://doi.org/10.1039/D2CC03768H

88. Tinnemans SJ. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work [PhD thesis]. Utrecht University; 2006.

89. Tinnemans SJ, Kox MHF, Nijhuis TA, et al. Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard. Physical Chemistry Chemical Physics. 2005; 7(1): 211-216. doi: 10.1039/B414427A DOI: https://doi.org/10.1039/b414427a

90. Waleska P, Rupp S, Hess C. Operando multiwavelength and time-resolved Raman spectroscopy: structural dynamics of a supported vanadia catalyst at work. The Journal of Physical Chemistry C. 2018; 122(6): 3386-3400. doi: 10.1021/acs.jpcc.7b10518 DOI: https://doi.org/10.1021/acs.jpcc.7b10518

91. Ternero-Hidalgo JJ, Daturi M, Clet G, et al. A simultaneous operando FTIR & Raman study of propane ODH mechanism over V-Zr-O catalysts. Catalysis Today. 2022; 387: 197-206. doi: 10.1016/j.cattod.2021.06.012 DOI: https://doi.org/10.1016/j.cattod.2021.06.012

92. Singha Roy S, Nagappan S, Satheesan A K, et al. Surface-enhanced Raman scattering coupled with in situ Raman spectroscopy for the detection of the OER mechanism: A mini-review. The Journal of Physical Chemistry C. 2024; 128(33): 13634-13650. doi: 10.1021/acs.jpcc.4c03607 DOI: https://doi.org/10.1021/acs.jpcc.4c03607

93. KUZUME A. Surface-enhanced Raman spectroscopy for solid-liquid interfacial analysis using shell-isolated nano-amplifiers. Vacuum & Surface Science. 2024; 67(5). doi: 10.1380/vss.67.212 DOI: https://doi.org/10.1380/vss.67.212

94. Wu J, Huang J, Liu T, et al. Construction of thermally robust SERS nanostructure for high-temperature in situ analysis. ACS Applied Optical Materials. 2024; 2(8): 1667-1676. doi: 10.1021/acsaom.4c00247 DOI: https://doi.org/10.1021/acsaom.4c00247

95. Liu S, Dong N, Meng S, et al. Operando photoelectrochemical surface-enhanced Raman spectroscopy: Interfacial mechanistic insights and simultaneous detection of patulin. Analytical Chemistry. 2025; 97(2): 1329-1337. doi: 10.1021/acs.analchem.4c05669 DOI: https://doi.org/10.1021/acs.analchem.4c05669

96. Han I, Yu W, Allen MW. Transforming environmental analysis with Raman and SERS spectroscopy: rapid on-site monitoring of agricultural and industrial pollutants. In: Optical Fibers and Sensors for Medical Diagnostics, Treatment, and Environmental Applications, Proceedings of SPIE BIOS; 25-27 January 2025; San Francisco, California, United States. SPIE; 2025. pp. 72-77. doi: 10.1117/12.3043541 DOI: https://doi.org/10.1117/12.3043541

97. Zhang H, Zhang Z, Wang H, et al. Versatile flexible SERS substrate for in situ detection of contaminants in water and fruits based on Ag NPs decorated wrinkled PDMS film. Optics Express. 2023; 31(13): 21025-21037. doi: 10.1364/OE.492496 DOI: https://doi.org/10.1364/OE.492496

98. Groom MJ, Miele E, Pinnell J, et al. Microlens hollow-core fiber probes for operando Raman spectroscopy. ACS photonics, 2024; 11(8): 3167-3177. doi: 10.1021/acsphotonics.4c00525 DOI: https://doi.org/10.1021/acsphotonics.4c00525

99. Borozdin AV, Elterman VA, Yolshina LA. Application of in situ surface-enhanced Raman spectroscopy for investigation of electrode processes at the interface of an aluminum electrode with a chloroaluminate ionic liquid based on triethylamine hydrochloride. Journal of Applied Spectroscopy. 2025; 91(6): 1203-1208. doi: 10.1007/s10812-025-01838-9 DOI: https://doi.org/10.1007/s10812-025-01838-9

100. Taifan WE, Li Y, Baltrus JP, et al. Operando structure determination of Cu and Zn on supported MgO/SiO2 catalysts during ethanol conversion to 1,3-butadiene. ACS Catalysis. 2018; 9(1): 269-285. doi: 10.1021/acscatal.8b03515 DOI: https://doi.org/10.1021/acscatal.8b03515

101. Wang S, Li F, Zhao J, et al. Manipulating CC coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst. Nature Communications. 2024; 15(1): 10247. doi: 10.1038/s41467-024-54636-w DOI: https://doi.org/10.1038/s41467-024-54636-w

102. Abudukade M, Pinna M, Spanu D, et al. In situ X-ray absorption spectroscopy study of the deactivation mechanism of a Ni-SrTiO3 photocatalyst slurry active in water splitting. The Journal of Physical Chemistry C. 2024; 128(38): 16020-16031. doi: 10.1021/acs.jpcc.4c04688 DOI: https://doi.org/10.1021/acs.jpcc.4c04688

103. La Fontaine C, Villain F, Briois V, et al. Coupled XAS-Raman operando analysis of TiO2 supported oxomolybdate catalysts in methanol conversion. I. Harrick Scientific Products (Ed.), Applications Note. 2010; 91201.

104. Zeng Y, Li X, Wang J, et al. In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem Catalysis. 2021; 1(6): 1215-1233. doi: 10.1016/j.checat.2021.08.013 DOI: https://doi.org/10.1016/j.checat.2021.08.013

105. Chen R, Zhao J, Li Y, et al. Operando Mössbauer spectroscopic tracking the metastable state of atomically dispersed tin in copper oxide for selective CO2 electroreduction. Journal of the American Chemical Society. 2023; 145(37): 20683-20691. doi: 10.1021/jacs.3c06738 DOI: https://doi.org/10.1021/jacs.3c06738

106. Huve J, Bourgain F, Farrusseng D, et al. Development of a cell for in-situ/operando Mössbauer spectroscopy studies of Catalysts: Application to the characterization of iron nanoparticles used in Fischer–Tropsch reaction. Review of Scientific Instruments. 2023; 94: 093201. doi: 10.1063/5.0160107 DOI: https://doi.org/10.1063/5.0160107

107. Liu P, Farid S, Liu M, et al. In-situ/Operando Mössbauer spectroscopic investigations of Fe-involved metal hydroxide-based OER electrocatalysts. Catalysis Surveys from Asia. 2024; 28(4): 361-374. doi: 10.1007/s10563-024-09432-3 DOI: https://doi.org/10.1007/s10563-024-09432-3

108. Kuang Z, Liu S, Li X, et al. Topotactically constructed nickel–iron (oxy) hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. Journal of Energy Chemistry. 2021; 57: 212-218. doi: 10.1016/j.jechem.2020.09.014 DOI: https://doi.org/10.1016/j.jechem.2020.09.014

109. Li X, Cao CS, Hung SF, et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem. 2020; 6(12): 3440-3454. doi: 10.1016/j.chempr.2020.10.027. DOI: https://doi.org/10.1016/j.chempr.2020.10.027

110. Chen R, Zhao J, Zhang X, et al. Visualizing catalytic dynamics of single-Cu-atom-modified SnS2 in CO2 electroreduction via rapid freeze-quench Mössbauer spectroscopy. Journal of the American Chemical Society, 2024; 146(35): 24368-24376. doi: 10.1021/jacs.4c05813 DOI: https://doi.org/10.1021/jacs.4c05813

111. Hashemi N, Shah JH, Hu C, et al. Toward a comprehensive hypothesis of oxygen-evolution reaction in the presence of iron and gold. Journal of Energy Chemistry. 2024; 89: 172-183.doi: 10.1016/j.jechem.2023.09.033 DOI: https://doi.org/10.1016/j.jechem.2023.09.033

112. Yu Q, Wang S, Yang X, et al. Monitoring the in-situ generated Ir1Sn single atom alloy for efficient CO2 electroreduction via rapid freeze-quench Mössbauer spectroscopy. Materials Today Energy. 2025; 101901. doi: 10.1016/j.mtener.2025.101901 DOI: https://doi.org/10.1016/j.mtener.2025.101901

113. Mehmood R, Fan W, Hu X, et al. Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: In situ analysis of X-ray absorption and Mössbauer spectroscopy. Journal of the American Chemical Society. 2023; 145(22): 12206-12213. doi: 10.1021/jacs.3c02288 DOI: https://doi.org/10.1021/jacs.3c02288

114. Liu W, Zhang L, Liu X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. Journal of the American Chemical Society. 2017; 139(31): 10790-10798. doi: 10.1021/jacs.7b05130 DOI: https://doi.org/10.1021/jacs.7b05130

115. Hussain Shah J, Xie QX, Kuang ZC, et al. In-Situ/Operando 57Fe Mössbauer spectroscopic technique and its applications in NiFe-based electrocatalysts for oxygen evolution reaction. Journal of Electrochemistry. 2022; 28(3): 3. doi: 10.13208/j.electrochem.210854

116. Lázár K, Borbély G, Beyer H. In situ Mössbauer study of framework substituted (Fe) ZSM-5 zeolites. Zeolites. 1991; 11(3): 214-222. doi: 10.1016/S0144-2449(05)80222-2 DOI: https://doi.org/10.1016/S0144-2449(05)80222-2

117. Wang P, Li D, Chi H, et al. Unveiling the hydration structure of ferrihydrite for hole storage in photoelectrochemical water oxidation. Angewandte Chemie. 2021; 133(12): 6765-6772. doi: 10.1002/anie.202014871 DOI: https://doi.org/10.1002/ange.202014871

118. Akbari N, Shah JH, Hu C, et al. A hypothesis on the function of High‐Valent Fe in NiFe (Hydr) oxide in the oxygen‐evolution reaction. Angewandte Chemie. 2025; 137(6): e202418798. doi: 10.1002/anie.202418798 DOI: https://doi.org/10.1002/ange.202418798

119. Lopez, J. Understanding organic components of solid electrolyte interphase on the lithium metal anode. In Electrochemical Society Meeting Abstracts. The Electrochemical Society, Inc.. 2024; 245(2): 480-480. doi: 10.1149/MA2024-012480mtgabs DOI: https://doi.org/10.1149/MA2024-012480mtgabs

120. Fischer JW, Buttignol F, Garbujo A, et al. Elucidation of site-specific red-ox kinetics in the CO-assisted N2O decomposition over Fe–ferrierite by combining modulation excitation with operando EPR spectroscopy. Chemical Science. 2025; 16(11): 4884-4891. doi: 10.1039/D4SC07195F DOI: https://doi.org/10.1039/D4SC07195F

121. Bora DK. Fe2+/Fe3+ Sites control dicarboxylic acid adsorption on iron oxide nanoparticle surfaces for photocatalytic application studied by operando ATR-FTIR Spectroscopy. Catalysis Letters. 2024; 154(5): 2171-2181. doi: 10.1007/s10562-023-04464-2 DOI: https://doi.org/10.1007/s10562-023-04464-2

122. Bredy P, Fine L, Farrusseng D, et al. Evolution of sample optical pathlength during diffuse reflectance FT-IR analyses. Catalysis Today. 2023; 424: 114301. doi: 10.1016/j.cattod.2023.114301 DOI: https://doi.org/10.1016/j.cattod.2023.114301

123. Ma Y, Feng Z, Liu T, et al. First-principle molecular dynamics and in situ DRIFTS study the stability of the intermediates of CO2 hydrogenation to methanol on ZnZrOx solid solution catalyst. Applied Surface Science. 2024; 668: 160385. doi: 10.1016/j.apsusc.2024.160385 DOI: https://doi.org/10.1016/j.apsusc.2024.160385

124. Cheng W, Xu Y, Yang C, et al. Monitoring surface dynamics of electrodes during electrocatalysis using in situ synchrotron FTIR spectroscopy. Synchrotron Radiation. 2023; 30(2): 340-346. doi: 10.1107/S1600577523000796 DOI: https://doi.org/10.1107/S1600577523000796

125. Baran T, Fracchia M, Vertova A, et al. Operando and time-resolved X-ray absorption spectroscopy for the study of photoelectrode architectures. Electrochimica Acta. 2016; 207: 16-21. doi: 10.1016/j.electacta.2016.04.153 DOI: https://doi.org/10.1016/j.electacta.2016.04.153

126. Younesi AT, Ulbricht R. Broadband transient absorption spectroscopy using an incoherent white-light source as probe. Optics Express. 2022; 30(21): 38896-38906. doi: 10.1364/OE.467483 DOI: https://doi.org/10.1364/OE.467483

127. Päpcke A, Friedrich A, Lochbrunner S. Revealing the initial steps in homogeneous photocatalysis by time-resolved spectroscopy. Journal of Physics: Condensed Matter. 2020; 32(15): 153001. doi: 10.1088/1361-648X/ab5ed1 DOI: https://doi.org/10.1088/1361-648X/ab5ed1

128. Furukawa N, Mair CE, Kleiman VD, et al. Femtosecond real-time pump–probe imaging spectroscopy. Applied physics letters. 2004; 85(20): 4645-4647. doi: 10.1063/1.1823039 DOI: https://doi.org/10.1063/1.1823039

129. Li C, Liu T, Thwaites O, et al. Time-resolved vibrational spectroscopic study of molecular nanoaggregate photocatalysts. Chemical Science. 2024; 15(39): 16133-16141. doi: 10.1039/D4SC03825H DOI: https://doi.org/10.1039/D4SC03825H

130. Li Z, Peng J, Zhu Y, et al. Transient-absorption pump-probe spectra as information-rich observables: Case study of fulvene. Molecules. 2025; 30(7): 1439. doi: 10.3390/molecules30071439 DOI: https://doi.org/10.3390/molecules30071439

131. Cheng W, Kido D, Niwa Y, et al. In situ pump-flow-probe XAFS study of photoexcited electron transfer over single atom-Pt/CoOOH photocatalysts. Chemistry Letters. 2024; 53(1): upae012. doi: 10.1093/chemle/upae012 DOI: https://doi.org/10.1093/chemle/upae012

132. Lee JP, Avni T, Alexander O, et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV-Vis pump pulses. Optica. 2024; 11(9): 1320-1323. doi: 10.1364/OPTICA.530964 DOI: https://doi.org/10.1364/OPTICA.530964

133. Khasnabis S, Godin R. Transient absorption microscopy maps spatial heterogeneity and distinct chemical environments in photocatalytic carbon nitride particles. Small. 2025; 21(5): 2406652. doi: 10.1002/smll.202406652 DOI: https://doi.org/10.1002/smll.202406652

134. Xue J, Fujitsuka M, Tachikawa T, et al. Charge trapping in semiconductor photocatalysts: a time-and space-domain perspective. Journal of the American Chemical Society. 2024; 146(13): 8787-8799. doi: 10.1021/jacs.3c14757 DOI: https://doi.org/10.1021/jacs.3c14757

135. Aguirre A, Fornero EL, Villarreal A, et al. Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catalysis Today. 2022; 394: 225-234. doi: 10.1016/j.cattod.2021.09.009 DOI: https://doi.org/10.1016/j.cattod.2021.09.009

136. Garetto B, Cao N, Finelli V, et al. Pinpointing Cu-coordination motifs in bio-inspired MOFs by combining DFT-assisted XAS analysis and multivariate curve resolution. J. Phys. Chem. C. 2025; 129(7): 3570–358. doi: 10.1021/acs.jpcc.4c08029 DOI: https://doi.org/10.1021/acs.jpcc.4c08029

137. Guda AA, Guda SA, Lomachenko KA, et al. Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catalysis Today. 2019; 336: 3-21. doi: 10.1016/j.cattod.2018.10.071 DOI: https://doi.org/10.1016/j.cattod.2018.10.071

138. Staykov A, Lyth SM, Watanabe M. Photocatalytic Water Splitting. In: Sasaki K, Li HW, Hayashi A, et al. (editors) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo; 2016. doi: 10.1007/978-4-431-56042-5_12 DOI: https://doi.org/10.1007/978-4-431-56042-5_12

139. Li D, Shi J, Li C. Transition‐metal‐based electrocatalysts as cocatalysts for photoelectrochemical water splitting: a mini review. Small. 2018; 14(23): 1704179. doi: 10.1002/smll.201704179 DOI: https://doi.org/10.1002/smll.201704179

140. Awais M, Aslam S, Ashiq MN, et al. Construction of Ru doped In2O3/SnS2 micro-spheres for bifunctional photo/electrocatalyst performance towards universal pH water splitting. International Journal of Hydrogen Energy. 2025; 98: 467-477. doi: 10.1016/j.ijhydene.2024.12.028 DOI: https://doi.org/10.1016/j.ijhydene.2024.12.028

141. Gong L, Zhang P, Liu G, et al. A silicon-based hybrid photocathode modified with an N5-chelated nickel catalyst in a noble-metal-free biomimetic photoelectrochemical cell for solar-driven unbiased overall water splitting. Journal of Materials Chemistry A. 2021; 9(20): 12140-12151. doi: 10.1039/D1TA01963E DOI: https://doi.org/10.1039/D1TA01963E

142. Li X, Zheng X, Zhen Y, et al. Photogenerated carrier-assisted electrocatalysts for efficient water splitting. Catalysts. 2023; 13(4): 712. doi: 10.3390/catal13040712 DOI: https://doi.org/10.3390/catal13040712

143. Pirkarami A, Rasouli S, Ghasemi, E. 3-D CdS@ NiCo layered double hydroxide core-shell photoelectrocatalyst used for efficient overall water splitting. Applied Catalysis B: Environmental. 2019; 241: 28-40. doi: 10.1016/j.apcatb.2018.09.021 DOI: https://doi.org/10.1016/j.apcatb.2018.09.021

144. Arif M, Yasin G, Shakeel M, et al. Coupling of bifunctional CoMn‐layered double hydroxide@ graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chemistry–An Asian Journal. 2018; 13(8): 1045-1052. doi: 10.1002/asia.201800016 DOI: https://doi.org/10.1002/asia.201800016

145. Hou Y, Qiu M, Nam G, et al. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano letters. 2017; 17(7): 4202-4209. doi: 10.1021/acs.nanolett.7b01030 DOI: https://doi.org/10.1021/acs.nanolett.7b01030

146. Ezhov R, Bury G, Maximova O, et al. Pentanuclear iron complex for water oxidation: Spectroscopic analysis of reactive intermediates in solution and catalyst immobilization into the MOF-based photoanode. Journal of catalysis. 2024; 429: 115230. doi: 10.1016/j.jcat.2023.115230 DOI: https://doi.org/10.1016/j.jcat.2023.115230

147. Zhang X, Wu F, Li G, et al. Mechanistic insight into the synergy between platinum cluster and indium particle dual cocatalysts for enhanced photocatalytic water splitting. Journal of Colloid and Interface Science. 2024; 670: 774-784. doi: 10.1016/j.jcis.2024.05.146 DOI: https://doi.org/10.1016/j.jcis.2024.05.146

148. Scattolin E, Benedet M, Barreca D, et al. Graphitic carbon nitride functionalized with NiO nanoaggregates: An X-ray photoelectron spectroscopy investigation. Surface Science Spectra. 2024; 31(2). doi: 10.1116/6.0003732 DOI: https://doi.org/10.1116/6.0003732

149. Li KX, Li CH, Shi HY, et al. A Convenient in situ Preparation of Cu2ZnSnS4–Anatase Hybrid Nanocomposite for Photocatalysis/Photoelectrochemical Water-Splitting Hydrogen Production. Molecules. 2024; 29(11): 2514. doi: 10.3390/molecules29112514 DOI: https://doi.org/10.3390/molecules29112514

150. Bi R, Han B, Shen Y, et al. Enhancing photocatalytic overall water splitting activity of SrTiO3 nanoparticles by a synergetic Pt/CrOx dual cocatalyst system. ACS Applied Energy Materials. 2023; 6(20): 10600-10609. doi: 10.1021/acsaem.3c01767 DOI: https://doi.org/10.1021/acsaem.3c01767

151. Surca AK, Moriau L, Logar A, et al. In situ Raman and in situ UV-visible spectroelectrochemistry as efficient tools for investigation of Ir-based electrocatalysts for water splitting. In: Proceedings of MATSUS Spring 2024 Conference (MATSUS24) 2023; 4-8 April 2024; Barcelona, Spain. doi: 10.29363/nanoge.matsus.2024.067 DOI: https://doi.org/10.29363/nanoge.matsus.2024.067

152. Chauhan P, Kumar A. Photocatalytic water splitting and charge carrier dynamics of Janus PtSSe/ζ-phosphorene heterostructure. Sci Rep. 2024; 14: 21618. doi: 10.1038/s41598-024-72757-6 DOI: https://doi.org/10.1038/s41598-024-72757-6

153. Iram F, Aslam S, Javaria, Safdar, et al. Synthesis and investigation of light assisted catalytic OER/HER behavior of g-C3N4/Al2S3 nanocomposite. Catalysis Letters. 2024; 154(11): 6022-6034. doi: 10.1007/s10562-024-04788-7 DOI: https://doi.org/10.1007/s10562-024-04788-7

154. Liu Y, Xu X, Sun X, et al. Recent research progress of photoelectrocatalysis technology in the removal of organic pollutants from water. Journal of Water Process Engineering. 2025; 75: 107911. doi: 10.1016/j.jwpe.2025.107911 DOI: https://doi.org/10.1016/j.jwpe.2025.107911

155. Zhang J, Wang X, Wang X, et al. Heterophase junction effect on photogenerated charge separation in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research. 2025; 58(6): 787-798. doi: 10.1021/acs.accounts.4c00582 DOI: https://doi.org/10.1021/acs.accounts.4c00582

156. Liu S, Dong N, Wang S, et al. Photo-excited electrochemical surface-enhanced Raman spectroscopy: in situ/operando insights into photoelectrocatalytic interfaces. Chem. Commun. 2025; 61: 10011-10025. doi: 10.1039/D5CC01605C DOI: https://doi.org/10.1039/D5CC01605C

157. Song R, Chi H, Ma Q, et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis. Journal of the American Chemical Society. 2021; 143(34): 13664-13674. doi: 10.1021/jacs.1c05008 DOI: https://doi.org/10.1021/jacs.1c05008

158. Chang S, Wang Q, Liu B, et al. Hierarchical TiO2 nanonetwork–porous Ti 3D hybrid photocatalysts for continuous-flow photoelectrodegradation of organic pollutants. Catalysis Science & Technology. 2017; 7(2): 524-532. doi: 10.1039/C6CY02150F DOI: https://doi.org/10.1039/C6CY02150F

159. Wang WK, Zhu W, Mao L, et al. Two-dimensional TiO2-g-C3N4 with both TiN and CO bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A. Journal of Colloid and Interface Science. 2019; 557: 227-235. doi: 10.1016/j.jcis.2019.08.088 DOI: https://doi.org/10.1016/j.jcis.2019.08.088

160. Yuan SJ, Sheng GP, Li WW, et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environmental science & technology. 2010; 44(14): 5575-5580. doi: 10.1021/es101317z DOI: https://doi.org/10.1021/es101317z

161. Zhang X, Zhang Z, Xu M, et al. Topology engineering of UiO-66@ TiO2-based photoelectrocatalyst for highly efficient degradation of binary pollutants. Separation and Purification Technology. 2024; 330: 125437. doi: 10.1016/j.seppur.2023.125437 DOI: https://doi.org/10.1016/j.seppur.2023.125437

162. Zhang B, Li X, Ma Y, et al. Visible-light photoelectrocatalysis/H2O2 synergistic degradation of organic pollutants by a magnetic Fe3O4@ SiO2@ mesoporous TiO2 catalyst-loaded photoelectrode. RSC advances. 2022; 12(47): 30577-30587. doi: 10.1039/D2RA05183D DOI: https://doi.org/10.1039/D2RA05183D

163. Jiang Z, Lu Y, Song YY, et al. Accelerating photocatalytic degradation of pollutants by electrochemical capacitive Co3O4/TiO2 nanopine arrays. Journal of Environmental Chemical Engineering. 2023; 11(2): 109298. doi: 10.1016/j.jece.2023.109298 DOI: https://doi.org/10.1016/j.jece.2023.109298

164. Tantis I, Stathatos E, Mantzavinos D, et al. Photoelectrocatalytic degradation of potential water pollutants in the presence of NaCl using nanocrystalline titania films. Journal of Chemical Technology & Biotechnology. 2015; 90(7): 1338-1344. doi: 10.1002/jctb.4549 DOI: https://doi.org/10.1002/jctb.4549

165. Peleyeju MG, Viljoen EL. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water–A review. Journal of Water Process Engineering. 2021; 40; 101930. doi: 10.1016/j.jwpe.2021.101930 DOI: https://doi.org/10.1016/j.jwpe.2021.101930

166. Zhang X, Liang X, Xu M, et al. In situ recombination for durable photoelectrocatalytic degradation of organic dye in wastewater. Chemosphere. 2023; 312: 137237. doi: 10.1016/j.chemosphere.2022.137237 DOI: https://doi.org/10.1016/j.chemosphere.2022.137237

167. Zhang D, Wang B, Wang J, et al. Isolated/interacting Au islands on TiO2 NTs for the switching photocatalytic/photoelectrocatalytic degradation of refractory organic pollutants in wastewater. RSC advances. 2019; 9(5): 2784-2791. doi: 10.1039/C8RA09160A DOI: https://doi.org/10.1039/C8RA09160A

168. Alaridhee ZAI, Alqaraguly MB, Formanova S, et al. Recent advances in microfluidic-based photoelectrochemical (PEC) sensing platforms for biomedical applications. Microchimica Acta. 2025; 192(5): 297. doi: 10.1007/s00604-025-07135-8 DOI: https://doi.org/10.1007/s00604-025-07135-8

169. Yu W, Xu M, Liang X, et al. Construction of a novel Cu1.8S/NH2–La MOFs decorated Black-TNTs photoanode electrode for high-efficiently photoelectrocatalytic degradation of 2, 4-dichlorophenol. Chemosphere. 2023; 313: 137591. doi: 10.1016/j.chemosphere.2022.137591 DOI: https://doi.org/10.1016/j.chemosphere.2022.137591

170. Khodabandeloo F, Sheydaei M, Moharramkhani P, et al. Preparation of Fe2(MoO4)3/graphene/Ti nanocomposite electrode for visible-light photoelectrocatalytic degradation of organic pollutants. Chemosphere. 2023; 330: 138766. doi: 10.1016/j.chemosphere.2023.138766 DOI: https://doi.org/10.1016/j.chemosphere.2023.138766

171. Tang B, Zhang J, Yang N, et al. Selective photoelectrocatalytic removal of environmental pollutants on molecular imprints decorated TiO2 single crystalline nanoarrays. Chemical Engineering Journal. 2020; 383: 123188. doi: 10.1016/j.cej.2019.123188 DOI: https://doi.org/10.1016/j.cej.2019.123188

172. Li G, An T, Nie X, et al. Mutagenicity assessment of produced water during photoelectrocatalytic degradation. Environmental Toxicology and Chemistry. 2007; 26(3): 416-423. doi: 10.1897/06-264R.1 DOI: https://doi.org/10.1897/06-264R.1

173. Yang J, Miao J, Dai J, et al. Photoelectrocatalytic degradation of dye pollutants with nano- TiO sub (2) electrode under visible- light irradiation. Journal of Henan Polytechnic University (Natural Science). 2010; 29(2): 259-265.

174. Pirkarami A, Shahabifard MH, Javanmard A, et al. Decolorization, degradation, and detoxification of textile dye and efficient hydrogen production by highly-stable MIL-177-LT@ NiFe-LDH photoelectrocatalyst: mechanism and economical studies. Journal of Water Process Engineering. 2024; 65, 105822. doi: 10.1016/j.jwpe.2024.105822 DOI: https://doi.org/10.1016/j.jwpe.2024.105822

175. Yan W, Zhou L, Luo Z, et al. Cell‐Membrane‐Inspired Ultrathin Silica Nanochannels Coating for Long‐Term Stable Photoelectrocatalysis with Enhanced Performance. Advanced Science. 2024; 11(44): 2407686. doi: 10.1002/advs.202407686 DOI: https://doi.org/10.1002/advs.202407686

176. Spies L, Carmo MEG, Döblinger M, et al. Designing Atomically Precise and Robust COF Hybrids for Efficient Photocatalytic CO₂ Reduction. Small. 2024; 2500550. doi: 10.1002/smll.202500550 DOI: https://doi.org/10.1002/smll.202500550

177. Zhu Z, Zhao X, Xiao X, et al. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst. Journal of Colloid and Interface Science. 2022; 625: 109-118. doi: 10.1016/j.jcis.2022.06.016 DOI: https://doi.org/10.1016/j.jcis.2022.06.016

178. Zhu ZS, Qu J, Hao SM, et al. α-Fe2O3 nanodisk/bacterial cellulose hybrid membranes as high-performance sulfate-radical-based visible light photocatalysts under stirring/flowing states. ACS applied materials & interfaces. 2018; 10(36): 30670-30679. doi: 10.1021/acsami.8b10128 DOI: https://doi.org/10.1021/acsami.8b10128

179. Cui C, Heggen M, Zabka WD, et al. Atomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis. Nature communications. 2017; 8(1): 1341. doi: 10.1038/s41467-017-01545-w DOI: https://doi.org/10.1038/s41467-017-01545-w

180. Mezzetti A, Fumagalli F, Alfano A, et al. Stable hybrid organic/inorganic photocathodes for hydrogen evolution with amorphous WO3 hole selective contacts. Faraday Discussions. 2017; 198: 433-448. doi: 10.1039/C6FD00216A DOI: https://doi.org/10.1039/C6FD00216A

181. Lu JM, Wang HF, Guo QH, et al. Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day. Nature Communications. 2024; 15(1): 1-13. doi: 10.1038/s41467-024-53204-6 DOI: https://doi.org/10.1038/s41467-024-53204-6

182. Yuan D, Xiao L, Jia J, et al. Combinatorial screening of photoelectrocatalytic system with high signal/noise ratio. Analytical Chemistry. 2014; 86(24): 11972-11976. doi: 10.1021/ac503614h DOI: https://doi.org/10.1021/ac503614h

183. Yan Q, Yu J, Suram SK, et al. Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences. 2017; 114(12); 3040-3043. doi: 10.1073/pnas.1619940114 DOI: https://doi.org/10.1073/pnas.1619940114

184. Zhao Y, Gao J, Bian X, et al. From the perspective of experimental practice: High-throughput computational screening in photocatalysis. Green Energy & Environment. 2024; 9(1): 1-6. doi: 10.1016/j.gee.2023.05.008 DOI: https://doi.org/10.1016/j.gee.2023.05.008

185. He X, Wen Y, Fang Y, et al. Charge photoaccumulation in covalent polymer networks for boosting photocatalytic nitrate reduction to ammonia. Advanced Science. 2024; 11(23): 2401878. doi: 10.1002/advs.202401878 DOI: https://doi.org/10.1002/advs.202401878

186. Gregoire JM, Boyd DA, Guevarra D, et al. High throughput experimentation for the discovery of water splitting materials 2018; 544. doi: 10.1039/9781788010313 DOI: https://doi.org/10.1039/9781788010313-00305

187. Coronado JM, Fresno F. Iglesias-Juez A. Approaching photocatalysts characterization under real conditions: In situ and operando studies. In: Garcia-Lopez EI, Palmisano L (editors). Materials science in photocatalysis. Elsevier; 2021. pp. 139-156. doi: 10.1016/B978-0-12-821859-4.00030-1 DOI: https://doi.org/10.1016/B978-0-12-821859-4.00030-1

188. Mu C, Lv C, Meng X, et al. In situ characterization techniques applied in photocatalysis: a review. Advanced Materials Interfaces. 2023; 10(3): 2201842. doi: 10.1002/admi.202201842 DOI: https://doi.org/10.1002/admi.202201842

189. Peng X, Tian J, Zhang S, et al. Z-scheme transfer pathway assisted photoelectrocatalyst Zn2SnO4/rGO/Ag/AgBr for organic pollutants treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023; 657: 130552. doi: 10.1016/j.colsurfa.2022.130552 DOI: https://doi.org/10.1016/j.colsurfa.2022.130552

190. McFarland EW. Development & optimization of materials and processes for a cost effective photoelectrochemical hydrogen production system. Final report (No. DOE/FG36-05GO15040-100). Univ. of California, Santa Barbara, CA (United States) 2011. doi: 10.2172/1001994 DOI: https://doi.org/10.2172/1001994