Advances in electrocatalytic nitrite reduction to ammonia: Mechanisms, catalyst design, and future perspectives
DOI:
https://doi.org/10.18686/cest414Keywords:
electrocatalysis , nitrite reduction , ammonia synthesis , catalyst , reaction mechanismAbstract
Electrocatalytic reduction of nitrite to ammonia (NO2RR) is an environmentally friendly and low energy consuming emerging technology with broad prospects. This article reviews the latest developments and explores the mechanism of NO2RR, including key steps such as nitrite adsorption, activation, multi-step reduction, and ammonia desorption. The reaction under both acidic and alkaline conditions are systematically analyzed. At the same time, the article deeply analyzes various catalyst design strategies, such as vacancy engineering, atomically dispersed metal sites, engineering interfaces for synergistic catalysis, hybrid-atom doped catalysts, and molecular catalysts, and summarizes the performance advantages and limitations of each type of catalyst. In addition, methods to improve catalyst selectivity and stability were explored, and challenges faced in this field were pointed out, such as the balance between catalyst activity and stability, complex reaction pathways, insufficient large-scale preparation techniques, and dynamic mechanism analysis. Finally, future development directions were proposed, including the development of new materials, precise design of selective active sites, optimization of preparation processes, and promotion of interdisciplinary research. This review provides a systematic reference for the mechanism exploration and rational design of catalysts in electrocatalytic nitrite reduction technology and is expected to promote its practical application in green ammonia synthesis and environmental remediation.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Ouyang L, Fan X, Li Z, et al. High-efficiency electroreduction of nitrite to ammonia on a Cu@TiO2 nanobelt array. Chemical Communications. 2023; 59: 1625-1628. doi: 10.1039/d2cc06261e DOI: https://doi.org/10.1039/D2CC06261E
2. Wang F, Zhao H, Zhang G, et al. Electroreduction of Nitrite to Ammonia Over Ni1Ru Single‐Atom Alloys. Advanced Functional Materials. 2023; 34(3): 2308072. doi: 10.1002/adfm.202308072 DOI: https://doi.org/10.1002/adfm.202308072
3. Hu L, He X, Yao J, et al. Boosting electrocatalytic nitrite reduction to ammonia in neutral media by MoSe2 nanosheet with Se vacancies. Materials Today Physics. 2023; 36: 101170. doi: 10.1016/j.mtphys.2023.101170 DOI: https://doi.org/10.1016/j.mtphys.2023.101170
4. Shang S, Wang F, Sun Z, et al. Electrocatalytic nitrite reduction to ammonia on isolated bismuth alloyed ruthenium. Journal of Energy Chemistry. 2025; 100: 369-376. doi: 10.1016/j.jechem.2024.09.004 DOI: https://doi.org/10.1016/j.jechem.2024.09.004
5. Wang Y, Xiong Y, Sun M, et al. Controlled Synthesis of Unconventional Phase Alloy Nanobranches for Highly Selective Electrocatalytic Nitrite Reduction to Ammonia. Angewandte Chemie International Edition. 2024; 136(26): e202402841. doi: 10.1002/anie.202402841 DOI: https://doi.org/10.1002/ange.202402841
6. Wang H, Zhang F, Jin M, et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Materials Today Physics. 2023; 30: 100944. doi: 10.1016/j.mtphys.2022.100944 DOI: https://doi.org/10.1016/j.mtphys.2022.100944
7. Chen X, Zhai S, Tan Y, et al. Enhanced nitrite electroreduction to ammonia via interfacial dual-site adsorption. Journal of Energy Chemistry. 2024; 96: 328-335. doi: 10.1016/j.jechem.2024.05.001 DOI: https://doi.org/10.1016/j.jechem.2024.05.001
8. Wang X, Cao Y, Hai Y, et al. Synergistic effect of Co and Co6Mo6C for electroreduction of nitrate to ammonia on Co-MOF derived Co6Mo6C/Co/NC. Nano Research. 2024; 17: 5807-5816. doi: 10.1007/s12274-024-6535-3 DOI: https://doi.org/10.1007/s12274-024-6535-3
9. Hai Y, Li X, Cao Y, et al. Ammonia Synthesis via Electrocatalytic Nitrate Reduction Using NiCoO2 Nanoarrays on a Copper Foam. ACS Applied Materials & Interfaces. 2024; 16: 11431-11439. doi: 10.1021/acsami.3c16456 DOI: https://doi.org/10.1021/acsami.3c16456
10. Du W, Zhang Y, Chen K, et al. Mo single-atom catalyst boosts nitrite electroreduction for ammonia synthesis. Journal of Cleaner Production. 2023; 424: 138875. doi: 10.1016/j.jclepro.2023.138875 DOI: https://doi.org/10.1016/j.jclepro.2023.138875
11. Li X, Li Z, Zhang L, et al. Ni nanoparticle-decorated biomass carbon for efficient electrocatalytic nitrite reduction to ammonia. Nanoscale. 2022; 14: 13073-13077. doi: 10.1039/d2nr03540e DOI: https://doi.org/10.1039/D2NR03540E
12. Zhang Y, Wan Y, Liu X, et al. Nb-doped NiO nanoflowers for nitrite electroreduction to ammonia. iScience. 2023; 26(10): 107944. doi: 10.1016/j.isci.2023.107944 DOI: https://doi.org/10.1016/j.isci.2023.107944
13. Wang G, Chen Q, An X, et al. Ambient ammonia production via electrocatalytic nitrite reduction over MoO2 nanoparticles self-supported on molybdenum plate. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023; 657: 130549. doi: 10.1016/j.colsurfa.2022.130549 DOI: https://doi.org/10.1016/j.colsurfa.2022.130549
14. Yu YZ, Cheng Y, Cheng S, et al. Advanced Ruthenium‐Based Electrocatalysts for NOx Reduction to Ammonia. Advanced Materials. 2024; 37(5): 2412363. doi: 10.1002/adma.202412363 DOI: https://doi.org/10.1002/adma.202412363
15. Xiang J, Qiang C, Shang S, et al. Tandem Electrocatalytic Reduction of Nitrite to Ammonia on Rhodium–Copper Single Atom Alloys. Advanced Functional Materials. 2024; 34(36): 2401941. doi: 10.1002/adfm.202401941 DOI: https://doi.org/10.1002/adfm.202401941
16. Zhao H, Xiang J, Sun Z, et al. Electroreduction of Nitrite to Ammonia over a Cobalt Single-Atom Catalyst. ACS Sustainable Chemistry & Engineering. 2024; 12: 2783-2789. doi: 10.1021/acssuschemeng.3c07388 DOI: https://doi.org/10.1021/acssuschemeng.3c07388
17. Wang F, Shang S, Sun Z, et al. P-Block Antimony-Copper Single-Atom Alloys for Selective Nitrite Electroreduction to Ammonia. ACS Nano. 2024; 18: 13141-13149. doi: 10.1021/acsnano.4c01958 DOI: https://doi.org/10.1021/acsnano.4c01958
18. Zhang Z, Wan Y, Shang S, et al. Electrocatalytic nitrite conversion to ammonia over Mn single atoms anchored on MoO3-x. Fuel. 2025; 381: 133394. doi: 10.1016/j.fuel.2024.133394 DOI: https://doi.org/10.1016/j.fuel.2024.133394
19. van Langevelde PH, Engbers S, Buda F, et al. Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis. 2023; 13: 10094-10103. doi: 10.1021/acscatal.3c01989 DOI: https://doi.org/10.1021/acscatal.3c01989
20. Bai L, Franco F, Timoshenko J, et al. Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia Using Cu2O Nanocubes: Active Species and Reaction Mechanisms. Journal of the American Chemical Society. 2024; 146(14): 9665-9678. doi: 10.1021/jacs.3c13288 DOI: https://doi.org/10.1021/jacs.3c13288
21. Clark CA, Reddy CP, Xu H, et al. Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium. ACS Catalysis. 2019; 10: 494-509. doi: 10.1021/acscatal.9b03239 DOI: https://doi.org/10.1021/acscatal.9b03239
22. Kim HE, Wi DH, Lee JS, et al. Photoelectrochemical Nitrate and Nitrite Reduction Using Cu2O Photocathodes. ACS Energy Letters. 2024; 9: 1993-1999. doi: 10.1021/acsenergylett.4c00256 DOI: https://doi.org/10.1021/acsenergylett.4c00256
23. Xiang J, Zhao H, Chen K, et al. Electrocatalytic nitrite reduction to ammonia on an Rh single-atom catalyst. Journal of Colloid and Interface Science. 2024; 659: 432-438. doi: 10.1016/j.jcis.2024.01.013 DOI: https://doi.org/10.1016/j.jcis.2024.01.013
24. Zheng H, Zhang Y, Wang Y, et al. Perovskites with Enriched Oxygen Vacancies as a Family of Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Small. 2022; 19(5): 2205625. doi: 10.1002/smll.202205625 DOI: https://doi.org/10.1002/smll.202205625
25. Tao W, Wang P, Li H, et al. Engineering sulfur vacancies optimization in Ni3Co6S8 nanospheres toward extraordinarily efficient nitrate electroreduction to ammonia. Applied Catalysis B: Environmental. 2023; 324: 122193. doi: 10.1016/j.apcatb.2022.122193 DOI: https://doi.org/10.1016/j.apcatb.2022.122193
26. Gao Y, Wang K, Xu C, et al. Enhanced electrocatalytic nitrate reduction through phosphorus-vacancy-mediated kinetics in heterogeneous bimetallic phosphide hollow nanotube array. Applied Catalysis B: Environmental. 2023; 330: 122627. doi: 10.1016/j.apcatb.2023.122627 DOI: https://doi.org/10.1016/j.apcatb.2023.122627
27. Gao R, Zhang J, Fan G, et al. In Situ Electrochemical Reconstruction of Cation‐Vacancy‐Enriched Ni@Ni2P Particles in Hollow N‐Doped Carbon Nanofibers for Efficient Nitrate Reduction. Angewandte Chemie International Edition. 2025. doi: 10.1002/anie.202505948 DOI: https://doi.org/10.1002/ange.202505948
28. Begildayeva T, Theerthagiri J, Min A, et al. Electrocatalytic ammonia production from nitrite via dual-site Co3O4/NiO catalysts derived from laser-induced cyanonickelate frameworks. Chemical Engineering Journal. 2024; 485: 150041. doi: 10.1016/j.cej.2024.150041 DOI: https://doi.org/10.1016/j.cej.2024.150041
29. Min A, Park J, Begildayeva T, et al. Intraphase Switching of Hollow CoCuFe Nanocubes for Efficient Electrochemical Nitrite Reduction to Ammonia. ACS Applied Materials & Interfaces. 2024; 16: 53718-53728. doi: 10.1021/acsami.4c09663 DOI: https://doi.org/10.1021/acsami.4c09663
30. Wang C, Zhou W, Sun Z, et al. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. Journal of Materials Chemistry A. 2021; 9: 239-243. doi: 10.1039/d0ta09590g DOI: https://doi.org/10.1039/D0TA09590G
31. Sun M, Wan W, Zhao X, et al. TiO2 Anchored Cu Single Atoms Catalysts Boost Nitrite Electroreduction to Ammonia for Water Remediation. Advanced Functional Materials. 2025. doi: 10.1002/adfm.202500553 DOI: https://doi.org/10.1002/adfm.202500553
32. Zhang J, Chen Q, Wang G, et al. Oxygen vacancies-rich CoMoO4 nanosheets facilitate the electroreduction of nitrite to ammonia. Chemical Engineering Journal. 2024; 498: 155474. doi: 10.1016/j.cej.2024.155474 DOI: https://doi.org/10.1016/j.cej.2024.155474
33. Sun Z, Xing Z, Du W, et al. Single-atom ruthenium-catalyzed nitrite electroreduction to ammonia at high current density. Chemical Engineering Journal. 2024; 499: 156319. doi: 10.1016/j.cej.2024.156319 DOI: https://doi.org/10.1016/j.cej.2024.156319
34. Li Z, Zhang Y, Li X, et al. Construction of W1-Zn dinuclear sites to boost nitrite electroreduction to ammonia. Journal of Energy Chemistry. 2025; 102: 302-308. doi: 10.1016/j.jechem.2024.10.054 DOI: https://doi.org/10.1016/j.jechem.2024.10.054
35. Lan J, Wang Z, Kao C-w, et al. Isolating Cu-Zn active-sites in Ordered Intermetallics to Enhance Nitrite-to-Ammonia Electroreduction. Nature Communications. 2024; 15(1): 10173. doi: 10.1038/s41467-024-53897-9 DOI: https://doi.org/10.1038/s41467-024-53897-9
36. Troutman JP, Li H, Haddix AM, et al. PdAg Alloy Nanocatalysts: Toward Economically Viable Nitrite Reduction in Drinking Water. ACS Catalysis. 2020; 10: 7979-7989. doi: 10.1021/acscatal.0c01538 DOI: https://doi.org/10.1021/acscatal.0c01538
37. Cui Z, Zhao P, Wang H, et al. Multi‐Dimensional Ni@TiN/CNT Heterostructure with Tandem Catalysis for Efficient Electrochemical Nitrite Reduction to Ammonia. Angewandte Chemie International Edition. 2025; 64(22): e202501578. doi: 10.1002/anie.202501578 DOI: https://doi.org/10.1002/anie.202501578
38. Liu S, Cui L, Yin S, et al. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Applied Catalysis B: Environmental. 2022; 319: 121876. doi: 10.1016/j.apcatb.2022.121876 DOI: https://doi.org/10.1016/j.apcatb.2022.121876
39. Yi L, Shao P, Li H, et al. Scalable synthesis of MoS2 nanosheets electrocatalyst towards high-efficiency nitrite reduction to ammonia. Journal of Power Sources. 2023; 559: 232668. doi: 10.1016/j.jpowsour.2023.232668 DOI: https://doi.org/10.1016/j.jpowsour.2023.232668
40. Chen X, Sun J, Guan J, et al. Enhanced hydrogen evolution reaction performance of MoS2 by dual metal atoms doping. International Journal of Hydrogen Energy. 2022; 47: 23191-23200. doi: 10.1016/j.ijhydene.2022.05.050 DOI: https://doi.org/10.1016/j.ijhydene.2022.05.050
41. Zhang Y, Hui ZX, Zhou HY, et al. Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP. Chemical Engineering Journal. 2022; 429: 132012. doi: 10.1016/j.cej.2021.132012 DOI: https://doi.org/10.1016/j.cej.2021.132012
42. Zhou W, Shen H, Wang Q, et al. N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction. Carbon. 2019; 152: 241-246. doi: 10.1016/j.carbon.2019.05.078 DOI: https://doi.org/10.1016/j.carbon.2019.05.078
43. Xiao L, Yuan C, Chen P, et al. Cu–S Bonds as an Atomic-Level Transfer Channel to Achieve Photocatalytic CO2 Reduction to CO on Cu-Substituted ZnIn2S4. ACS Sustainable Chemistry & Engineering. 2022; 10: 11902-11912. doi: 10.1021/acssuschemeng.2c02919 DOI: https://doi.org/10.1021/acssuschemeng.2c02919
44. Li H, Wang Y, Wei K, et al. Modifying Microenvironment in Van der Waals Gap by Cu/N Co‐Doping Strategy for Highly Efficient Nitrite Reduction to Ammonia. Advanced Science. 2025; 12(15): 2417773. doi: 10.1002/advs.202417773 DOI: https://doi.org/10.1002/advs.202417773
45. Zhao D, Zhou K, Zhan L, et al. Modulation of the electronic structure of CoP active sites by Er-doping for nitrite reduction for ammonia electrosynthesis. Chinese Journal of Catalysis. 2025; 70: 299-310. doi: 10.1016/s1872-2067(24)60224-x DOI: https://doi.org/10.1016/S1872-2067(24)60224-X
46. Cai Z, Ma C, Zhao D, et al. Ni doping enabled improvement in electrocatalytic nitrite-to-ammonia conversion over TiO2 nanoribbon. Materials Today Energy. 2023; 31: 101220. doi: 10.1016/j.mtener.2022.101220 DOI: https://doi.org/10.1016/j.mtener.2022.101220
47. Zhu D, Zhang B, Chen J, et al. CoFe nanoalloys encapsulated in nitrogen-doped carbon for efficient nitrite electroreduction to ammonia. Chemical Communications. 2023; 59: 9626-9629. doi: 10.1039/d3cc02073h DOI: https://doi.org/10.1039/D3CC02073H
48. Wang P, Wang B, Wang R. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials. Materials. 2023; 16(20): 6816. doi: 10.3390/ma16206816 DOI: https://doi.org/10.3390/ma16206816
49. Huang W, Zhu X, Zhu H, et al. High Temperature Shock (HTS) Synthesis of Carbon‐Based Nanomaterials for Electrochemical Applications. Carbon Neutralization. 2025; 4(1): e189. doi: 10.1002/cnl2.189 DOI: https://doi.org/10.1002/cnl2.189
50. Wei Y, Chen L, Shi H, et al. A Cobalt Biphenanthroline Complex/Carbon Nanotubes Hybrid as Robust and Efficient Electrocatalyst for Nitrite Reduction to Ammonia. ACS Catalysis. 2024; 14: 14012-14020. doi: 10.1021/acscatal.4c03214 DOI: https://doi.org/10.1021/acscatal.4c03214
51. Han J, Sun H, Tian F, et al. Modulating the coordination environment of cobalt porphyrins for enhanced electrochemical nitrite reduction to ammonia. Carbon Energy. 2024; 7(1): e657. doi: 10.1002/cey2.657 DOI: https://doi.org/10.1002/cey2.657
52. Meng S-L, Zhang C, Ye C, et al. Cobaloximes: selective nitrite reduction catalysts for tandem ammonia synthesis. Energy & Environmental Science. 2023; 16: 1590-1596. doi: 10.1039/d2ee03956g DOI: https://doi.org/10.1039/D2EE03956G
53. Xie L, Mei B, Wang Y, et al. Conjugated Cobalt Porphyrin Polymer for Highly Active and Selective Electrocatalytic Nitrite Reduction to Ammonia. Advanced Functional Materials. 2025. doi: 10.1002/adfm.202424566 DOI: https://doi.org/10.1002/adfm.202424566
54. Chen H, Deng Q, Ouyang T, et al. Chiral nanostructured Pd films for efficient electrocatalytic reduction of nitrite to ammonia. Chemical Engineering Journal. 2025; 512: 162647. doi: 10.1016/j.cej.2025.162647 DOI: https://doi.org/10.1016/j.cej.2025.162647
55. Wang J, Liang J, Liu P, et al. Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. Journal of Materials Chemistry A. 2022; 10: 2842-2848. doi: 10.1039/d1ta09013e DOI: https://doi.org/10.1039/D1TA09013E
56. Wen G, Liang J, Liu Q, et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Research. 2021; 15: 972-977. doi: 10.1007/s12274-021-3583-9 DOI: https://doi.org/10.1007/s12274-021-3583-9
57. Ouyang L, Yue L, Liu Q, et al. Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitrite-to-ammonia conversion. Journal of Colloid and Interface Science. 2022; 624: 394-399. doi: 10.1016/j.jcis.2022.05.119 DOI: https://doi.org/10.1016/j.jcis.2022.05.119
58. Zhang A, Liang Y, He X, et al. High-Performance Electrocatalytic Reduction of Nitrite to Ammonia under Ambient Conditions on a FeP@TiO2 Nanoribbon Array. Inorganic Chemistry. 2023; 62: 12644-12649. doi: 10.1021/acs.inorgchem.3c02422 DOI: https://doi.org/10.1021/acs.inorgchem.3c02422
59. Li H, Song X, Zhang N, et al. Construction of dual sites on FeS2 surface for enhanced electrocatalytic reduction of nitrite to ammonia. Journal of Colloid and Interface Science. 2025; 678: 242-250. doi: 10.1016/j.jcis.2024.09.120 DOI: https://doi.org/10.1016/j.jcis.2024.09.120
60. Wang F, Shang S, Sun Z, et al. Electrocatalytic nitrite reduction to ammonia on In1Cu single atom alloy. Chemical Engineering Journal. 2024; 489: 151410. doi: 10.1016/j.cej.2024.151410 DOI: https://doi.org/10.1016/j.cej.2024.151410
61. Yan M, Wei R, Zhang R, et al. Distinctive p‐d Orbital Hybridization in CuSb Porous Nanonetworks for Enhanced Nitrite Electroreduction to Ammonia. Small. 2024; 20(32): 2310409. doi: 10.1002/smll.202310409 DOI: https://doi.org/10.1002/smll.202310409
62. Cai L, Zhang A, Liang Y, et al. Ambient ammonia production via selective electroreduction of nitrite by NiCu@TiO2 nanoribbon array. Materials Today Energy. 2023; 38: 101428. doi: 10.1016/j.mtener.2023.101428 DOI: https://doi.org/10.1016/j.mtener.2023.101428
63. He X, Hu L, Xie L, et al. Ambient ammonia synthesis via nitrite electroreduction over NiS2 nanoparticles-decorated TiO2 nanoribbon array. J Colloid Interface Sci. 2023; 634: 86-92. doi: 10.1016/j.jcis.2022.12.042 DOI: https://doi.org/10.1016/j.jcis.2022.12.042
64. Qiu H, Chen Q, Zhang J, et al. The synergistic effect of Ni and WO2 effectively boosts the electrochemical reduction of nitrite to ammonia. Journal of Materials Chemistry A. 2025; 13: 1738-1745. doi: 10.1039/d4ta07261h DOI: https://doi.org/10.1039/D4TA07261H
65. Li X, He X, Yao J, et al. High‐Efficiency Electroreduction of Nitrite to Ammonia on Ni Nanoparticles Strutted 3D Honeycomb‐Like Porous Carbon Framework. ChemSusChem. 2023; 16(22): e202300505. doi: 10.1002/cssc.202300505 DOI: https://doi.org/10.1002/cssc.202300505
66. Wang G, Chen Q, Zhang J, et al. Ru doped NiMoO4 nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. ournal of Colloid and Interface Science. 2024; 661: 401-408. doi: 10.1016/j.jcis.2024.01.195 DOI: https://doi.org/10.1016/j.jcis.2024.01.195
67. Ren Z, Chen Q, Zhang J, et al. Electrodeposited Ni‐Mo‐P nanoparticles on TiO2 nanoribbon array for electrocatalytic ammonia synthesis by reducing nitrite. Materials Today Physics. 2023; 36: 101162. doi: 10.1016/j.mtphys.2023.101162 DOI: https://doi.org/10.1016/j.mtphys.2023.101162
68. Zhang Y, Li Z, Du W, et al. Efficient nitrite-to-ammonia electroreduction over Zr-Ni frustrated Lewis acid-base pairs. Science China Chemistry. 2024; 67: 1707-1714. doi: 10.1007/s11426-023-1924-7 DOI: https://doi.org/10.1007/s11426-023-1924-7
69. Zhang J, Zeng Q, Wang X, et al. Palladium Married with MBene Multilayers: Enabling Intensified Hydrogen Spillover for Efficient Nitrite‐to‐Ammonia Electroreduction. Advanced Functional Materials. 2025. doi: 10.1002/adfm.202504632 DOI: https://doi.org/10.1002/adfm.202504632
70. Zhang W, Wang T, Xing X, et al. Effects of Surfactants on the Size Distribution and Electrocatalytic Nitrite Reduction of Uniformly Dispersed Au Nanoparticles. ACS Sustainable Chemistry & Engineering. 2024; 12: 10313-10324. doi: 10.1021/acssuschemeng.3c07687 DOI: https://doi.org/10.1021/acssuschemeng.3c07687
71. Wan Y, Zhang Y, Zhang N, et al. Single-atom Zn on MnO2 for selective nitrite electrolysis to ammonia. Chemical Engineering Journal. 2024; 481: 148734. doi: 10.1016/j.cej.2024.148734 DOI: https://doi.org/10.1016/j.cej.2024.148734
72. Wang F, Xiang J, Zhang G, et al. Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia. Nano Research. 2023; 17: 3660-3666. doi: 10.1007/s12274-023-6261-2 DOI: https://doi.org/10.1007/s12274-023-6261-2
73. Li W, Zhang S, Ding J, et al. Sustainable Nitrogen Fixation to Produce Ammonia by Electroreduction of Plasma-Generated Nitrite. ACS Sustainable Chemistry & Engineering. 2023; 11: 1168-1177. doi: 10.1021/acssuschemeng.2c06525 DOI: https://doi.org/10.1021/acssuschemeng.2c06525
74. Zhao H, Xiang J, Zhang G, et al. Low-coordination single Ni atoms on graphitic C3N4 for nitrite electroreduction to ammonia. Inorganic Chemistry Frontiers. 2023; 10: 5950-5957. doi: 10.1039/d3qi01425h DOI: https://doi.org/10.1039/D3QI01425H
75. Hu L, Zhao D, Liu C, et al. Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. Inorganic Chemistry Frontiers. 2022; 9: 6075-6079. doi: 10.1039/d2qi01363k DOI: https://doi.org/10.1039/D2QI01363K
76. Zhang N, Wan Y, Chen K, et al. p-d hybridized In-Co dual sites promote nitrite electroreduction to ammonia at high current density. Nano Energy. 2024; 125: 109594. doi: 10.1016/j.nanoen.2024.109594 DOI: https://doi.org/10.1016/j.nanoen.2024.109594
77. Wan Y, Du W, Chen K, et al. Electrocatalytic nitrite-to-ammonia reduction on isolated Cu sites. Journal of Colloid and Interface Science. 2023; 652: 2180-2185. doi: 10.1016/j.jcis.2023.09.071 DOI: https://doi.org/10.1016/j.jcis.2023.09.071
78. Guo Y, Stroka JR, Kandemir B, et al. Cobalt Metallopeptide Electrocatalyst for the Selective Reduction of Nitrite to Ammonium. Journal of the American Chemical Society. 2018; 140: 16888-16892. doi: 10.1021/jacs.8b09612 DOI: https://doi.org/10.1021/jacs.8b09612
79. Niu Z, Fan S, Li X, et al. Electrocatalytic Co‐Upcycling of Nitrite and Ethylene Glycol over Cobalt–Copper Oxides. Advanced Energy Materials. 2024; 14(11): 2303515. doi: 10.1002/aenm.202303515 DOI: https://doi.org/10.1002/aenm.202303515
80. Cai Z, Zhao D, Fan X, et al. Rational Construction of Heterostructured Cu3P@TiO2 Nanoarray for High-Efficiency Electrochemical Nitrite Reduction to Ammonia. Small. 2023; 19: e2300620. doi: 10.1002/smll.202300620 DOI: https://doi.org/10.1002/smll.202300620
81. Ji X, Ma C, Zhang F, et al. Ni@TiO2 Nanoarray with the Schottky Junction for the Highly Selective Electrochemical Reduction of Nitrite to Ammonia. ACS Sustainable Chemistry & Engineering. 2023; 11: 2686-2691. doi: 10.1021/acssuschemeng.2c06620 DOI: https://doi.org/10.1021/acssuschemeng.2c06620
82. Qiu H, Chen Q, Zhang J, et al. NiWO4 nanoparticles with oxygen vacancies: high-efficiency electrosynthesis of ammonia with selective reduction of nitrite. Inorganic Chemistry Frontiers. 2023; 10: 3909-3915. doi: 10.1039/d3qi00744h DOI: https://doi.org/10.1039/D3QI00744H
83. Qiu H, Chen Q, An X, et al. WO2 nanoparticles with oxygen vacancies: a high-efficiency electrocatalyst for the conversion of nitrite to ammonia. Journal of Materials Chemistry A. 2022; 10: 24969-24974. doi: 10.1039/d2ta07523g DOI: https://doi.org/10.1039/D2TA07523G
84. Ren Y, Zhou Q, Li J, et al. Ruthenium doping: An effective strategy for boosting nitrite electroreduction to ammonia over titanium dioxide nanoribbon array. Journal of Colloid and Interface Science. 2023; 645: 806-812. doi: 10.1016/j.jcis.2023.05.020 DOI: https://doi.org/10.1016/j.jcis.2023.05.020
85. Ouyang L, He X, Sun S, et al. Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO2 nanobelt array. Journal of Materials Chemistry A. 2022; 10: 23494-23498. doi: 10.1039/d2ta06933d DOI: https://doi.org/10.1039/D2TA06933D
86. Li Y, Ouyang L, Chen J, et al. High-efficiency electrocatalytic nitrite-to-ammonia conversion on molybdenum doped cobalt oxide nanoarray at ambient conditions. Journal of Colloid and Interface Science. 2024; 663: 405-412. doi: 10.1016/j.jcis.2024.02.153 DOI: https://doi.org/10.1016/j.jcis.2024.02.153
87. Zhao T, Li X, Hu J, et al. P-doped FeCo2O4 in-situ decorated on carbon cloth as robust electrocatalysts for reducing nitrate and nitrite to ammonia. Journal of Environmental Chemical Engineering. 2023; 11(3): 110122. doi: 10.1016/j.jece.2023.110122 DOI: https://doi.org/10.1016/j.jece.2023.110122
88. Tong J, Tan P, Zhai H, et al. Enhancing Localized Electron Density over Pd1.4Cu Decorated Oxygen Defective TiO2-x Nanoarray for Electrocatalytic Nitrite Reduction to Ammonia. Small. 2024; 20: e2403865. doi: 10.1002/smll.202403865 DOI: https://doi.org/10.1002/smll.202403865
89. Xiang J, Zhao H, Chen K, et al. Atomically dispersed Pd on defective BN nanosheets for nitrite electroreduction to ammonia. Journal of Colloid and Interface Science. 2024; 653: 390-395. doi: 10.1016/j.jcis.2023.09.095 DOI: https://doi.org/10.1016/j.jcis.2023.09.095
90. Du W, Sun Z, Chen K, et al. Nb1-Zr dual active sites constructed on ZrO2 boost nitrite-to-ammonia electroreduction. Chemical Engineering Journal. 2024; 481: 148733. doi: 10.1016/j.cej.2024.148733 DOI: https://doi.org/10.1016/j.cej.2024.148733
91. Zhao B, Chen Q, Zhang J, et al. Self-supported CoWO4 nanoarrays enhance the electrochemical reduction of nitrite to ammonia. Inorganic Chemistry Frontiers. 2025; 12: 1662-1668. doi: 10.1039/d4qi02346c DOI: https://doi.org/10.1039/D4QI02346C
92. Zhao T, Zhou J, Zhang D, et al. Self-supported P-doped NiFe2O4 micro-sheet arrays for the efficient conversion of nitrite to ammonia. Journal of Colloid and Interface Science. 2023; 650: 143-150. doi: 10.1016/j.jcis.2023.06.194 DOI: https://doi.org/10.1016/j.jcis.2023.06.194




.jpg)
.jpg)
