Is it possible to utilize photoelectrochemical, photochemical and photocatalytic reactions to harvest sunlight to meet the energy needs of the society? – A critical evaluation
DOI:
https://doi.org/10.18686/cest406Abstract
Today our society is not only meeting >81% of its energy needs but also generating >81% economy by burning fossil fuels. Fossil fuels are nothing but solar energy stored by plant leaves by using CO2 and water, which cannot sustain our civilization economic growth. Furthermore, they are generating global warming causing greenhouse CO2 gas a by-product. As a part of generating alternative renewable energy vectors, a lot of research has been carried out so far to harvest sunlight by using CO2 and water as energy storing materials in the form of chemical fuels by following photoelectrochemical (PEC), photochemical and photocatalytic routes. Although, so far a half-a-million research articles have been published on all these subjects, the one that can be practiced at industry with economic viability is yet to be reported. In this review article, i) all the so far published articles, ii) the kind of sunlight reaching the earth surface, iii) the kind of semiconducting materials developed or identified so far, iv) why no reported method is being practiced at industry today for solar energy harvesting in the form of chemical and/or solar fuels to meet the energy needs of the society except only thin film based surface related photocatalytic spontaneous energy none-storing reactions such as, self-cleaning surfaces, etc., have been critically analyzes and reported while citing all the relevant and recent references.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Ganesh I. Practicable Artificial Photosynthesis: The Only Option Available Today For Humankind To Make Energy, Environment, Economy And Life Sustainable On Earth. White Falcon Publishing; 2023.
2. Ganesh I. Harvesting Solar Energy: Using CO2 And Water As Energy Storage Materials. Springer Nature; 2025. doi: 10.1007/978-981-96-2321-1 DOI: https://doi.org/10.1007/978-981-96-2321-1
3. Filho WL, Salivia AL, Ganesh I, Rebelatto BG (editors). Energy For Sustainable Development: Capitalising On The Transformative Potential Of Energy To Promote Economic Growth And Improve Livelihoods. Springer Nature; 2025.
4. Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry. 1997; 106(1-3): 51-56. doi: 10.1016/S1010-6030(97)00038-5 DOI: https://doi.org/10.1016/S1010-6030(97)00038-5
5. Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature. 1997; 388: 431-432. doi: 10.1038/41233 DOI: https://doi.org/10.1038/41233
6. Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials. 1998; 10(2): 135-138. doi: 10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
7. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000; 1(1): 1-21. doi: 10.1016/S1389-5567(00)00002-2 DOI: https://doi.org/10.1016/S1389-5567(00)00002-2
8. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics. 2005, 44(12R): 8269. doi: 10.1143/JJAP.44.8269 DOI: https://doi.org/10.1143/JJAP.44.8269
9. Fujishima A, Zhang X. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus. Chimie. 2006; 9(5-6): 750-760. doi: 10.1016/j.crci.2005.02.055 DOI: https://doi.org/10.1016/j.crci.2005.02.055
10. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2012; 13(3): 169-189. doi: 10.1016/j.jphotochemrev.2012.06.001 DOI: https://doi.org/10.1016/j.jphotochemrev.2012.06.001
11. Gratzel M. Photoelectrochemical cells. Nature. 2001; 414: 338-344. doi: 10.1038/35104607 DOI: https://doi.org/10.1038/35104607
12. Nocera DG. Living healthy on a dying planet. Chemical Society Reviews. 2009; 38(1): 13-15. doi: 10.1039/B820660K DOI: https://doi.org/10.1039/B820660K
13. Nocera DG. Chemistry of personalized solar energy. Inorganic Chemistry. 2009; 48(21): 10001-10017. doi: 10.1021/ic901328v DOI: https://doi.org/10.1021/ic901328v
14. Lutterman DA, Surendranath Y, Nocera DG. A self-healing oxygen-evolving catalyst. Journal of the American Chemical Society. 2009; 131(11): 3838-3839. doi: 10.1021/ja900023k DOI: https://doi.org/10.1021/ja900023k
15. Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072-1075. doi: 10.1126/science.1162018 DOI: https://doi.org/10.1126/science.1162018
16. Lewis NS, Nocera DG. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences. 2006; 103(43): 15729-15735. doi: 10.1073/pnas.0603395103 DOI: https://doi.org/10.1073/pnas.0603395103
17. Ganesh I. Surface, structural, energy band-gap, and photocatalytic features of an emulsion-derived B-doped TiO2 nano-powder. Molecular Catalysis. 2018, 451: 51-65. doi: 10.1016/j.mcat.2017.10.024 DOI: https://doi.org/10.1016/j.mcat.2017.10.024
18. Ganesh I. Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO2 nano-powder. Applied Surface Science. 2017; 414: 277-291. doi: 10.1016/j.apsusc.2017.04.103 DOI: https://doi.org/10.1016/j.apsusc.2017.04.103
19. Ganesh I. Al and Li co-doping effects on structural, band-gap, and photocatalytic properties of pyro-hydrolyzed ZnO nano-powder. Ceramics International. 2016; 42(8): 10410-10421. doi: 10.1016/j.ceramint.2016.03.183 DOI: https://doi.org/10.1016/j.ceramint.2016.03.183
20. Patil MK, Shaikh S, Ganesh I. Recent advances on TiO2 thin film based photocatalytic applications (a review). Current Nanoscience. 2015; 11(3): 271-285. doi: 10.2174/1573413711666150212235054 DOI: https://doi.org/10.2174/1573413711666150212235054
21. Ganesh I, Kumar PP, Annapoorna I, et al. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Applied Surface Science. 2014; 293: 229-247. doi: 10.1016/j.apsusc.2013.12.140 DOI: https://doi.org/10.1016/j.apsusc.2013.12.140
22. Ganesh I, Dom R, Borse PH, et al. Fabrication and photoelectrochemical characterization of Fe, Co, Ni and Cu-doped TiO2 thin films. Materials Science Forum. 2013; 764: 266-283. doi: 10.4028/www.scientific.net/MSF.764.266 DOI: https://doi.org/10.4028/www.scientific.net/MSF.764.266
23. Ganesh I, Sekhar PSC, Padmanabham G, et al. Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route. Applied Surface Science. 2012; 259: 524-537. doi: 10.1016/j.apsusc.2012.07.077 DOI: https://doi.org/10.1016/j.apsusc.2012.07.077
24. Ganesh I, Gupta A K, Kumar PP, et al. Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Materials Chemistry and Physics. 2012; 135(1): 220-234. doi: 10.1016/j.matchemphys.2012.04.062 DOI: https://doi.org/10.1016/j.matchemphys.2012.04.062
25. Ganesh I, Gupta A K, Kumar PP, et al. Preparation and characterization of Ni‐doped TiO2 materials for photocurrent and photocatalytic applications. The Scientific World Journal. 2012; 2012(1): 127326. doi: 10.1100/2012/127326 DOI: https://doi.org/10.1100/2012/127326
26. Ganesh I, Kumar PP, Gupta AK, et al. Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics. 2012; 6(1): 21-36. doi: 10.2298/PAC1201021G DOI: https://doi.org/10.2298/PAC1201021G
27. Ganesh, I., Annapoorna, I., Rijkumar, I. (2025) A method and apparatus to generate electricity by dropping iron or stone blocks against gravity after lifting in a water container using a low-speed alternator, flywheel and a gear system, Indian Patent Application number: E-106/7958/2025 (CHE)-202541037913; TEMP/E-1/41829/2025 (CHE); CBR number: 23434; dated: 17th April 2025. doi: https://www.lidsen.com/journals/rpse/rpse-01-03-013
28. Ganesh I. SLAPE solar panels: a possible solution for the future energy problems of our society. Discover Sustainability, 2024, 5(1): 179. DOI: https://doi.org/10.1007/s43621-024-00386-0
29. Ganesh I. Semiconductor and liquid assisted photothermal effect: A new method to generate electricity from sunlight. Available online: https://www.preprints.org/frontend/manuscript/62db6ddd7c30047c0397f189b648e6e5/download_pub (accessed on 11 September 2025).
30. Ganesh I. Silicon Photovoltaic Cell (SPVC) Solar Panels Cause a Million Times Higher Global Warming in Comparison to the Equivalent CO2 Gas-Experimental Evidence. Pakistan Journal of Life and Social Sciences, 2024, 22(2): 9942-9965. doi: 10.57239/PJLSS-2024-22.2.00751 DOI: https://doi.org/10.57239/PJLSS-2024-22.2.00751
31. Ganesh I. Electrochemical aspects in practicable artificial photosynthesis: the best way to store electricity derived from sunlight at every home and at every thermal power plant. Journal of Solid State Electrochemistry. 2025; 29(2): 385-387. doi: 10.1007/s10008-024-06112-0 DOI: https://doi.org/10.1007/s10008-024-06112-0
32. Ganesh I. Practicable artificial photosynthesis: Its relevance, fundamental challenges and opportunities. Universal Journal of Catalysis Science. 2023; 1: 145-178. doi: 10.37256/ujcs.1220233851 DOI: https://doi.org/10.37256/ujcs.1220233851
33. Ganesh I. Electrochemical conversion of carbon dioxide into renewable fuel chemicals–The role of nanomaterials and the commercialization. Renewable and Sustainable Energy Reviews. 2016; 59: 1269-1297. doi: 10.1016/j.rser.2016.01.026 DOI: https://doi.org/10.1016/j.rser.2016.01.026
34. Ganesh I. Solar fuels vis-a-vis electricity generation from sunlight: the current state-of-the-art (a review). Renewable and Sustainable Energy Reviews. 2015; 44: 904-932. doi: 10.1016/j.rser.2015.01.019 DOI: https://doi.org/10.1016/j.rser.2015.01.019
35. Ganesh I. Conversion of carbon dioxide into methanol–a potential liquid fuel: Fundamental challenges and opportunities (a review). Renewable and Sustainable Energy Reviews. 2014; 31: 221-257. doi: 10.1016/j.rser.2013.11.045 DOI: https://doi.org/10.1016/j.rser.2013.11.045
36. Ganesh I. EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions. Journal of Solid State Electrochemistry. 2025; 29(1): 149-176. doi: 10.1007/s10008-023-05479-w DOI: https://doi.org/10.1007/s10008-023-05479-w
37. Ganesh I. The electrochemical conversion of carbon dioxide to carbon monoxide over nanomaterial based cathodic systems: Measures to take to apply this laboratory process industrially, In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (editors). Applications of Nanomaterials. Woodhead Publishing; 2018. pp. 83-131. DOI: https://doi.org/10.1016/B978-0-08-101971-9.00005-3
38. Manassen J, Hodes G, Cahen D. Photoelectrochemical cells. Chemtech. 1981; 11(2): 112-117.
39. Wankhade Atul V, Gaikwad GS, Dhonde MG, et al. Removal of organic pollutant from water by heterogenous photocatalysis: a review. Research Journal of Chemistry and Environment. 2013; 17: 84-94.
40. Ye Z, Yang KR, Zhang B, et al. A synergetic cocatalyst for conversion of carbon dioxide, sunlight, and water into methanol. Proceedings of the National Academy of Sciences. 2024; 121(35): e2408183121. doi: 10.1073/pnas.2408183121 DOI: https://doi.org/10.1073/pnas.2408183121
41. Liao G, Ding G, Yang B, et al. Challenges in photocatalytic carbon dioxide reduction. Precision Chemistry. 2024; 2(2): 49-56. doi: 10.1021/prechem.3c00112 DOI: https://doi.org/10.1021/prechem.3c00112
42. Monticelli S, Talbot A, Gotico P, et al. Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation. Nature Communications. 2023; 14(1): 4451. doi: 10.1038/s41467-023-40136-w DOI: https://doi.org/10.1038/s41467-023-40136-w
43. Saini A, Das C, Guha A, et al. Harnessing the cobalt complex for bidirectional O2/H2O transformation in neutral water via electrocatalysis/photocatalysis. STAR Protocols. 2024; 5(2): 103015. doi: 10.1016/j.xpro.2024.103015 DOI: https://doi.org/10.1016/j.xpro.2024.103015
44. Romito D, Govind C, Nikolaou V, et al. Dye‐Sensitized Photocatalysis: Hydrogen Evolution and Alcohol‐to‐Aldehyde Oxidation without Sacrifical Electron Donor. Angewandte Chemie. 2024; 136(12): e202318868. doi: 10.1002/ange.202318868 DOI: https://doi.org/10.1002/ange.202318868
45. Liu X, Zhu C, Li M, et al. Confinement Synthesis of Atomic Copper‐Anchored Polymeric Carbon Nitride in Crystalline UiO‐66‐NH2 for High‐Performance CO2‐to‐CH3OH Photocatalysis. Angewandte Chemie International Edition. 2024; 63(45): e202412408. doi: 10.1002/anie.202412408 DOI: https://doi.org/10.1002/anie.202412408
46. Ioana T, Silvioara G, Cristina B, et al. Ceramic-based coatings for photocatalysis. In: Gupta RK, Kakooei S, Behera A, et al. (editors). Advanced Ceramic Coatings for Energy Applications. Elsevier; 2024. pp. 249-271. doi: 10.1016/B978-0-323-99620-4.00011-7 DOI: https://doi.org/10.1016/B978-0-323-99620-4.00011-7
47. Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A. 2011; 115(46): 13211-13241. doi: 10.1021/jp204364a DOI: https://doi.org/10.1021/jp204364a
48. de Richter R, Caillol S. Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011; 12(1): 1-19. doi: 10.1016/j.jphotochemrev.2011.05.002 DOI: https://doi.org/10.1016/j.jphotochemrev.2011.05.002
49. Chen X, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011; 331(6018): 746-750. doi: 10.1126/science.1200448 DOI: https://doi.org/10.1126/science.1200448
50. He F, Jeon W, Choi W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nature Communications. 2021; 12(1): 2528. doi: 10.1038/s41467-021-22839-0 DOI: https://doi.org/10.1038/s41467-021-22839-0
51. Vandyck T, Keramidas K, Kitous A, et al. Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges. Nature communications. 2018; 9(1): 4939. doi: 10.1038/s41467-018-06885-9 DOI: https://doi.org/10.1038/s41467-018-06885-9
52. Gakidou E, Afshin A, Abajobir AA, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017; 390(10100): 1345-1422. DOI: https://doi.org/10.1016/S0140-6736(17)32366-8
53. Weon S, He F, Choi W. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano. 2019; 6(11): 3185-3214. doi: 10.1039/C9EN00891H DOI: https://doi.org/10.1039/C9EN00891H
54. Weon S, Choi E, Kim H, et al. Active {001} facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application. Environmental Science & Technology. 2018; 52(16): 9330-9340. doi: 10.1021/acs.est.8b02282 DOI: https://doi.org/10.1021/acs.est.8b02282
55. Andaloro A, Frontini F. Application of titanium dioxide self-cleaning coatings on photovoltaic modules for soiling related losses reduction. American Journal of Engineering and Applied Sciences. 2017; 10(1): 78-93. doi: 10.3844/ajeassp.2017.78.93 DOI: https://doi.org/10.3844/ajeassp.2017.78.93
56. Al-Nuaim MA, Alwasiti AA, Shnain ZY. The photocatalytic process in the treatment of polluted water. Chemical Papers. 2023; 77(2): 677-701. doi: 10.1007/s11696-022-02468-7 DOI: https://doi.org/10.1007/s11696-022-02468-7
57. Abdullah HZ, Taib H, Sorrell CC. Coating methods for self-cleaning thick films of titania. Advances in Applied Ceramics. 2007; 106(1-2): 105-112. doi: 10.1179/174367607X156061 DOI: https://doi.org/10.1179/174367607X156061
58. Padmanabhan NT, John H. Titanium dioxide based self-cleaning smart surfaces: A short review. Journal of Environmental Chemical Engineering. 2020; 8(5): 104211. doi: 10.1016/j.jece.2020.104211 DOI: https://doi.org/10.1016/j.jece.2020.104211
59. Banerjee S, Dionysiou DD, Pillai SC. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental. 2015; 176: 396-428. doi: 10.1016/j.apcatb.2015.03.058 DOI: https://doi.org/10.1016/j.apcatb.2015.03.058
60. Sanni O, Ren J, Jen TC. An overview of antifogging nanocoatings: Recent developments and application. Results in Materials. 2024; 24: 100643. doi: 10.1016/j.rinma.2024.100643 DOI: https://doi.org/10.1016/j.rinma.2024.100643
61. Meng X, Peng B, Yao L, et al. Ion beam assisted electron beam vacuum deposition of antireflective SiO2 coating on MgAl2O4 spinel. International Journal of Applied Ceramic Technology, 2023; 20(4): 2331-2340. doi: 10.1111/ijac.14357 DOI: https://doi.org/10.1111/ijac.14357
62. Jafarpisheh F, Kolvir HR, Ghorbanpour M. Photocatalytic self-cleaning and antibacterial activity of modified wood by Ag doped TiO2 nanoparticles. Next Materials. 2024; 4: 100207. doi: 10.1016/j.nxmate.2024.100207 DOI: https://doi.org/10.1016/j.nxmate.2024.100207
63. Cushnie TPT, Robertson PKJ, Officer S, et al. Photobactericidal effects of TiO2 thin films at low temperatures—A preliminary study. Journal of Photochemistry and Photobiology A: Chemistry. 2010; 216(2-3): 290-294. doi: 10.1016/j.jphotochem.2010.06.027 DOI: https://doi.org/10.1016/j.jphotochem.2010.06.027
64. Hot J, Castelló Lux K, Ringot E. Investigation of the self-cleaning property of photocatalytic coatings at a laboratory scale. Photochem. 2023; 3(4): 461-476. DOI: https://doi.org/10.3390/photochem3040028
65. Li X, Li L, Chen G, et al. Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light. Nature Communications. 2023; 14(1): 4034. doi: 10.1038/s41467-023-39666-0 DOI: https://doi.org/10.1038/s41467-023-39666-0
66. Liu Y, Sun J, Huang H, et al. Improving CO2 photoconversion with ionic liquid and Co single atoms. Nature Communications. 2023; 14(1): 1457. doi: 10.1038/s41467-023-36980-5 DOI: https://doi.org/10.1038/s41467-023-36980-5
67. Zhang Q, Gao S, Guo Y, et al. Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nature Communications. 2023; 14(1): 1147. doi: 10.1038/s41467-023-36779-4 DOI: https://doi.org/10.1038/s41467-023-36779-4
68. Valdés‐Hernández J, Luis Domínguez‐Juárez J, Nava‐Mendoza R, et al. Photocatalytic Enhancement for CO2 Reduction Using Au Nanoparticles Supported on Fe‐Doped SrTiO3− δ Perovskite. Solar RRL. 2024; 8(9): 2300968. doi: 10.1002/solr.202300968 DOI: https://doi.org/10.1002/solr.202300968
69. Wang Y, Wei JX, Tang HL, et al. Artificial photosynthetic system for diluted CO2 reduction in gas-solid phase. Nature Communications. 2024; 15(1): 8818. doi: 10.1038/s41467-024-53066-y DOI: https://doi.org/10.1038/s41467-024-53066-y
70. Li S, Li Z, Yue J, et al. Photocatalytic CO2 Reduction by Near‐Infrared‐Light (1200 nm) Irradiation and a Ruthenium‐Intercalated NiAl‐Layered Double Hydroxide. Angewandte Chemie. 2024; 136(45): e202407638. doi: 10.1002/ange.202407638 DOI: https://doi.org/10.1002/ange.202407638
71. Deng X, Zhang J, Qi K, et al. Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction. Nature Communications. 2024; 15(1): 4807. doi: 10.1038/s41467-024-49004-7 DOI: https://doi.org/10.1038/s41467-024-49004-7
72. Suppaso C, Kamakura Y, Ueno M, et al. Facile Room Temperature Synthesis of Precious‐Metal‐Free Coordination Polymer Photocatalyst for Improved Visible‐Light CO2 Reduction. Solar RRL, 2024, 8(1): 2300710. doi: 10.1002/solr.202300710 DOI: https://doi.org/10.1002/solr.202300710
73. Shi X, Peng W, Huang Y, et al. Integrable utilization of intermittent sunlight and residual heat for on-demand CO2 conversion with water. Nature Communications. 2024; 15(1): 10135. doi: 10.1038/s41467-024-54587-2 DOI: https://doi.org/10.1038/s41467-024-54587-2
74. Fu P, Chen C, Wu C, et al. Covalent organic framework stabilized single CoN4Cl2 site boosts photocatalytic CO2 reduction into tunable syngas. Angewandte Chemie International Edition. 2025; 64(3): e202415202. Doi: 10.1002/anie.202415202 DOI: https://doi.org/10.1002/anie.202415202
75. Nikolaou V, Govind C, Balanikas E, et al. Antenna Effect in Noble Metal‐Free Dye‐Sensitized Photocatalytic Systems Enhances CO2‐to‐CO Conversion. Angewandte Chemie. 2024; 136.13: e202318299. doi: 10.1002/ange.202318299 DOI: https://doi.org/10.1002/ange.202318299
76. Sharma S, Jacob N, Grandhi GK, et al. Synergistic metal halide perovskite@ metal-organic framework hybrids for photocatalytic CO2 reduction. Iscience. 2024; 27(10): 110924. doi: 10.1016/j.isci.2024.110924 DOI: https://doi.org/10.1016/j.isci.2024.110924
77. Chai Y, Kong Y, Lin M, et al. Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction. Nature Communications. 2023; 14(1): 6168. doi: 10.1038/s41467-023-41943-x DOI: https://doi.org/10.1038/s41467-023-41943-x
78. Zhou M, Wang Z, Mei A, et al. Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nature Communications. 2023; 14(1): 2473. doi: 10.1038/s41467-023-37545-2 DOI: https://doi.org/10.1038/s41467-023-37545-2
79. Karmakar S, Barman S, Rahimi FA., et al. Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water. Nature Communications. 2023; 14(1): 4508. doi: 10.1038/s41467-023-40117-z DOI: https://doi.org/10.1038/s41467-023-40117-z
80. Terholsen H, Huerta-Zerón HD, Möller C, et al. Photocatalytic CO2 Reduction Using CO2‐Binding Enzymes. Angewandte Chemie International Edition. 2024; 63(16): e202319313. doi: 10.1002/anie.202319313 DOI: https://doi.org/10.1002/anie.202319313
81. Lyu W, Liu Y, Chen D, et al. Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction. Nature Communications. 2024; 15(1): 10589. doi: 10.1038/s41467-024-54988-3 DOI: https://doi.org/10.1038/s41467-024-54988-3
82. Zhou W, Wang X, Zhao W, et al. Photocatalytic CO2 reduction to syngas using metallosalen covalent organic frameworks. Nature Communications. 2023; 14(1): 6971. doi: 10.1038/s41467-023-42757-7 DOI: https://doi.org/10.1038/s41467-023-42757-7
83. Fenton T, Ahmad E, Li G. Solar CO2 reduction using a molecular Re(I) catalyst grafted on SiO2 via amide and alkyl amine linkages. Dalton Transactions. 2024; 53(6): 2645-2652. doi: 10.1039/D3DT03623E DOI: https://doi.org/10.1039/D3DT03623E
84. Kamada K, Jung J, Yamada C, et al. Photocatalytic CO2 Reduction Using an Osmium Complex as a Panchromatic Self‐Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angewandte Chemie. 2024; 136(22): e202403886. doi: 10.1002/ange.202403886 DOI: https://doi.org/10.1002/ange.202403886
85. Lin Q, Zhao J, Zhang P, et al. Highly selective photocatalytic reduction of CO2 to CH4 on electron‐rich Fe species cocatalyst under visible light irradiation. Carbon Energy. 2024; 6(1): e435. doi: 10.1002/cey2.435 DOI: https://doi.org/10.1002/cey2.435
86. Santoro A, Cancelliere AM, Kamogawa K, et al. Photocatalyzed CO2 reduction to CO by supramolecular photocatalysts made of Ru (II) photosensitizers and Re (I) catalytic subunits containing preformed CO2TEOA adducts. Scientific Reports. 2023; 13(1): 11320. doi: 10.1038/s41598-023-38411-3 DOI: https://doi.org/10.1038/s41598-023-38411-3
87. Huang L, Lu R, Zhang W, et al. Precisely Regulating Asymmetric Charge Distribution by Single‐Atom Central Doped Ag‐Based Series Clusters for Enhanced Photoreduction of CO2 to Alcohol Fuels. Angewandte Chemie. 2024; 136(46): e202412964. doi: 10.1002/ange.202412964 DOI: https://doi.org/10.1002/ange.202412964
88. Khan B, Faheem MB, Peramaiah K, et al. Unassisted photoelectrochemical CO2-to-liquid fuel splitting over 12% solar conversion efficiency. Nature Communications. 2024; 15(1): 6990. doi: 10.1038/s41467-024-51088-0 DOI: https://doi.org/10.1038/s41467-024-51088-0
89. Qin C, Wu X, Tang L, et al. Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nature Communications. 2023; 14(1): 5238. doi: 10.1038/s41467-023-40991-7 DOI: https://doi.org/10.1038/s41467-023-40991-7
90. Zhang J, Liu K, Zhang B, et al. Anisotropic charge migration on perovskite oxysulfide for boosting photocatalytic overall water splitting. Journal of the American Chemical Society. 2024; 146(6): 4068-4077. doi: 10.1021/jacs.3c12417 DOI: https://doi.org/10.1021/jacs.3c12417
91. Wang W, Song Q, Luo Q, et al. Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater. Nature Communications. 2023; 14: 2493. doi: 10.1038/s41467-023-38211-3 DOI: https://doi.org/10.1038/s41467-023-38211-3
92. Lin L, Ma Y, Vequizo JJM, et al. Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst. Nature communications. 2024; 15(1): 397. doi: 10.1038/s41467-024-44706-4 DOI: https://doi.org/10.1038/s41467-024-44706-4
93. Zhou E, Zhang X, Zhu L, et al. Ultrathin covalent organic framework nanosheets for enhanced photocatalytic water oxidation. Science Advances. 2024; 10(3): eadk8564. doi: 10.1126/sciadv.adk8564 DOI: https://doi.org/10.1126/sciadv.adk8564
94. Liu P, Liang T, Li Y, et al. Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters. Nature Communications. 2024; 15(1): 9224. doi: 10.1038/s41467-024-53482-0 DOI: https://doi.org/10.1038/s41467-024-53482-0
95. Galvão RA, Nandy S, Hirako A, et al. Nanoparticulate TiN Loading to Promote Z‐Scheme Water Splitting Using a Narrow‐Bandgap Nonoxide‐Based Photocatalyst Sheet. Small. 2024; 20(30): 2311170. doi: 10.1002/smll.202311170 DOI: https://doi.org/10.1002/smll.202311170
96. He T, Tang H, Wu J, et al. A metal-free cascaded process for efficient H2O2 photoproduction using conjugated carbonyl sites. Nature Communications. 2024; 15(1): 7833. doi: 10.1038/s41467-024-52162-3 DOI: https://doi.org/10.1038/s41467-024-52162-3
97. Kobayashi A. Photoredox cascade catalyst for efficient hydrogen production with biomass photoreforming. Angewandte Chemie International Edition. 2023; 62(46): e202313014. doi: 10.1002/anie.202313014 DOI: https://doi.org/10.1002/anie.202313014
98. Yan X, Xia M, Liu H, et al. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nature Communications. 2023; 14(1): 1741. doi: 10.1038/s41467-023-37358-3 DOI: https://doi.org/10.1038/s41467-023-37358-3
99. Jian JX, Liao JX, Zhou MH, et al. Enhanced Photoelectrochemical Water Splitting of Black Silicon Photoanode with pH‐Dependent Copper‐Bipyridine Catalysts. Chemistry–A European Journal. 2022; 28(57): e202201520. doi: 10.1002/chem.202201520 DOI: https://doi.org/10.1002/chem.202201520
100. Wang B, Wu H, Xu G, et al. MoSx Quantum Dot-Modified Black Silicon for Highly Efficient Photoelectrochemical Hydrogen Evolution. ACS Sustainable Chemistry & Engineering. 2019; 7(21): 17598-17605. doi: 10.1021/acssuschemeng.9b03248 DOI: https://doi.org/10.1021/acssuschemeng.9b03248
101. Halima A F, Zhang X, MacFarlane DR. Photoelectrochemical Characterisation on Surface‐Inverted Black Silicon Photocathodes by Using Platinum/Palladium Co‐catalysts for Solar‐to‐Hydrogen Conversion. ChemPlusChem. 2018; 83(7): 651-657. doi: 10.1002/cplu.201800097 DOI: https://doi.org/10.1002/cplu.201800097
102. Yu Y, Zhang Z, Yin X, et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nature Energy. 2017; 2(6): 17045. doi: 10.1038/nenergy.2017.45 DOI: https://doi.org/10.1038/nenergy.2017.45
103. Paracchino A, Laporte V, Sivula K, et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials. 2011; 10(6): 456-461. doi: 10.1038/nmat3017 DOI: https://doi.org/10.1038/nmat3017
104. Khaselev O, Turner JA. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science. 1998; 280(5362): 425-427. doi: 10.1126/science.280.5362.425 DOI: https://doi.org/10.1126/science.280.5362.425




.jpg)
.jpg)
