Experimental comparison of wavy and pitched blade impellers for vortex suppression in un-baffled stirred tanks
DOI:
https://doi.org/10.18686/cest417Keywords:
liquid interface; swirl generation; off-center stirred tank; energy dissipationAbstract
Stirred tanks play a pivotal role in both mechanical and chemical processes. The current study delves into its dynamics through the experimental and numerical study of the vortex shape, vortex size, and depth experimentally and numerically using the finite volume method. Two types of impellers pitched and wavy blade with different rotational speeds of 150, 250, 350, and 450 RPM were used, location on the depth and density of the vortex, flow patterns, torque values, and the amount of power consumption were observed. Theoretically, the mathematical model liquid volume (VOF) used in order to capture the gas-liquid interface, as well as the numerical model (k-ε) was used to simulate turbulent flow in the stirred tank. The obtained experimental and theoretical results showed good convergence in the values. The results showed the vortex reached the maximum depth reaching the surface of the impeller for the pitched impeller at rotation speed 450RPM, followed by the wavy impeller, where the depth of the vortexes is relatively less. In the second case, with the eccentric stirred tank, the shape and location of the vortex formation were different and less intense than in the un-baffled stirred tank. As for the amount of power consumption, the wavy impeller achieved a 40.5% reduction (1.932 W) compared to the pitched blade impeller (3.251 W) at Reynolds number 1.077×10⁵, with vortex depths of 142 mm and 185 mm, respectively, at 450 RPM. Turbulent kinetic energy analysis revealed 28.9% lower values for the wavy impeller (0.096 J/kg) compared to the pitched blade (0.135 J/kg).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Satjaritanun P, Bringley E, Regalbuto JR, et al. Experimental and computational investigation of mixing with contra-rotating, baffle-free impellers. Chemical Engineering Research and Design. 2018; 130: 63–77. doi: 10.1016/j.cherd.2017.12.010 DOI: https://doi.org/10.1016/j.cherd.2017.12.010
2. Satjaritanun P, Regalbuto JR, Regalbuto JA, et al. Mixing optimization with inward flow configuration contra-rotating impeller, baffle-free tank. Alexandria Engineering Journal. 2021; 60(4): 3759–3779. doi: 10.1016/j.aej.2021.02.045 DOI: https://doi.org/10.1016/j.aej.2021.02.045
3. Guo C, Xue S, Li W, et al. Investigation of power characteristics in a novel cup-shaped-blade mixer. Chemical Engineering and Processing - Process Intensification. 2018; 125: 150–162. doi: 10.1016/j.cep.2018.01.025 DOI: https://doi.org/10.1016/j.cep.2018.01.025
4. Li L, Xiang K, Xiang B. Numerical simulation of transient power consumption characteristics in an unbaffled stirred tank. Chemical Papers. 2020; 74: 2849–2859. doi: 10.1007/s11696-020-01115-3 DOI: https://doi.org/10.1007/s11696-020-01115-3
5. Maluta F, Alberini F, Paglianti A, Montante G. Hydrodynamics, power consumption and bubble size distribution in gas-liquid stirred tanks. Chemical Engineering Research and Design. 2023; 194: 582–596. doi: 10.1016/j.cherd.2023.05.006 DOI: https://doi.org/10.1016/j.cherd.2023.05.006
6. Kresta S. The effect of geometry on the stability of flow patterns in stirred tanks. Chemical Engineering Science. 1994; 49(21): 3651–3660. DOI: https://doi.org/10.1016/0009-2509(94)00173-1
7. Zadghaffari R, Moghaddas J, Revstedt J. Study of flow field, power and mixing time in a two-phase stirred vessel with dual rushton impellers: Experimental observation and CFD simulation. Chemical Product and Process Modeling. 2009; 4(1). doi: 10.2202/1934-2659.1284 DOI: https://doi.org/10.2202/1934-2659.1284
8. Posadas-Navarro D, Palacios C, Blancas-Cabrera A, et al. Flow Patterns of Multiple Axial‐Radial Impellers for Potential Use in Aerated Stirred Tanks. Chemical Engineering & Technology. 2022; 45(5): 860–867. doi: 10.1002/ceat.202100521 DOI: https://doi.org/10.1002/ceat.202100521
9. Yamamoto T, Fang Y, Komarov SV. Surface vortex formation and free surface deformation in an unbaffled vessel stirred by on-axis and eccentric impellers. Chemical Engineering Journal. 2019; 367: 25–36. doi: 10.1016/j.cej.2019.02.130 DOI: https://doi.org/10.1016/j.cej.2019.02.130
10. Yang F, Zhou S, Zhang C. Free-Surface Turbulent Flow in an Eccentric Stirred Tank. Chemical Engineering & Technology. 2016; 40(3): 561–570. doi: 10.1002/ceat.201600354 DOI: https://doi.org/10.1002/ceat.201600354
11. Jahoda M, Moštěk M, Fořt I, Hasal P. CFD simulation of free liquid surface motion in a pilot plant stirred tank. The Canadian Journal of Chemical Engineering. 2011; 89(4): 717–724. doi: 10.1002/cjce.20477 DOI: https://doi.org/10.1002/cjce.20477
12. Ciofalo M, Brucato A, Grisafi F, Torraca N. Turbulent flow in closed and free-surface unbaffled tanks stirred by radial impellers. Chemical Engineering Science. 1996; 51(14): 3557–3573. doi: 10.1016/0009-2509(96)00004-8 DOI: https://doi.org/10.1016/0009-2509(96)00004-8
13. Li L, Wang J, Feng L, Gu X. Computational fluid dynamics simulation of hydrodynamics in an uncovered unbaffled tank agitated by pitched blade turbines. Korean Journal of Chemical Engineering. 2017; 34(11): 2811–2822. doi: 10.1007/s11814-017-0208-9 DOI: https://doi.org/10.1007/s11814-017-0208-9
14. Mahmud T, Haque JN, Roberts KJ, et al. Measurements and modelling of free-surface turbulent flows induced by a magnetic stirrer in an unbaffled stirred tank reactor. Chemical Engineering Science. 2009; 64(20): 4197–4209. doi: 10.1016/j.ces.2009.06.059 DOI: https://doi.org/10.1016/j.ces.2009.06.059
15. Lamarque N, Zoppé B, Lebaigue O, et al. Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor. Chemical Engineering Science. 2010; 65(15): 4307–4322. DOI: https://doi.org/10.1016/j.ces.2010.03.014
16. Kang Q, He D, Zhao N, et al. Hydrodynamics in unbaffled liquid-solid stirred tanks with free surface studied by DEM-VOF method. Chemical Engineering Journal. 2020; 386: 122846. doi: 10.1016/j.cej.2019.122846 DOI: https://doi.org/10.1016/j.cej.2019.122846
17. Dianyu E, Wen Y, Li J, Cui J. Study of atypical particle flow and free surface evolution behaviour in stirred tanks. Applied Thermal Engineering. 2023; 234: 121320. doi: 10.1016/j.applthermaleng.2023.121320 DOI: https://doi.org/10.1016/j.applthermaleng.2023.121320
18. Joshi JB, Nere NK, Rane CV, et al. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers. The Canadian Journal of Chemical Engineering. 2011; 89(1): 23–82. doi: 10.1002/cjce.20446 DOI: https://doi.org/10.1002/cjce.20446
19. Joshi JB, Nere NK, Rane CV, et al. CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers, multiple impellers and multiphase dispersions). The Canadian Journal of Chemical Engineering. 2011; 89(4): 754–816. doi: 10.1002/cjce.20465 DOI: https://doi.org/10.1002/cjce.20465
20. Bittorf KJ, Kresta SM. Active volume of mean circulation for stirred tanks agitated with axial impellers. Chemical Engineering Science. 2000; 55(7): 1325–1335. doi: 10.1016/S0009-2509(99)00403-0 DOI: https://doi.org/10.1016/S0009-2509(99)00403-0
21. Wu L, Gong M, Wang J. Development of a DEM–VOF model for the turbulent free-surface flows with particles and its application to stirred mixing system. Industrial & Engineering Chemistry Research. 2018; 57(5): 1714–1725. doi: 10.1021/acs.iecr.7b04833 DOI: https://doi.org/10.1021/acs.iecr.7b04833
22. Kang Q, Feng X, Yang, C, Wang J. DEM-VOF simulations on the drawdown mechanisms of floating particles at free surface in turbulent stirred tanks. Chemical Engineering Journal. 2022; 431: 133275. DOI: https://doi.org/10.1016/j.cej.2021.133275
23. Jiao Y, Zhang Z, Gao F, et al. Effects of Particle Suspension on Surface Vortex in Unbaffled Stirred Tanks through DEM–VOF. Industrial & Engineering Chemistry Research. 2024; 63(10): 4662–4677. doi: 10.1021/acs.iecr.3c04462 DOI: https://doi.org/10.1021/acs.iecr.3c04462
24. Serra A, Campolo M, Soldati A. Time-dependent finite-volume simulation of the turbulent flow in a free-surface CSTR. Chemical Engineering Science. 2001; 56(8): 2715–2720. DOI: https://doi.org/10.1016/S0009-2509(00)00519-4
25. Haque JN, Mahmud T, Roberts KJ, Rhodes D. Modeling turbulent flows with free-surface in unbaffled agitated vessels. Industrial & Engineering Chemistry Research. 2006; 45(8): 2881–2891. doi: 10.1021/ie051021a DOI: https://doi.org/10.1021/ie051021a
26. Bouaifi M, Roustan M. Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas–liquid reactors. Chemical Engineering and Processing. 2001; 40(2): 87–95. doi: 10.1016/S0255-2701(00)00128-8 DOI: https://doi.org/10.1016/S0255-2701(00)00128-8
27. Steiros K, Bruce PJK, Buxton ORH, Vassilicos JC. Power consumption and form drag of regular and fractal‐shaped turbines in a stirred tank. AIChE Journal. 2017; 63(2): 843–854. doi: 10.1002/aic.15414 DOI: https://doi.org/10.1002/aic.15414
28. Dai YX, Wang ZH, Fan YM, Cheng ZQ. Analysis of mixing effect and power consumption of cone-bottom dual Rushton turbines stirred tank. Chemical Papers. 2021; 76(4): 2177–2191. doi: 10.1007/s11696-021-02010-1 DOI: https://doi.org/10.1007/s11696-021-02010-1
29. John TP, Fonte CP, Kowalski A, Rodgers TL. The effect of axial impeller geometry on the link between power and flow numbers. AIChE Journal. 2022; 69(3): 1–15. doi: 10.1002/aic.17871 DOI: https://doi.org/10.1002/aic.17871
30. Armenante PM, Mazzarotta B, Chang GM. Power consumption in stirred tanks provided with multiple pitched-blade turbines. Industrial & Engineering Chemistry Research. 1999; 38(7): 2809–2816. DOI: https://doi.org/10.1021/ie980692o
31. Taghavi M, Zadghaffari R, Moghaddas J, Moghaddas Y. Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank. Chemical Engineering Research and Design. 2011; 89(3): 280–290. doi: 10.1016/j.cherd.2010.07.006 DOI: https://doi.org/10.1016/j.cherd.2010.07.006
32. Dohi N, Takahashi T, Minekawa K, Kawase Y. Power consumption and solid suspension performance of large-scale impellers in gas–liquid–solid three-phase stirred tank reactors. Chemical Engineering Journal. 2004; 97(2–3): 103–114. DOI: https://doi.org/10.1016/S1385-8947(03)00148-7
33. Zhang J, Gao Z, Cai Y, et al. Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations. Chemical Engineering Science. 2017; 170: 464–475. DOI: https://doi.org/10.1016/j.ces.2017.02.002
34. Karcz J, Cudak M, Szoplik J. Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chemical Engineering Science. 2005; 60(8–9): 2369–2380. doi: 10.1016/j.ces.2004.11.018 DOI: https://doi.org/10.1016/j.ces.2004.11.018
35. Montante G, Bakker A, Paglianti A, Magelli F. Effect of the shaft eccentricity on the hydrodynamics of unbaffled stirred tanks. Chemical Engineering Science. 2006; 61(9): 2807–2814. DOI: https://doi.org/10.1016/j.ces.2005.09.021
36. Takahashi K, Shigihara D, Takahata Y. Laminar mixing in eccentric stirred tank with different bottom. Journal of Chemical Engineering of Japan. 2011; 44(12): 931–935. DOI: https://doi.org/10.1252/jcej.11we109
37. Bulnes‐Abundis D, Carrillo-Cocom LM, Aráiz-Hernández D, et al. A simple eccentric stirred tank mini‐bioreactor: Mixing characterization and mammalian cell culture experiments. Biotechnology and Bioengineering. 2012; 110(4): 1106–1118. doi: 10.1002/bit.24780 DOI: https://doi.org/10.1002/bit.24780
38. Luan D, Zhang S, Wei X, Duan Z. Effect of the 6PBT stirrer eccentricity and off-bottom clearance on mixing of pseudoplastic fluid in a stirred tank. Results in Physics. 2017; 7: 1079–1085. doi: 10.1016/j.rinp.2017.02.034 DOI: https://doi.org/10.1016/j.rinp.2017.02.034
39. Jiao Z, Dong Y, Li Q, et al. Enhancing tribocorrosion resistance of VCoNi alloys in artificial seawater via nitrogen alloying. Corrosion Science. 2025; 243: 112600. doi: 10.1016/j.corsci.2024.112600 DOI: https://doi.org/10.1016/j.corsci.2024.112600
40. Hu J, Lv Q, Lin W. Short communication: Effect of Sn on the formation of -component dislocation loops in Zr alloys: In situ ion irradiation studies and atomistic simulations. Journal of Nuclear Materials. 2023; 587: 154756. doi: 10.1016/j.jnucmat.2023.154756 DOI: https://doi.org/10.1016/j.jnucmat.2023.154756
41. Yang F, Zhang C, Sun H, Liu W. Solid-liquid suspension in a stirred tank driven by an eccentric-shaft: Electrical resistance tomography measurement. Powder Technology. 2022; 411: 117943. doi: 10.1016/j.powtec.2022.117943 DOI: https://doi.org/10.1016/j.powtec.2022.117943
42. Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M. (2004). Handbook of Industrial Mixing. New York: Wiley Blackwell. https://doi.org/10.1002/0471451452 DOI: https://doi.org/10.1002/0471451452
43. Kaiser SC, Werner S, Jossen V, et al. Power input measurements in stirred bioreactors at laboratory scale. J. Vis. Exp. 2018; 135: 1–11. doi: 10.3791/56078 DOI: https://doi.org/10.3791/56078
44. Basavarajappa M, Draper T, Toth P, et al. Numerical and experimental investigation of single phase flow characteristics in stirred tanks using Rushton turbine and flotation impeller. Minerals Engineering. 2015; 83: 156–167. doi: 10.1016/j.mineng.2015.08.018 DOI: https://doi.org/10.1016/j.mineng.2015.08.018




.jpg)
.jpg)
