Mass transfer enhancement and cell performance promotion of PEM electrolyzer by biomimetic lung-inspired flow field
DOI:
https://doi.org/10.18686/cest393Keywords:
proton exchange membrane electrolyzer cell; lung-inspired flow field; mass transfer; uniform distributions; cell performanceAbstract
Hydrogen energy represents a pivotal component in global energy transition strategies, with proton exchange membrane water electrolysis emerging as a key technology for sustainable hydrogen production. The optimization of flow fields critically governs the operational efficiency of proton exchange membrane electrolyzer cell (PEMEC). This study introduces a biomimetic lung-inspired flow field (LIFF) design to address challenges in mass transfer, temperature and liquid saturation uniformity index within PEMEC. A comparative analysis is conducted among three flow configurations: conventional single serpentine flow field (SSFF), interdigitated flow field (IFF), and the proposed LIFF. A multiphysics computational fluid dynamics model is employed to simulate coupled electrochemical and transport phenomena. Results demonstrate that the LIFF’s pressure-driven flow mechanism significantly enhances reactant distribution, particularly under channel ribs. At 2.3 V operation, the LIFF achieves an 8.04 times improvement in axial mass transfer coefficient compared to SSFF and 39.14% superiority over IFF. The liquid saturation uniformity index of LIFF increased by 22.04% and 4.83% compared to SSFF and IFF, respectively. The temperature uniformity index of LIFF shows improvements of 69.98% and 35.22% over SSFF and IFF. Parametric analysis reveals that increased operational temperatures improve electrochemical polarization, while higher flow rates enhance mass transport efficiency. Strategic reduction of inlet water temperature combined with increased flow rates enhances liquid saturation uniformity index and improves temperature uniformity index.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Ashraf S, Raja Sekar T, Abraham J. Relationships among environmental pollution, energy use and economic growth: a global perspective. OPEC Energy Review. 2020; 44(4): 511-534. doi: 10.1111/opec.12192 DOI: https://doi.org/10.1111/opec.12192
2. Ge LJ, Zhang BH, Huang WT, et al. A review of hydrogen generation, storage, and applications in power system, Journal of Energy Storage 75 (2024) 109307. doi: 10.1016/j.est.2023.109307 DOI: https://doi.org/10.1016/j.est.2023.109307
3. Chen Y. Research status and future development trend of hydrogen production technology by electrolytic water (Chinese). Solar Energy. 2024; 1.
4. Yu H, Yi B. Hydrogen for Energy Storage and Hydrogen Production from Electrolysis. Chinese Journal of Engineering Science. 2018; 20(3): 58. doi: 10.15302/j-sscae-2018.03.009 DOI: https://doi.org/10.15302/J-SSCAE-2018.03.009
5. Bi KL, Cao X, Gu YH, et al. Proton exchange membrane electrolyzer double plate research progress . Journal of henan chemical industry. 2025, 42(05): 11-15+35. DOI: 10.14173/j.cnki.hnhg.2025.05.013.
6. Ojong ET, Kwan JTH, Nouri-Khorasani A, et al. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer. International Journal of Hydrogen Energy. 2017; 42(41): 25831-25847. doi: 10.1016/j.ijhydene.2017.08.183 DOI: https://doi.org/10.1016/j.ijhydene.2017.08.183
7. Nie J, Chen Y, Cohen S, et al. Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell. International Journal of Thermal Sciences. 2009; 48(10): 1914-1922. doi: 10.1016/j.ijthermalsci.2009.02.017 DOI: https://doi.org/10.1016/j.ijthermalsci.2009.02.017
8. Nie J, Chen Y. Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell. International Journal of Hydrogen Energy. 2010; 35(8): 3183-3197. doi: 10.1016/j.ijhydene.2010.01.050 DOI: https://doi.org/10.1016/j.ijhydene.2010.01.050
9. Zhou J, Niu W, Ao Y, et al. Numerical investigations on electrolytic performance of proton exchange membrane electrolysis cell with parallel flow field. Applied Thermal Engineering. 2024; 256: 124164. doi: 10.1016/j.applthermaleng.2024.124164 DOI: https://doi.org/10.1016/j.applthermaleng.2024.124164
10. Boni M, Velisala V, Kumar MA, et al. Experimental evaluation of divergent parallel flow field effect on the proton exchange membrane fuel cell performance. Ionics. 2025; 31(3): 2657-2670. doi: 10.1007/s11581-025-06108-4 DOI: https://doi.org/10.1007/s11581-025-06108-4
11. Minnaar C, De Beer F, Bessarabov D. Current Density Distribution of Electrolyzer Flow Fields: In Situ Current Mapping and Neutron Radiography. Energy & Fuels. 2019; 34(1): 1014-1023. doi: 10.1021/acs.energyfuels.9b03814 DOI: https://doi.org/10.1021/acs.energyfuels.9b03814
12. Timurkutluk B, Chowdhury MZ. Numerical Investigation of Convergent and Divergent Parallel Flow Fields for PEMFCs. Fuel Cells. 2018; 18(4): 441-448. doi: 10.1002/fuce.201800029 DOI: https://doi.org/10.1002/fuce.201800029
13. Li X, Sabir I. Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy. 2005; 30(4): 359-371. doi: 10.1016/j.ijhydene.2004.09.019 DOI: https://doi.org/10.1016/j.ijhydene.2004.09.019
14. Zhang LH, Huang B, Zhou T jun, et al. Enhancing oxygen transport performance with improved serpentine flow field on the anode side of the PEMEC. International Journal of Hydrogen Energy. 2024; 82: 881-891. doi: 10.1016/j.ijhydene.2024.07.233 DOI: https://doi.org/10.1016/j.ijhydene.2024.07.233
15. Upadhyay M, Lee S, Jung S, et al. Systematic assessment of the anode flow field hydrodynamics in a new circular PEM water electrolyser. International Journal of Hydrogen Energy. 2020; 45(41): 20765-20775. doi: 10.1016/j.ijhydene.2020.05.164 DOI: https://doi.org/10.1016/j.ijhydene.2020.05.164
16. Toghyani S, Afshari E, Baniasadi E, et al. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochimica Acta. 2018; 267: 234-245. doi: 10.1016/j.electacta.2018.02.078 DOI: https://doi.org/10.1016/j.electacta.2018.02.078
17. Lu H, Pei XJ, Yan FY, et al. Numerical analysis of the effect of a radial serpentine flow field on PEMFC performance. Journal of Energy Engineering, 151(2) (2025). doi: 10.1061/jleed9.eyeng-5571 DOI: https://doi.org/10.1061/JLEED9.EYENG-5571
18. Olesen AC, Rømer C, Kær SK. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. International Journal of Hydrogen Energy. 2016; 41(1): 52-68. doi: 10.1016/j.ijhydene.2015.09.140 DOI: https://doi.org/10.1016/j.ijhydene.2015.09.140
19. Olesen AC, Frensch SH, Kær SK. Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochimica Acta. 2019; 293: 476-495. doi: 10.1016/j.electacta.2018.10.008 DOI: https://doi.org/10.1016/j.electacta.2018.10.008
20. Lafmejani SS, Olesen AC, Kær SK. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels. International Journal of Hydrogen Energy. 2017; 42(26): 16333-16344. doi: 10.1016/j.ijhydene.2017.05.079 DOI: https://doi.org/10.1016/j.ijhydene.2017.05.079
21. Yu Z, Xiao F, Wang Y, et al. A comprehensive investigation on a modified interdigitated-jet hole flow field for under-rib mass transfer. Journal of Power Sources. 2024; 624: 235611. doi: 10.1016/j.jpowsour.2024.235611 DOI: https://doi.org/10.1016/j.jpowsour.2024.235611
22. Liu J, Wang L, Zhang X, et al. Study on interdigital flow field structure and two phase flow characteristics of PEM electrolyzer. Chemical Engineering and Processing - Process Intensification. 2024; 202: 109868. doi: 10.1016/j.cep.2024.109868 DOI: https://doi.org/10.1016/j.cep.2024.109868
23. Su X, Zhang Q, Xu L, et al. A novel combined flow field design and performance analysis of proton exchange membrane electrolysis cell. International Journal of Hydrogen Energy. 2024; 61: 444-459. doi: 10.1016/j.ijhydene.2024.02.339 DOI: https://doi.org/10.1016/j.ijhydene.2024.02.339
24. Khazaee I, Ghiabi AR, Mohammadiun H, et al. Significance of new geometry of flow channels in proton exchange membrane fuel cell with comparing experimental and numerical methods. Heliyon. 2024; 10(11): e32026. doi: 10.1016/j.heliyon.2024.e32026 DOI: https://doi.org/10.1016/j.heliyon.2024.e32026
25. Bondada YY, Golagani NS. Numerical Analysis of Bio-Emulated Flow Channel: Effect of Design and Operating Parameters on PEM Fuel Cell Performance. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2025; 49(3): 1231-1248. doi: 10.1007/s40997-025-00840-y DOI: https://doi.org/10.1007/s40997-025-00840-y
26. Rahmani E, Moradi T, Ghandehariun S, et al. Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field. Energy. 2023; 264: 126115. doi: 10.1016/j.energy.2022.126115 DOI: https://doi.org/10.1016/j.energy.2022.126115
27. Zhang Z, Wang C, Chen C. Numerical study on the effect of a novel staggered flow field on the performance of proton exchange membrane fuel cell. International Journal of Energy Research. 2022; 46(13): 18648-18662. doi: 10.1002/er.8482 DOI: https://doi.org/10.1002/er.8482
28. Li Y, Bi J, Tang M, et al. Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells. Micromachines. 2022; 13(5): 665. doi: 10.3390/mi13050665 DOI: https://doi.org/10.3390/mi13050665
29. Wang Y, Yue L, Wang S. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance. Journal of Power Sources. 2017; 344: 32-38. doi: 10.1016/j.jpowsour.2017.01.075 DOI: https://doi.org/10.1016/j.jpowsour.2017.01.075
30. Carmo M, Fritz DL, Mergel J, et al. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy. 2013; 38(12): 4901-4934. doi: 10.1016/j.ijhydene.2013.01.151 DOI: https://doi.org/10.1016/j.ijhydene.2013.01.151
31. Abdol Rahim AH, Tijani AS, Kamarudin SK, et al. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport. Journal of Power Sources. 2016; 309: 56-65. doi: 10.1016/j.jpowsour.2016.01.012 DOI: https://doi.org/10.1016/j.jpowsour.2016.01.012
32. Han B, Steen SM, Mo J, et al. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. International Journal of Hydrogen Energy. 2015; 40(22): 7006-7016. doi: 10.1016/j.ijhydene.2015.03.164 DOI: https://doi.org/10.1016/j.ijhydene.2015.03.164
33. Abdin Z, Webb CJ, Gray EMacA. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. International Journal of Hydrogen Energy. 2015; 40(39): 13243-13257. doi: 10.1016/j.ijhydene.2015.07.129 DOI: https://doi.org/10.1016/j.ijhydene.2015.07.129
34. Wang Z, Xu C, Wang X, et al. Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell. Science China Technological Sciences. 2021; 64(7): 1555-1566. doi: 10.1007/s11431-021-1810-9 DOI: https://doi.org/10.1007/s11431-021-1810-9
35. Yi X, Ye F, Guo H, et al. Two-Dimensional Numerical Simulation of Transient Response of Two-Phase Heat and Mass Transfer in a Proton Exchange Membrane Electrolyzer Cell. Sustainable Energy. 2018; 08(01): 10-22. doi: 10.12677/se.2018.81002 DOI: https://doi.org/10.12677/SE.2018.81002
36. Falcão DS, Pinto AMFR. A review on PEM electrolyzer modelling: Guidelines for beginners. Journal of Cleaner Production. 2020; 261: 121184. doi: 10.1016/j.jclepro.2020.121184 DOI: https://doi.org/10.1016/j.jclepro.2020.121184
37. Zhang Z, Xing X. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell. International Journal of Hydrogen Energy. 2020; 45(39): 20184-20193. doi: 10.1016/j.ijhydene.2020.02.102 DOI: https://doi.org/10.1016/j.ijhydene.2020.02.102
38. Han B, Mo J, Kang Z, et al. Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy. International Journal of Hydrogen Energy. 2017; 42(7): 4478-4489. doi: 10.1016/j.ijhydene.2016.12.103 DOI: https://doi.org/10.1016/j.ijhydene.2016.12.103
39. Miao Z, He Y, Li X, et al. A two-dimensional two-phase mass transport model for direct methanol fuel cells adopting a modified agglomerate approach. Journal of Power Sources. 2008; 185(2): 1233-1246. doi: 10.1016/j.jpowsour.2008.06.007 DOI: https://doi.org/10.1016/j.jpowsour.2008.06.007
40. Toghyani S, Afshari E, Baniasadi E. Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells. Electrochimica Acta. 2018; 290: 506-519. doi: 10.1016/j.electacta.2018.09.106 DOI: https://doi.org/10.1016/j.electacta.2018.09.106
41. Xing XH. Study on heat and mass transfer and flow field structure in proton exchange membrane electrolyzer cells [Master’s thesis] (Chinese). Beijing Jiaotong University; 2020.
42. Majasan JO, Cho JIS, Dedigama I, et al. Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: Electrochemical and optical characterisation. International Journal of Hydrogen Energy. 2018; 43(33): 15659-15672. doi: 10.1016/j.ijhydene.2018.07.003 DOI: https://doi.org/10.1016/j.ijhydene.2018.07.003




.jpg)
.jpg)
