Energy consumption patterns and efficiency strategies in the built environment: A comprehensive review

Authors

  • Mahadev Bera School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, West Bengal 700103, India https://orcid.org/0000-0002-3051-610X
  • Pranab Kumar Nag School of Environment and Disaster Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, West Bengal 700103, India
Article ID: 400
244 Views

DOI:

https://doi.org/10.18686/cest400

Keywords:

climate change; built environment; energy consumption; energy efficiency; bioclimatic design; passive design; sustainable building

Abstract

The built environment significantly influences global energy consumption, representing nearly 40% of total usage and over 30% of carbon dioxide emissions. The rapid pace of urbanization has transformed cities, fostering economic growth but also elevating energy consumption, particularly in the building sector, which accounts for approximately 32% of urban energy use. This review explores how enhancing energy efficiency in buildings can bolster sustainable development, emphasizing the role of the built environment in shaping microclimates and influencing energy demand. It presents recent global trends in energy consumption, noting a 2.2% increase in 2023, primarily driven by emerging economies, while developed nations have experienced a decrease in energy use due to sustainability initiatives. The review categorizes strategies for improving energy efficiency into architectural, technological, and renewable energy approaches. It highlights the effectiveness of passive and bioclimatic design methods, which capitalize on local climate conditions, reduce reliance on mechanical systems, and improve occupant comfort. Furthermore, sustainable building practices and cutting-edge smart technologies, such as IoT and Building Automation Systems, are acknowledged for their potential to enhance energy performance. The study also examines regional variations in energy intensity and underscores key technologies, materials, and systems that can be integrated into buildings to minimize environmental impacts. Adopting an interdisciplinary approach, this review underscores the importance of harmonizing land use, building design, and energy technologies to meet global energy goals. It concludes with recommendations for future research focused on data-driven modeling, climate-resilient urban planning, and policy frameworks that encourage the broad adoption of energy-efficient building practices.

Downloads

Published

2025-10-28

How to Cite

Bera, M., & Nag , P. K. (2025). Energy consumption patterns and efficiency strategies in the built environment: A comprehensive review. Clean Energy Science and Technology, 3(4), 400. https://doi.org/10.18686/cest400

Issue

Section

Review

References

1. Franco S, Mandla VR, Rao KRM. Urbanization, energy consumption and emissions in the Indian context: A review. Renewable and Sustainable Energy Reviews. 2017; 71: 898–907. doi: 10.1016/j.rser.2016.12.117 DOI: https://doi.org/10.1016/j.rser.2016.12.117

2. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy and Buildings. 2008; 40(3): 394–398. doi: 10.1016/j.enbuild.2007.03.007 DOI: https://doi.org/10.1016/j.enbuild.2007.03.007

3. Akbari P, Bafarasat AZ. Exploring energy efficiency in historical urban fabrics for energy-conscious planning of new urban developments. Journal of Urban Planning and Development. 2024; 150(2): 04024011. doi: 10.1061/JUPDDM.UPENG-4652

4. de Oliveira CC, Vaz ICM, Ghisi E. Retrofit strategies to improve energy efficiency in buildings: An integrative review. Energy and Buildings. 2024; 321: 114624. doi: 10.1016/j.enbuild.2024.114624 DOI: https://doi.org/10.1016/j.enbuild.2024.114624

5. Elnabawi MH, Saber E, Bande L. Passive building energy saving: Building envelope retrofitting measures to reduce cooling requirements for a residential building in an arid climate. Sustainability. 2024; 16(2): 626. doi: 10.3390/su16020626 DOI: https://doi.org/10.3390/su16020626

6. Jagtap AA, Shedge DK, Mane PB. Exploring the effects of land use/land cover (LULC) modifications and land surface temperature (LST) in Pune, Maharashtra with anticipated LULC for 2030. International Journal of Geoinformatics. 2024; 20(2): 42–63. doi: 10.1061/JUPDDM.UPENG-4652 DOI: https://doi.org/10.1061/JUPDDM.UPENG-4652

7. González J, Da Costa BBF, Tam VW, Haddad A. Effects of latitude and building orientation in indoor-illuminance levels towards energy efficiency. International Journal of Construction Management. 2024; 24(7): 784–798. doi: 10.1080/15623599.2023.2215087 DOI: https://doi.org/10.1080/15623599.2023.2215087

8. Xu S, Wang S, Li G, et al. Performance-based design of residential blocks for the co-benefits of building energy efficiency and outdoor thermal comfort improvement. Building and Environment. 2024; 264: 111926. doi: 10.1016/j.buildenv.2024.111926 DOI: https://doi.org/10.1016/j.buildenv.2024.111926

9. Priya UK, Senthil R. Passive cooling of residential buildings in tropical climates using user-preferred plant species in green walls. Journal of Building Engineering. 2025; 112732. doi: 10.1016/j.jobe.2025.112732 DOI: https://doi.org/10.1016/j.jobe.2025.112732

10. Nasar-u-Minallah M, Haase D, Qureshi S. Evaluating the impact of landscape configuration, patterns and composition on land surface temperature: An urban heat island study in the Megacity Lahore, Pakistan. Environmental Monitoring and Assessment. 2024; 196(7): 627. DOI: https://doi.org/10.1007/s10661-024-12758-0

11. Chen YJ, Matsuoka RH, Liang TM. Urban form, building characteristics, and residential electricity consumption: A case study in Tainan City. Environment and Planning B: Urban Analytics and City Science. 2018; 45(5): 933–952. doi: 10.1177/2399808317690150 DOI: https://doi.org/10.1177/2399808317690150

12. Li L, Wang Y, Wang M, et al. Impacts of multiple factors on energy consumption of aging residential buildings based on a system dynamics model: Taking Northwest China as an example. Journal of Building Engineering. 2021; 44: 102595. doi: 10.1016/j.jobe.2021.102595 DOI: https://doi.org/10.1016/j.jobe.2021.102595

13. You Y, Kim S. Revealing the mechanism of urban morphology affecting residential energy efficiency in Seoul, Korea. Sustainable Cities and Society. 2018; 43: 176–190. doi: 10.1016/j.scs.2018.08.019 DOI: https://doi.org/10.1016/j.scs.2018.08.019

14. D’Oca S, Chen CF, Hong T, Belafi Z. Synthesizing building physics with social psychology: An interdisciplinary framework for context and occupant behavior in office buildings. Energy Research & Social Science. 2017; 34: 240–251. doi: 10.1016/j.erss.2017.08.002 DOI: https://doi.org/10.1016/j.erss.2017.08.002

15. Chen S, Zhang G, Xia X, et al. The impacts of occupant behavior on building energy consumption: A review. Sustainable Energy Technologies and Assessments. 2021; 45: 101212. doi: 10.1016/j.seta.2021.101212 DOI: https://doi.org/10.1016/j.seta.2021.101212

16. Li L, Sun W, Hu W, Sun Y. Impact of natural and social environmental factors on building energy consumption: Based on bibliometrics. Journal of Building Engineering. 2021; 37: 102136. doi: 10.1016/j.jobe.2020.102136 DOI: https://doi.org/10.1016/j.jobe.2020.102136

17. Li G, Sun C, Sang M, et al. The synergistic effect of multiple design factors on building energy consumption of office blocks: A case study of Wuhan, China. Journal of Building Engineering. 2024; 95: 110200. doi: 10.1016/j.jobe.2024.110200 DOI: https://doi.org/10.1016/j.jobe.2024.110200

18. Lachheb M, Younsi Z, Youssef N, Bouadila S. Enhancing building energy efficiency and thermal performance with PCM-integrated brick walls: A comprehensive review. Building and Environment. 2024; 111476. doi: 10.1016/j.buildenv.2024.111476 DOI: https://doi.org/10.1016/j.buildenv.2024.111476

19. Ahmad A, Memon SA. A novel method to evaluate phase change materials’ impact on buildings’ energy, economic, and environmental performance via controlled natural ventilation. Applied Energy. 2024; 353: 122033. doi: 10.1016/j.apenergy.2023.122033 DOI: https://doi.org/10.1016/j.apenergy.2023.122033

20. Wang Z, Bui Q, Zhang B, et al. The nexus between renewable energy consumption and human development in BRICS countries: The moderating role of public debt. Renewable Energy. 2021; 165: 381–390. doi: 10.1016/j.renene.2020.10.144 DOI: https://doi.org/10.1016/j.renene.2020.10.144

21. Enerdata. World Energy & Climate Statistics – Yearbook 2024. Available online: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html (accessed on 2 April 2025)

22. IEA. World Energy Outlook 2021. Paris: OECD Publishing; 2021. doi: 10.1787/14fcb638-en. DOI: https://doi.org/10.1787/14fcb638-en

23. IEA. Tracking Clean Energy Progress 2023. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 2 April 2025)

24. Yussuf RO, Asfour OS. Applications of artificial intelligence for energy efficiency throughout the building lifecycle: an overview. Energy and Buildings. 2024; 305: 113903. doi: 10.1016/j.enbuild.2024.113903 DOI: https://doi.org/10.1016/j.enbuild.2024.113903

25. Cespedes-Cubides AS, Jradi M. A review of building digital twins to improve energy efficiency in the building operational stage. Energy Informatics. 2024; 7(1): 11. doi: 10.1186/s42162-024-00313-7 DOI: https://doi.org/10.1186/s42162-024-00313-7

26. Ogundiran J, Asadi E, Gameiro da Silva M. A systematic review on the use of AI for energy efficiency and indoor environmental quality in buildings. Sustainability. 2024; 16(9): 3627. doi: 10.3390/su16093627 DOI: https://doi.org/10.3390/su16093627

27. D’Agostino D, Parker D, Melià P, Dotelli G. Optimizing photovoltaic electric generation and roof insulation in existing residential buildings. Energy and Buildings. 2022; 255: 111652. doi: 10.1016/j.enbuild.2021.111652 DOI: https://doi.org/10.1016/j.enbuild.2021.111652

28. Miron A, Ungureanu Ș. Sustainability of electricity consumption lighting and HVAC systems. In: Energy Transition Holistic Impact Challenge (ETHIC): A New Environmental and Climatic Era. Springer Nature Switzerland; 2024. pp. 369–399. DOI: https://doi.org/10.1007/978-3-031-55448-3_15

29. Dash R, Bhattacharjee B. Consumer uptake of energy-efficient appliances in India’s online marketplace: An electronic word-of-mouth (eWOM) process model. Utilities Policy. 2024; 88: 101750. doi: 10.1016/j.jup.2024.101750 DOI: https://doi.org/10.1016/j.jup.2024.101750

30. Panão MJO. Energy ratings as drivers of energy sufficiency in residential buildings: A comprehensive review and future directions. Energy and Buildings. 2024; 114583. doi: 10.1016/j.enbuild.2024.114583 DOI: https://doi.org/10.1016/j.enbuild.2024.114583

31. Schmidt L, van Binsbergen-Galán M. Electro-hydraulic variable-speed drive network technology—First experimental validation. Energies. 2024; 17(13): 3192. doi: 10.3390/en17133192 DOI: https://doi.org/10.3390/en17133192

32. Tamas R, O’Brien W, Agee P. Thermostat standardization, technology trends, future considerations: Expert interviews. Energy and Buildings. 2024; 325: 114946. doi: 10.1016/j.enbuild.2024.114946 DOI: https://doi.org/10.1016/j.enbuild.2024.114946

33. Cho HJ, Cheon SY, Jeong JW. Energy saving potential of latent heat exchanger-integrated dual core energy recovery ventilator. Applied Thermal Engineering. 2023; 231: 120989. doi: 10.1016/j.applthermaleng.2023.120989 DOI: https://doi.org/10.1016/j.applthermaleng.2023.120989

34. Cho HJ, Cheon SY, Jeong JW. Experimental analysis on energy recovery ventilator with latent heat exchanger using hollow fiber membrane. Energy Conversion and Management. 2023; 278: 116706. doi: 10.1016/j.enconman.2023.116706 DOI: https://doi.org/10.1016/j.enconman.2023.116706

35. Goel S, Rosenberg M, Gonzalez J, Lerond J. Total system performance ratio—A systems-based approach for evaluating HVAC system efficiency. Energies. 2021; 14(16): 5108. doi: 10.3390/en14165108 DOI: https://doi.org/10.3390/en14165108

36. Vandenbogaerde L, Verbeke S, Audenaert A. Optimizing building energy consumption in office buildings: A review of building automation and control systems and factors influencing energy savings. Journal of Building Engineering. 2023; 76: 107233. doi: 10.1016/j.jobe.2023.107233 DOI: https://doi.org/10.1016/j.jobe.2023.107233

37. Van Thillo L, Verbeke S, Audenaert A. The potential of building automation and control systems to lower the energy demand in residential buildings: A review of their performance and influencing parameters. Renewable and Sustainable Energy Reviews. 2022; 158: 112099. doi: 10.1016/j.rser.2022.112099 DOI: https://doi.org/10.1016/j.rser.2022.112099

38. Wu Z, Adebayo TS, Alola AA. Renewable energy intensity and efficiency of fossil energy fuels in the Nordics: How environmentally efficient is the energy mix? Journal of Cleaner Production. 2024; 438: 140711. doi: 10.1016/j.jclepro.2024.140711 DOI: https://doi.org/10.1016/j.jclepro.2024.140711

39. Abbasi KR, Shahbaz M, Zhang J, et al. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renewable Energy. 2022; 187: 390–402. doi: 10.1016/j.renene.2022.01.066 DOI: https://doi.org/10.1016/j.renene.2022.01.066

40. Bera M, Das S, Dutta S, et al. Progress and challenges of bioclimatic design strategies for enhancing building environmental performance: A systematic review. Smart and Sustainable Built Environment. 2024. doi: 10.1108/SASBE-07-2024-0250 DOI: https://doi.org/10.1108/SASBE-07-2024-0250

41. Bera M, Nag PK. Bioclimatic design of low-cost rural dwellings. Frontiers in Built Environment. 2022; 8: 773108. doi: 10.3389/fbuil.2022.773108 DOI: https://doi.org/10.3389/fbuil.2022.773108

42. Bera M, Nag PK, Das S. Quantification of bioclimatic performance of rural coastal low-cost dwellings in the Sundarbans. Agricultural & Rural Studies. 2023; 1(3): 0015. doi: 10.59978/ar01030015 DOI: https://doi.org/10.59978/ar01030015

43. Bera M, Nag PK. Bioclimate in built environment. Ergonomics International Journal. 2021; 5(5): 000277. doi: 10.23880/eoij-16000277 DOI: https://doi.org/10.23880/eoij-16000277

44. Almusaed A, Yitmen I, Myhren JA, Almssad A. Assessing the impact of recycled building materials on environmental sustainability and energy efficiency: A comprehensive framework for reducing greenhouse gas emissions. Buildings. 2024; 14(6): 1566. doi: 10.3390/buildings14061566 DOI: https://doi.org/10.3390/buildings14061566

45. Karimi H, Adibhesami MA, Bazazzadeh H, Movafagh S. Green buildings: Human-centered and energy efficiency optimization strategies. Energies. 2023; 16(9): 3681. doi: 10.3390/en16093681 DOI: https://doi.org/10.3390/en16093681

46. Elaouzy Y, El Fadar A. Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review. Renewable and Sustainable Energy Reviews. 2022; 167: 112828. doi: 10.1016/j.rser.2022.112828 DOI: https://doi.org/10.1016/j.rser.2022.112828

47. Al-Tamimi N. Passive design strategies for energy efficient buildings in the Arabian Desert. Frontiers in Built Environment. 2022; 7: 805603. doi: 10.3389/fbuil.2021.805603 DOI: https://doi.org/10.3389/fbuil.2021.805603

48. Jarrahi A, Aflaki A, Khakpoor M, Esfandiari M. Enhancing indoor air quality: Harnessing architectural elements, natural ventilation and passive design strategies for effective pollution reduction—A comprehensive review. Science of The Total Environment. 2024; 176631. doi: 10.1016/j.scitotenv.2024.176631 DOI: https://doi.org/10.1016/j.scitotenv.2024.176631

49. Rana K. Towards passive design strategies for improving thermal comfort performance in a naturally ventilated residence. Journal of Sustainable Architecture and Civil Engineering. 2021; 29(2): 150–174. doi: 10.5755/j01.sace.29.2.29256 DOI: https://doi.org/10.5755/j01.sace.29.2.29256

50. Kishore KN, Rekha J. A bioclimatic approach to develop spatial zoning maps for comfort, passive heating and cooling strategies within a composite zone of India. Building and Environment. 2018; 128: 190–215. doi: 10.1016/j.buildenv.2017.11.029 DOI: https://doi.org/10.1016/j.buildenv.2017.11.029

51. Kim J. Case studies on space zoning and passive façade strategies for green laboratories. Architectural Research. 2020; 22(2): 41–52. doi: 10.5659/AIKAR.2020.22.2.41

52. Sadineni SB, Madala S, Boehm RF. Passive building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews. 2011; 15(8): 3617–3631. doi: 10.1016/j.rser.2011.07.014 DOI: https://doi.org/10.1016/j.rser.2011.07.014

53. Fu X, Qian X, Wang L. Energy efficiency for airtightness and exterior wall insulation of passive houses in hot summer and cold winter zone of China. Sustainability. 2017; 9(7): 1097. doi: 10.3390/su9071097 DOI: https://doi.org/10.3390/su9071097

54. Prado RTA, Ferreira FL. Measurement of albedo and analysis of its influence on the surface temperature of building roof materials. Energy and Buildings. 2005; 37(4): 295–300. doi: 10.1016/j.enbuild.2004.03.009 DOI: https://doi.org/10.1016/j.enbuild.2004.03.009

55. Lu Y, Rahman MA, Moore NW, Golrokh AJ. Lab-controlled experimental evaluation of heat-reflective coatings by increasing surface albedo for cool pavements in urban areas. Coatings. 2021; 12(1):7. doi: 10.3390/coatings12010007 DOI: https://doi.org/10.3390/coatings12010007

56. Waterson M, Hunt GR. Night cooling by hybrid ventilation–analytical predictions of the purge time. Building Services Engineering Research & Technology. 2024; 45(5): 561–588. doi: 10.1177/01436244241262605 DOI: https://doi.org/10.1177/01436244241262605

57. Shaviv E, Yezioro A, Capeluto IG. Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy. 2001; 24(3–4): 445–452. doi: 10.1016/S0960-1481(01)00027-1 DOI: https://doi.org/10.1016/S0960-1481(01)00027-1

58. Konis K, Gamas A, Kensek K. Passive performance and building form: An optimization framework for early-stage design support. Solar Energy. 2016; 125: 161–179. doi: 10.1016/j.solener.2015.12.020 DOI: https://doi.org/10.1016/j.solener.2015.12.020

59. Tian Z, Zhang X, Jin X, et al. Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy and Buildings. 2018; 158: 1306–1316. doi: 10.1016/j.enbuild.2017.11.022 DOI: https://doi.org/10.1016/j.enbuild.2017.11.022

60. Aziz AA, Adnan YM. Incorporation of innovative passive architectural features in office building design towards achieving operational cost saving—the move to enhance sustainable development. In: Proceedings of the 14th Pacific Rim Real Estate Society (PRRES) Conference; 20-23 January 2008; Kuala Lumpur, Malaysia. pp. 1–11.

61. Chen X, Yang H, Lu L. A comprehensive review on passive design approaches in green building rating tools. Renewable and Sustainable Energy Reviews. 2015; 50: 1425–1436. doi: 10.1016/j.rser.2015.06.003 DOI: https://doi.org/10.1016/j.rser.2015.06.003

62. Xue P, Li Q, Xie J, et al. Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements. Applied Energy. 2019; 233: 62–70. doi: 10.1016/j.apenergy.2018.10.027 DOI: https://doi.org/10.1016/j.apenergy.2018.10.027

63. Sayadi S, Hayati A, Salmanzadeh M. Optimization of window-to-wall ratio for buildings located in different climates: An IDA-indoor climate and energy simulation study. Energies. 2021; 14(7): 1974. doi: 10.3390/en14071974 DOI: https://doi.org/10.3390/en14071974

64. Andalib E, Faghani M, Heidari M, Tabari Khomeiran R. Design of vestibules as transitional spaces in infection control: Necessity of working space changes to cope with communicable infections. Work. 2022; 72(4): 1227–1238. doi: 10.3233/WOR-210216 DOI: https://doi.org/10.3233/WOR-210216

65. Formolly A, Saraei MH. Socio-cultural transformations in modernity and household patterns: A study on local traditions housing and the impact and evolution of vernacular architecture in Yazd, Iran. City, Territory and Architecture. 2024; 11(1): 15. doi: 10.1186/s40410-024-00236-6 DOI: https://doi.org/10.1186/s40410-024-00236-6

66. Jankowski NR, McCluskey FP. A review of phase change materials for vehicle component thermal buffering. Applied Energy. 2014; 113: 1525–1561. doi: 10.1016/j.apenergy.2013.08.026 DOI: https://doi.org/10.1016/j.apenergy.2013.08.026

67. Alvizuri J, Cataldo J, Smalls-Mantey LA, Montalto FA. Green roof thermal buffering: Insights derived from fixed and portable monitoring equipment. Energy and Buildings. 2017; 151: 455–468. doi: 10.1016/j.enbuild.2017.06.020 DOI: https://doi.org/10.1016/j.enbuild.2017.06.020

68. Song S, Sun H, Long J, et al. Light-thermal environment of vertical translucent enclosure structures under solar radiation and method of internal shading adjustment. Energy. 2024; 289: 130036. doi: 10.1016/j.energy.2023.130036 DOI: https://doi.org/10.1016/j.energy.2023.130036

69. Freewan AA. Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Solar Energy. 2014; 102: 14–30. doi: 10.1016/j.solener.2014.01.009 DOI: https://doi.org/10.1016/j.solener.2014.01.009

70. Boyacı S, Atilgan A, Kocięcka J, et al. Determination of the effect of a thermal curtain used in a greenhouse on the indoor climate and energy savings. Energies. 2023;16(23):7744. doi: 10.3390/en16237744 DOI: https://doi.org/10.3390/en16237744

71. Huang H, Xie YQ, Chen JJ, et al. Bioclimatic design strategy of vernacular architecture in the south-east of China: A case study in Fujian, China. International Journal of Low-Carbon Technologies. 2024; 19: 1–17. doi: 10.1093/ijlct/ctad079 DOI: https://doi.org/10.1093/ijlct/ctad079

72. Aghimien EI, Li DHW, Tsang EKW. Bioclimatic architecture and its energy-saving potentials: A review and future directions. Engineering, Construction and Architectural Management. 2022; 29(2): 961–988. doi: 10.1108/ECAM-11-2020-0928 DOI: https://doi.org/10.1108/ECAM-11-2020-0928

73. Bugenings LA, Kamari A. Bioclimatic architecture strategies in Denmark: A review of current and future directions. Buildings. 2022; 12(2): 224. doi: 10.3390/buildings12020224 DOI: https://doi.org/10.3390/buildings12020224

74. Ozarisoy B, Altan H. Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy and Buildings. 2021; 250: 111281. doi: 10.1016/j.enbuild.2021.111281 DOI: https://doi.org/10.1016/j.enbuild.2021.111281

75. Elaouzy Y, El Fadar A. Impact of key bioclimatic design strategies on buildings’ performance in dominant climates worldwide. Energy for Sustainable Development. 2022; 68: 532–549. doi: 10.1016/j.esd.2022.05.006 DOI: https://doi.org/10.1016/j.esd.2022.05.006

76. Barea G, Mercado MV, Filippin C, et al. New paradigms in bioclimatic design toward climatic change in arid environments. Energy and Buildings. 2022; 266: 112100. doi: 10.1016/j.enbuild.2022.112100 DOI: https://doi.org/10.1016/j.enbuild.2022.112100

77. Salameh M. Modifying school courtyard design to optimize thermal conditions and energy consumption in a hot arid climate. Journal of Architectural Engineering. 2024; 30(4): 04024033. doi: 10.1061/JAEIED.AEENG-1813 DOI: https://doi.org/10.1061/JAEIED.AEENG-1813

78. Al-Shatnawi Z, Hachem-Vermette C, Lacasse M, Ziaeemehr B. Advances in cold-climate-responsive building envelope design: A comprehensive review. Buildings. 2024; 14(11): 3486. doi: 10.3390/buildings14113486 DOI: https://doi.org/10.3390/buildings14113486

79. Safarova S, Halawa E, Campbell A, et al. Pathways for optimal provision of thermal comfort and sustainability of residential housing in hot and humid tropics of Australia–A critical review. Indoor and Built Environment. 2018; 27(8): 1022–1040. doi: 10.1177/1420326X17701805 DOI: https://doi.org/10.1177/1420326X17701805

80. Toroxel JL, Silva SM. A review of passive solar heating and cooling technologies based on bioclimatic and vernacular architecture. Energies. 2024; 17(5): 1006. doi: 10.3390/en17051006 DOI: https://doi.org/10.3390/en17051006

81. Hafez FS, Sa’di B, Safa-Gamal M, et al. Energy efficiency in sustainable buildings: a systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research. Energy Strategy Reviews. 2023; 45: 101013. doi: 10.1016/j.esr.2022.101013 DOI: https://doi.org/10.1016/j.esr.2022.101013

82. Zhang H, Yang D, Tam VW, et al. A critical review of combined natural ventilation techniques in sustainable buildings. Renewable and Sustainable Energy Reviews. 2021; 141: 110795. doi: 10.1016/j.rser.2021.110795 DOI: https://doi.org/10.1016/j.rser.2021.110795

83. Singh S, Dalbehera MM, Maiti S, et al. Investigation of agro-forestry and construction demolition wastes in alkali-activated fly ash bricks as sustainable building materials. Waste Management. 2023; 159: 114–124. doi: 10.1016/j.wasman.2023.01.031 DOI: https://doi.org/10.1016/j.wasman.2023.01.031

84. Talaei M, Mahdavinejad M, Azari R. Thermal and energy performance of algae bioreactive façades: A review. Journal of Building Engineering. 2020; 28: 101011. doi: 10.1016/j.jobe.2019.101011 DOI: https://doi.org/10.1016/j.jobe.2019.101011

85. Thakur A. Intelligent HVAC control systems for smart infrastructures. In: Digital Technologies for a Resource Efficient Economy. IGI Global; 2024. pp. 216–227. doi: 10.4018/979-8-3693-2750-0.ch011 DOI: https://doi.org/10.4018/979-8-3693-2750-0.ch011

86. Poyyamozhi M, Murugesan B, Rajamanickam N, et al. IoT—A promising solution to energy management in smart buildings: A systematic review, applications, barriers, and future scope. Buildings. 2024; 14(11): 3446. doi: 10.3390/buildings14113446 DOI: https://doi.org/10.3390/buildings14113446

87. van Roosmale S, Hellinckx P, Meysman J, et al. Building automation and control systems for office buildings: Technical insights for effective facility management—a literature review. Journal of Building Engineering. 2024. 97: 110943. doi: 10.1016/j.jobe.2024.110943 DOI: https://doi.org/10.1016/j.jobe.2024.110943

88. Simpeh EK, Pillay JPG, Ndihokubwayo R, Nalumu DJ. Improving energy efficiency of HVAC systems in buildings: a review of best practices. International Journal of Building Pathology and Adaptation. 2022; 40(2): 165–182. doi: 10.1108/IJBPA-02-2021-0019 DOI: https://doi.org/10.1108/IJBPA-02-2021-0019

89. Kong M, Dong B, Zhang R, O’Neill Z. HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. Applied Energy. 2022; 306: 117987. doi: 10.1016/j.apenergy.2021.117987 DOI: https://doi.org/10.1016/j.apenergy.2021.117987

90. Gentile N. Improving lighting energy efficiency through user response. Energy and Buildings. 2022; 263: 112022. doi: /10.1016/j.enbuild.2022.112022 DOI: https://doi.org/10.1016/j.enbuild.2022.112022

91. Riffat S, Ahmad MI, Shakir A. Energy-efficient lighting technologies for building applications. In: Sustainable Energy Technologies and Low Carbon Buildings. Springer Nature Switzerland; 2024. pp. 185–218. DOI: https://doi.org/10.1007/978-3-031-78853-6_4

92. Shah SFA, Iqbal M, Aziz Z, et al. The role of machine learning and the internet of things in smart buildings for energy efficiency. Applied Sciences. 2022; 12(15): 7882. doi: 10.3390/app12157882 DOI: https://doi.org/10.3390/app12157882

93. Aziz N, Raza A, Sui H, Zhang Z. Empowering women for embracing energy-efficient appliances: unraveling factors and driving change in Pakistan’s residential sector. Applied Energy. 2024; 353: 122156. doi: 10.1016/j.apenergy.2023.122156 DOI: https://doi.org/10.1016/j.apenergy.2023.122156

94. Tan KM, Babu TS, Ramachandaramurthy VK, et al. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage. 2021; 39: 102591. doi: 10.1016/j.est.2021.102591 DOI: https://doi.org/10.1016/j.est.2021.102591

95. Rana MM, Uddin M, Sarkar MR, et al. Applications of energy storage systems in power grids with and without renewable energy integration—A comprehensive review. Journal of Energy Storage. 2023; 68: 107811. doi: 10.1016/j.est.2023.107811 DOI: https://doi.org/10.1016/j.est.2023.107811

96. Barman P, Dutta L, Bordoloi S, et al. Renewable energy integration with electric vehicle technology: a review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews. 2023; 183: 113518. doi: 10.1016/j.rser.2023.113518 DOI: https://doi.org/10.1016/j.rser.2023.113518

97. Makhloufi AW, Louafi S. Optimising building performance for a resilient future: a multi-objective approach to net zero energy strategies. Energy and Buildings. 2024; 324: 114869. doi: 10.1016/j.enbuild.2024.114869 DOI: https://doi.org/10.1016/j.enbuild.2024.114869

98. Bera M, Das S, Garai S, et al. Advancing energy efficiency: innovative technologies and strategic measures for achieving net zero emissions. Carbon Footprints. 2025; 4(3). doi: 10.20517/cf.2024.48 DOI: https://doi.org/10.20517/cf.2024.48

99. Kandothillath FJ, Guangul FM. Energy auditing of HVAC systems for the enhancement of efficiency and sustainability. The Journal of Engineering Research. 2024; 21(1): 71–86. DOI: https://doi.org/10.53540/tjer.vol21iss1pp71-86

100. Lawal OA, Jimoh AA, Abdullah KA, et al. Economic and environmental impact of energy audit and efficiency: a report from a Nigeria household. Energy for Sustainable Development. 2024; 79: 101387. doi: 10.1016/j.esd.2024.101387 DOI: https://doi.org/10.1016/j.esd.2024.101387

101. Maghsoudi Nia E, Qian QK, Visscher HJ. Analysis of occupant behaviours in energy efficiency retrofitting projects. Land. 2022;11(11):1944. doi: 10.3390/land11111944 DOI: https://doi.org/10.3390/land11111944

102. Harputlugil T, de Wilde P. The interaction between humans and buildings for energy efficiency: a critical review. Energy Research & Social Science. 2021;71:101828. doi: 10.1016/j.erss.2020.101828 DOI: https://doi.org/10.1016/j.erss.2020.101828

103. El-Afifi MI, Sedhom BE, Eladl AA, et al. Demand side management strategy for smart building using multi-objective hybrid optimization technique. Results in Engineering. 2024; 22: 102265. doi: 10.1016/j.rineng.2024.102265 DOI: https://doi.org/10.1016/j.rineng.2024.102265

104. Alhasnawi BN, Jasim BH, Alhasnawi AN, et al. A novel efficient energy optimization in smart urban buildings based on optimal demand-side management. Energy Strategy Reviews. 2024; 54: 101461. doi: 10.1016/j.esr.2024.101461 DOI: https://doi.org/10.1016/j.esr.2024.101461

105. IEA. Global Energy Review 2025. Available online: https://www.iea.org/reports/global-energy-review-2025 (accessed on 2 April 2025)

106. IEA. World Energy Investment 2025. Available online: https://www.iea.org/reports/world-energy-investment-2025 (accessed on 15 June 2025)

107. Mahdavinejad M, Bazazzadeh H, Mehrvarz F, et al. The impact of facade geometry on visual comfort and energy consumption in an office building in different climates. Energy Reports. 2024; 11: 1–17. doi: 10.1016/j.egyr.2023.11.021 DOI: https://doi.org/10.1016/j.egyr.2023.11.021