A review on the application of low-temperature plasma in the modification of key materials for aqueous zinc-ion batteries

Authors

  • Qi Qi School of Materials Science and Engineering, Anhui University, Hefei 230601, China
  • Yanan Guo School of Materials Science and Engineering, Anhui University, Hefei 230601, China
  • Chenpei Huang School of Materials Science and Engineering, Anhui University, Hefei 230601, China
  • Chenyu Fan School of Materials Science and Engineering, Anhui University, Hefei 230601, China
  • Jingjing Xu School of Materials Science and Engineering, Anhui University, Hefei 230601, China
  • Xin-Yao Yu School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Article ID: 365
476 Views

DOI:

https://doi.org/10.18686/cest365

Keywords:

low-temperature plasma modification; aqueous zinc-ion batteries; key materials; Zn anode; manganese oxide

Abstract

In the context of the global energy transition, zinc-ion batteries (ZIBs) have attracted widespread attention due to their environmental friendliness, low cost, and high safety. However, the development of ZIBs faces many challenges, including dendrite growth, performance degradation of cathode material, and interface side reactions between electrode and electrolyte. The solution of these problems relies heavily on the properties improvement of the key materials of ZIBs. Low-temperature plasma (LTP) technology, with its high energy, high activity, low temperature, and high efficiency, offers advantages such as flexible process control, a wide range of applications, mild operating conditions, and environmental friendliness, providing an innovative approach for the modification of key ZIB materials. The application of LTP technology in the modification of key materials for ZIBs, such as zinc anodes, cathode materials, and separators, is reviewed. In which the focus is on the electrochemical performance optimization of the zinc anodes by LTP modification technology. Finally, the problems, challenges, and future directions of efforts in the application of LTP technology for the modification of key materials for ZIBs are discussed.

Downloads

Published

2025-04-15

How to Cite

Qi, Q., Guo, Y., Huang, C., Fan, C., Xu, J., & Yu, X.-Y. (2025). A review on the application of low-temperature plasma in the modification of key materials for aqueous zinc-ion batteries. Clean Energy Science and Technology, 3(2), 365. https://doi.org/10.18686/cest365

References

1. He W, Gu T, Xu X, et al. Uniform In Situ Grown ZIF-L Layer for Suppressing Hydrogen Evolution and Homogenizing Zn Deposition in Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces. 2022; 14(35): 40031-40042. doi: 10.1021/acsami.2c11313 DOI: https://doi.org/10.1021/acsami.2c11313

2. Ying H, Huang P, Zhang Z, et al. Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries. Nano-Micro Letters. 2022; 14(1). doi: 10.1007/s40820-022-00921-6 DOI: https://doi.org/10.1007/s40820-022-00921-6

3. Yang Z, Hu C, Zhang Q, et al. Bulk‐Phase Reconstruction Enables Robust Zinc Metal Anodes for Aqueous Zinc‐Ion Batteries. Angewandte Chemie International Edition. 2023; 62(35). doi: 10.1002/anie.202308017 DOI: https://doi.org/10.1002/anie.202308017

4. Zhang Q, Luan J, Huang X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications. 2020; 11(1). doi: 10.1038/s41467-020-17752-x DOI: https://doi.org/10.1038/s41467-020-17752-x

5. Ming F, Zhu Y, Huang G, et al. Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Journal of the American Chemical Society. 2022; 144(16): 7160-7170. doi: 10.1021/jacs.1c12764 DOI: https://doi.org/10.1021/jacs.1c12764

6. Dai Y, Zhang C, Zhang W, et al. Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie International Edition. 2023; 62(18). doi: 10.1002/anie.202301192 DOI: https://doi.org/10.1002/anie.202301192

7. Zhou J, Xie M, Wu F, et al. Ultrathin Surface Coating of Nitrogen‐Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc‐Ion Batteries. Advanced Materials. 2021; 33(33). doi: 10.1002/adma.202101649 DOI: https://doi.org/10.1002/adma.202101649

8. Li J, Liu Z, Han S, et al. Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries. Nano-Micro Letters. 2023; 15(1). doi: 10.1007/s40820-023-01206-2 DOI: https://doi.org/10.1007/s40820-023-01206-2

9. Cao Q, Pan Z, Gao Y, et al. Stable Imprinted Zincophilic Zn Anodes with High Capacity. Advanced Functional Materials. 2022; 32(41). doi: 10.1002/adfm.202205771 DOI: https://doi.org/10.1002/adfm.202205771

10. Liu J, Ye C, Wu H, et al. 2D Mesoporous Zincophilic Sieve for High-Rate Sulfur-Based Aqueous Zinc Batteries. Journal of the American Chemical Society. 2023; 145(9): 5384-5392. doi: 10.1021/jacs.2c13540 DOI: https://doi.org/10.1021/jacs.2c13540

11. Wang X, Zhang Z, Xi B, et al. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano. 2021; 15(6): 9244-9272. doi: 10.1021/acsnano.1c01389 DOI: https://doi.org/10.1021/acsnano.1c01389

12. Wu B, Wu Y, Lu Z, et al. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A. 2021; 9(8): 4734-4743. doi: 10.1039/d0ta11841a DOI: https://doi.org/10.1039/D0TA11841A

13. Liang H, Alshareef HN. A Plasma‐Assisted Route to the Rapid Preparation of Transition‐Metal Phosphides for Energy Conversion and Storage. Small Methods. 2017; 1(7). doi: 10.1002/smtd.201700111 DOI: https://doi.org/10.1002/smtd.201700111

14. Liang H, Ming F, Alshareef HN. Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials. 2018; 8(29). doi: 10.1002/aenm.201801804 DOI: https://doi.org/10.1002/aenm.201801804

15. Shi F, Jiang J, Wang X, et al. Development of plasma technology for the preparation and modification of energy storage materials. Chemical Communications. 2024; 60(20): 2700-2715. doi: 10.1039/d3cc05341e DOI: https://doi.org/10.1039/D3CC05341E

16. Wang Z, Chen J, Sun S, et al. Plasma-enabled synthesis and modification of advanced materials for electrochemical energy storage. Energy Storage Materials. 2022; 50: 161-185. doi: 10.1016/j.ensm.2022.05.018 DOI: https://doi.org/10.1016/j.ensm.2022.05.018

17. Yao Y, Jiao X, Xu X, et al. Prospective of Magnetron Sputtering for Interface Design in Rechargeable Lithium Batteries. Advanced Energy Materials. 2024; 14(47). doi: 10.1002/aenm.202403117 DOI: https://doi.org/10.1002/aenm.202403117

18. Nava-Avendaño J, Veilleux J. Plasma processes in the preparation of lithium-ion battery electrodes and separators. Journal of Physics D: Applied Physics. 2017; 50(16): 163001. doi: 10.1088/1361-6463/aa6245 DOI: https://doi.org/10.1088/1361-6463/aa6245

19. Hao J, Li B, Li X, et al. An In‐Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn‐Ion Batteries. Advanced Materials. 2020; 32(34). doi: 10.1002/adma.202003021 DOI: https://doi.org/10.1002/adma.202003021

20. El-Sayed AR, Mohran HS, Abd El-Lateef HM. Effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution. Journal of Power Sources. 2010; 195(19): 6924-6936. doi: 10.1016/j.jpowsour.2010.03.071 DOI: https://doi.org/10.1016/j.jpowsour.2010.03.071

21. Huang S, Zhu J, Tian J, et al. Recent Progress in the Electrolytes of Aqueous Zinc‐Ion Batteries. Chemistry – A European Journal. 2019; 25(64): 14480-14494. doi: 10.1002/chem.201902660 DOI: https://doi.org/10.1002/chem.201902660

22. Wu TH, Zhang Y, Althouse ZD, et al. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano. 2019; 6: 100032. doi: 10.1016/j.mtnano.2019.100032 DOI: https://doi.org/10.1016/j.mtnano.2019.100032

23. Chen D, Lu M, Cai D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry. 2021; 54: 712-726. doi: 10.1016/j.jechem.2020.06.016 DOI: https://doi.org/10.1016/j.jechem.2020.06.016

24. Wang Y, Xie J, Luo J, et al. Methods for Rational Design of Advanced Zn‐Based Batteries. Small Methods. 2022; 6(8). doi: 10.1002/smtd.202200560 DOI: https://doi.org/10.1002/smtd.202200560

25. Jia H, Wang Z, Tawiah B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy. 2020; 70: 104523. doi: 10.1016/j.nanoen.2020.104523 DOI: https://doi.org/10.1016/j.nanoen.2020.104523

26. An Y, Tian Y, Zhang K, et al. Stable Aqueous Anode‐Free Zinc Batteries Enabled by Interfacial Engineering. Advanced Functional Materials. 2021; 31(26). doi: 10.1002/adfm.202101886 DOI: https://doi.org/10.1002/adfm.202101886

27. Guo N, Huo W, Dong X, et al. A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods. 2022; 6(9). doi: 10.1002/smtd.202200597 DOI: https://doi.org/10.1002/smtd.202200597

28. Jia X, Liu C, Neale ZG, et al. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews. 2020; 120(15): 7795-7866. doi: 10.1021/acs.chemrev.9b00628 DOI: https://doi.org/10.1021/acs.chemrev.9b00628

29. Fan K, Tsang YH, Huang H. Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications. Materials Reports: Energy. 2023; 3(3): 100213. doi: 10.1016/j.matre.2023.100213 DOI: https://doi.org/10.1016/j.matre.2023.100213

30. Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy & Environmental Science. 2022; 15(12): 5017-5038. doi: 10.1039/d2ee02416k DOI: https://doi.org/10.1039/D2EE02416K

31. Hao J, Yuan L, Johannessen B, et al. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc‐Ion Batteries. Angewandte Chemie International Edition. 2021; 60(47): 25114-25121. doi: 10.1002/anie.202111398 DOI: https://doi.org/10.1002/anie.202111398

32. Li B, Zeng Y, Zhang W, et al. Separator designs for aqueous zinc-ion batteries. Science Bulletin. 2024; 69(5): 688-703. doi: 10.1016/j.scib.2024.01.011 DOI: https://doi.org/10.1016/j.scib.2024.01.011

33. Han R, Jiang T, Wang Z, et al. Reconfiguring Zn2+ Solvation Network and Interfacial Chemistry of Zn Metal Anode with Molecular Engineered Crown Ether Additive. Advanced Functional Materials. 2024; 35(2). doi: 10.1002/adfm.202412255 DOI: https://doi.org/10.1002/adfm.202412255

34. Qiu M, Liu H, Luo J, et al. Long-life zinc electrodes achieved by oxygen plasma functionalization. Chemical Communications. 2022; 58(7): 993-996. doi: 10.1039/d1cc05849e DOI: https://doi.org/10.1039/D1CC05849E

35. Jia H, Qiu M, Lan C, et al. Advanced Zinc Anode with Nitrogen‐Doping Interface Induced by Plasma Surface Treatment. Advanced Science. 2021; 9(3). doi: 10.1002/advs.202103952 DOI: https://doi.org/10.1002/advs.202103952

36. Li M, Zhou X, He X, et al. Controllable CF4 Plasma In Situ Modification Strategy Enables Durable Zinc Metal Anode. ACS Applied Materials & Interfaces. 2023; 15(2): 3017-3027. doi: 10.1021/acsami.2c19863 DOI: https://doi.org/10.1021/acsami.2c19863

37. Yang X, Lv J, Cheng C, et al. Mosaic Nanocrystalline Graphene Skin Empowers Highly Reversible Zn Metal Anodes. Advanced Science. 2022; 10(4). doi: 10.1002/advs.202206077 DOI: https://doi.org/10.1002/advs.202206077

38. Sun M, Cheng Q, Ren X, et al. Electric Field Regulator Constructed by Magnetron Sputtering for Dendrite‐Free and Stable Zinc Metal Anode. Advanced Functional Materials. 2024; 35(3). doi: 10.1002/adfm.202413456 DOI: https://doi.org/10.1002/adfm.202413456

39. Ren Q, Tang X, Zhao X, et al. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy. 2023; 109: 108306. doi: 10.1016/j.nanoen.2023.108306 DOI: https://doi.org/10.1016/j.nanoen.2023.108306

40. Kim H.J, Kim S, Kim S, et al. Gold-Nanolayer-Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc-Ion Batteries. Advanced Materials, 2024, 36(1): 2308592 DOI: https://doi.org/10.1002/adma.202308592

41. Zheng J, Liu X, Zheng Y, et al. AgxZny Protective Coatings with Selective Zn2+/H+ Binding Enable Reversible Zn Anodes. Nano Letters. 2023; 23(13): 6156-6163. doi: 10.1021/acs.nanolett.3c01706 DOI: https://doi.org/10.1021/acs.nanolett.3c01706

42. Zhao F, Feng J, Dong H, et al. Ultrathin Protection Layer via Rapid Sputtering Strategy for Stable Aqueous Zinc Ion Batteries. Advanced Functional Materials. 2024; 34(51). doi: 10.1002/adfm.202409400 DOI: https://doi.org/10.1002/adfm.202409400

43. Guo X, Peng Q, Shin K, et al. Construction of a Composite Sn‐DLC Artificial Protective Layer with Hierarchical Interfacial Coupling Based on Gradient Coating Technology Toward Robust Anodes for Zn Metal Batteries. Advanced Energy Materials. 2024; 14(38). doi: 10.1002/aenm.202402015 DOI: https://doi.org/10.1002/aenm.202402015

44. Yang N, Gao Y, Bu F, et al. Backside Coating for Stable Zn Anode with High Utilization Rate. Advanced Materials. 2024; 36(26). doi: 10.1002/adma.202312934 DOI: https://doi.org/10.1002/adma.202312934

45. Li R, Du Y, Li Y, et al. Alloying Strategy for High-Performance Zinc Metal Anodes. ACS Energy Letters. 2022; 8(1): 457-476. doi: 10.1021/acsenergylett.2c01960 DOI: https://doi.org/10.1021/acsenergylett.2c01960

46. Zheng J, Huang Z, Zeng Y, et al. Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. Nano Letters. 2022; 22(3): 1017-1023. doi: 10.1021/acs.nanolett.1c03917 DOI: https://doi.org/10.1021/acs.nanolett.1c03917

47. Li B, Yang K, Ma J, et al. Multicomponent Copper‐Zinc Alloy Layer Enabling Ultra‐Stable Zinc Metal Anode of Aqueous Zn‐ion Battery. Angewandte Chemie International Edition. 2022; 61(47). doi: 10.1002/anie.202212587 DOI: https://doi.org/10.1002/anie.202212587

48. Su Y, Yang X, Zhang Q, et al. Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry. 2022; 904: 115883. doi: 10.1016/j.jelechem.2021.115883 DOI: https://doi.org/10.1016/j.jelechem.2021.115883

49. Mao C, Chang Y, Zhao X, et al. Functional carbon materials for high-performance Zn metal anodes. Journal of Energy Chemistry. 2022; 75: 135-153. doi: 10.1016/j.jechem.2022.07.034 DOI: https://doi.org/10.1016/j.jechem.2022.07.034

50. Wu L, Dong Y. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials. 2021; 41: 715-737. doi: 10.1016/j.ensm.2021.07.004 DOI: https://doi.org/10.1016/j.ensm.2021.07.004

51. Sun X, Bao J, Li K, et al. Advance in Using Plasma Technology for Modification or Fabrication of Carbon‐Based Materials and Their Applications in Environmental, Material, and Energy Fields. Advanced Functional Materials. 2020; 31(7). doi: 10.1002/adfm.202006287 DOI: https://doi.org/10.1002/adfm.202006287

52. Ortiz-Ortega E, Hosseini S, Martinez-Chapa SO, et al. Aging of plasma-activated carbon surfaces: Challenges and opportunities. Applied Surface Science. 2021; 565: 150362. doi: 10.1016/j.apsusc.2021.150362 DOI: https://doi.org/10.1016/j.apsusc.2021.150362

53. Zhang X, Ruan Q, Liu L, et al. Stable zinc metal anode with an ultrathin carbon coating for zinc-ion batteries. Journal of Electroanalytical Chemistry. 2023; 936: 117357. doi: 10.1016/j.jelechem.2023.117357 DOI: https://doi.org/10.1016/j.jelechem.2023.117357

54. Hu L, Xiao P, Xue L, et al. The rising zinc anodes for high-energy aqueous batteries. EnergyChem. 2021; 3(2): 100052. doi: 10.1016/j.enchem.2021.100052 DOI: https://doi.org/10.1016/j.enchem.2021.100052

55. Zong Q, Wu Y, Liu C, et al. Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Materials. 2022; 52: 250-283. doi: 10.1016/j.ensm.2022.08.007 DOI: https://doi.org/10.1016/j.ensm.2022.08.007

56. Zhou LF, Du T, Li JY, et al. A strategy for anode modification for future zinc-based battery application. Materials Horizons. 2022; 9(11): 2722-2751. doi: 10.1039/d2mh00973k DOI: https://doi.org/10.1039/D2MH00973K

57. Wu J, Yang L, Wang S, et al. Triple‐Functional Amorphous In2O3 Anode Protection Layer Design for High‐Performance Aqueous Zinc Ion Batteries. Advanced Functional Materials; 2024. DOI: https://doi.org/10.1002/adfm.202419492

58. Wang R, Wu Q, Wu M, et al. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Research. 2022; 15(8): 7227-7233. doi: 10.1007/s12274-022-4477-1 DOI: https://doi.org/10.1007/s12274-022-4477-1

59. Wei B, Zheng J, Abhishek, et al. Design Principle of Insulating Surface Protective Layers for Metallic Zn Anodes: A Case Study of ZrO2. Advanced Energy Materials. 2024; 14(24). doi: 10.1002/aenm.202401018 DOI: https://doi.org/10.1002/aenm.202401018

60. Jin H, Dai S, Xie K, et al. Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80%. Small. 2021; 18(4). doi: 10.1002/smll.202106441 DOI: https://doi.org/10.1002/smll.202106441

61. Gao L, Qin L, Wang B, et al. Highly‐Efficient and Robust Zn Anodes Enabled by Sub‐1‐µm Zincophilic CrN Coatings. Small. 2023; 20(16). doi: 10.1002/smll.202308818 DOI: https://doi.org/10.1002/smll.202308818

62. Zheng J, Wu Y, Xie H, et al. In Situ Alloying Sites Anchored on an Amorphous Aluminum Nitride Matrix for Crystallographic Reorientation of Zinc Deposits. ACS Nano. 2022; 17(1): 337-345. doi: 10.1021/acsnano.2c08196 DOI: https://doi.org/10.1021/acsnano.2c08196

63. Meng Y, Wang M, Xu J, et al. Balancing Interfacial Reactions through Regulating p‐Band Centers by an Indium Tin Oxide Protective Layer for Stable Zn Metal Anodes. Angewandte Chemie International Edition. 2023; 62(40). doi: 10.1002/anie.202308454 DOI: https://doi.org/10.1002/anie.202308454

64. Wu J, Yang L, Zhou S, et al. Long-lasting Zn metal anode coated with an industrially available amorphous InGaZnO layer. Chemical Engineering Journal. 2024; 501: 157729. doi: 10.1016/j.cej.2024.157729 DOI: https://doi.org/10.1016/j.cej.2024.157729

65. Jia H, Qiu M, Tang C, et al. Nano‐scale BN interface for ultra‐stable and wide temperature range tolerable Zn anode. EcoMat. 2022; 4(3). doi: 10.1002/eom2.12190 DOI: https://doi.org/10.1002/eom2.12190

66. Zheng J, Zhu G, Liu X, et al. Simultaneous Dangling Bond and Zincophilic Site Engineering of SiNx Protective Coatings toward Stable Zinc Anodes. ACS Energy Letters. 2022; 7(12): 4443-4450. doi: 10.1021/acsenergylett.2c02282 DOI: https://doi.org/10.1021/acsenergylett.2c02282

67. Zheng J, Cao Z, Ming F, et al. Preferred Orientation of TiN Coatings Enables Stable Zinc Anodes. ACS Energy Letters. 2021; 7(1): 197-203. doi: 10.1021/acsenergylett.1c02299 DOI: https://doi.org/10.1021/acsenergylett.1c02299

68. Kim S, Hee Ryu G, An G. Enhanced zinc-ion batteries through the coating of surface-functionalized graphene on the anode: A promising solution for uniform zinc plating. Applied Surface Science. 2023; 635: 157634. doi: 10.1016/j.apsusc.2023.157634 DOI: https://doi.org/10.1016/j.apsusc.2023.157634

69. Cao J, Wang Z, Yang Z, et al. High-performance zinc anodes enabled by atmospheric plasma enhanced cellulose protective layer for zinc ion batteries. Journal of Power Sources. 2025; 627: 235699. doi: 10.1016/j.jpowsour.2024.235699 DOI: https://doi.org/10.1016/j.jpowsour.2024.235699

70. An Y, Tian Y, Xiong S, et al. Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano. 2021; 15(7): 11828-11842. doi: 10.1021/acsnano.1c02928 DOI: https://doi.org/10.1021/acsnano.1c02928

71. Jia H, Qiu M, Tang C, et al. Advanced Flexible Carbon-Based Current Collector for Zinc Storage. Advanced Fiber Materials. 2022; 4(6): 1500-1510. doi: 10.1007/s42765-022-00182-3 DOI: https://doi.org/10.1007/s42765-022-00182-3

72. He M, Shu C, Zheng R, et al. Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries. Green Energy & Environment. 2023; 8(1): 318-330. doi: 10.1016/j.gee.2021.04.011 DOI: https://doi.org/10.1016/j.gee.2021.04.011

73. An Y, Tian Y, Man Q, et al. Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO2 Batteries. ACS Nano. 2022; 16(4): 6755-6770. doi: 10.1021/acsnano.2c01571 DOI: https://doi.org/10.1021/acsnano.2c01571

74. Zhu R, Xiong Z, Yang H, et al. Anode/Cathode Dual‐Purpose Aluminum Current Collectors for Aqueous Zinc‐Ion Batteries. Advanced Functional Materials. 2022; 33(8). doi: 10.1002/adfm.202211274 DOI: https://doi.org/10.1002/adfm.202211274

75. Sambandam B, Mathew V, Kim S, et al. An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem. 2022; 8(4): 924-946. doi: 10.1016/j.chempr.2022.03.019 DOI: https://doi.org/10.1016/j.chempr.2022.03.019

76. Luo H, Wang L, Ren P, et al. Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries. Nano Research. 2022; 15(9): 8603-8612. doi: 10.1007/s12274-022-4689-4 DOI: https://doi.org/10.1007/s12274-022-4689-4

77. Gao S, Li B, Tan H, et al. High‐Energy and Stable Subfreezing Aqueous Zn–MnO2 Batteries with Selective and Pseudocapacitive Zn‐Ion Insertion in MnO2. Advanced Materials. 2022; 34(21). doi: 10.1002/adma.202201510 DOI: https://doi.org/10.1002/adma.202201510

78. Huang C, Wang Q, Zhang D, et al. Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries. Nano Research. 2022; 15(9): 8118-8127. doi: 10.1007/s12274-022-4498-9 DOI: https://doi.org/10.1007/s12274-022-4498-9

79. Huang C, Wang Q, Tian G, et al. Oxygen vacancies-enriched Mn3O4 enabling high-performance rechargeable aqueous zinc-ion battery. Materials Today Physics. 2021; 21: 100518. doi: 10.1016/j.mtphys.2021.100518 DOI: https://doi.org/10.1016/j.mtphys.2021.100518

80. Shuai B, Zhou C, Pi Y, et al. Atomic Layer-Deposited ZnO Layer on Hydrated Vanadium Dioxide Cathodes against Vanadium Dissolution for Stable Zinc Ion Batteries. ACS Applied Energy Materials. 2022; 5(5): 6139-6145. doi: 10.1021/acsaem.2c00540 DOI: https://doi.org/10.1021/acsaem.2c00540

81. Zhang L, Yang S, Fu W, et al. Plasma-induced ε-MnO2 based aqueous zinc-ion batteries and their dissolution-deposition mechanism. Journal of Materials Science & Technology. 2022; 127: 206-213. doi: 10.1016/j.jmst.2022.03.028 DOI: https://doi.org/10.1016/j.jmst.2022.03.028

82. Jiang W, Xu X, Liu Y, et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. Journal of Alloys and Compounds. 2020; 827: 154273. doi: 10.1016/j.jallcom.2020.154273 DOI: https://doi.org/10.1016/j.jallcom.2020.154273

83. Wang Z, Xu H, Tao X, et al. Boosting the zinc-ion storage ability of MnO2 cathode by depositing oxygen-deficient CuOx layer. Journal of Energy Storage. 2024; 86: 111257. doi: 10.1016/j.est.2024.111257 DOI: https://doi.org/10.1016/j.est.2024.111257

84. Yun K, Yoo G, Kang SO, et al. Multichannel Pathways for Electron Transport in Batteries Using Carbon Composite Conductive Materials. ACS Sustainable Chemistry & Engineering. 2024; 12(44): 16229-16238. doi: 10.1021/acssuschemeng.4c05035 DOI: https://doi.org/10.1021/acssuschemeng.4c05035

85. Hou Z, Gao Y, Tan H, et al. Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nature Communications. 2021; 12(1). doi: 10.1038/s41467-021-23352-0 DOI: https://doi.org/10.1038/s41467-021-23352-0

86. Shen M, Wang A, Chen J, et al. Ion flux regulating with Au-modified separator to realize a homogenize Zn metal deposition. Journal of Colloid and Interface Science. 2025; 683: 892-900. doi: 10.1016/j.jcis.2024.12.117 DOI: https://doi.org/10.1016/j.jcis.2024.12.117