Revealing the local coke evolution under the pyrolysis and fuel-rich conditions by in-situ Raman microscopy

Authors

  • Kai-Ru Jin Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
  • Jiu-Jie Kuang Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
  • Zhen-Yu Tian Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
Article ID: 364
517 Views

DOI:

https://doi.org/10.18686/cest364

Keywords:

coke; pyrolysis; in-situ Raman; coke evolution mechanism

Abstract

Coke is a harmful carbon substance formed on the hot pipeline of chemical equipment and supersonic aircraft, reducing heat transfer efficiency and overall performance. The structure evolution of coke on the specific and local position of the inner surface of the quartz flow reactor was studied by in-situ Raman microscopy during the acetylene pyrolysis. The in-situ Raman measurement method was put forward by combining the Raman microscopy and the quartz flow reactor. The Raman spectra of coke were continuously recorded to reveal the structure variation. The integrated intensity, band intensity ratio, and crystalline size were evaluated. A mechanism of coke evolution at a local position was proposed based on the in-situ Raman methods, including four stages, namely physical deposition, surface reaction, inside reaction, and inside maturity. The influence of temperature and the presence and amount of oxygen on the coke was studied. The high temperature and presence of certain oxygen could promote the progress of coke evolution, represented by the earlier transition time, and larger crystalline size of coke. This work achieves the in-situ observation of coke and provides a new perspective to reveal the local coke evolution. Investigations remain needed to further reveal the mechanism of local coke evolution, especially the physical deposition and inside reaction stages.

Published

2025-06-03

How to Cite

Jin, K.-R., Kuang, J.-J., & Tian, Z.-Y. (2025). Revealing the local coke evolution under the pyrolysis and fuel-rich conditions by in-situ Raman microscopy. Clean Energy Science and Technology, 3(2), 364. https://doi.org/10.18686/cest364

References

1. Li XG, Zhang LH, Zhang RY, et al. CFD modeling of phase change and coke formation in petroleum refining heaters. Fuel Processing Technology. 2015; 134: 18-25. doi: 10.1016/j.fuproc.2015.03.005 DOI: https://doi.org/10.1016/j.fuproc.2015.03.005

2. Valus MG, Fontoura DVR, Serfaty R, et al. Computational fluid dynamic model for the estimation of coke formation and gas generation inside petrochemical furnace pipes with the use of a kinetic net. The Canadian Journal of Chemical Engineering. 2017; 95(12): 2286-2292. doi: 10.1002/cjce.23007 DOI: https://doi.org/10.1002/cjce.23007

3. Mahulkar AV, Heynderickx GJ, Marin GB. Simulation of the coking phenomenon in the superheater of a steam cracker. Chemical Engineering Science. 2014; 110: 31-43. doi: 10.1016/j.ces.2013.08.021 DOI: https://doi.org/10.1016/j.ces.2013.08.021

4. Li X, Zhang L, Li Q, et al. Steam reforming of sugars: Roles of hydroxyl group and carbonyl group in coke formation. Fuel. 2021; 292: 120282. doi: 10.1016/j.fuel.2021.120282 DOI: https://doi.org/10.1016/j.fuel.2021.120282

5. Bkangmo Kontchouo FM, Shao Y, Zhang S, et al. Steam reforming of ethanol, acetaldehyde, acetone and acetic acid: Understanding the reaction intermediates and nature of coke. Chemical Engineering Science. 2023; 265: 118257. doi: 10.1016/j.ces.2022.118257 DOI: https://doi.org/10.1016/j.ces.2022.118257

6. van Heerden ASJ, Judt DM, Jafari S, et al. Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities. Progress in Aerospace Sciences. 2022; 128: 100767. doi: 10.1016/j.paerosci.2021.100767 DOI: https://doi.org/10.1016/j.paerosci.2021.100767

7. Zhang C, Zhou J, Zhao J, et al. Three-dimensional CFD model for the coking of supercritical n-decane in circular and elliptical tubes. Chemical Engineering Science. 2024; 290: 119888. doi: 10.1016/j.ces.2024.119888 DOI: https://doi.org/10.1016/j.ces.2024.119888

8. Mendiara T, Domene MP, Millera A, et al. An experimental study of the soot formed in the pyrolysis of acetylene. Journal of Analytical and Applied Pyrolysis. 2005; 74(1-2): 486-493. doi: 10.1016/j.jaap.2004.11.019 DOI: https://doi.org/10.1016/j.jaap.2004.11.019

9. Wang X, Song Q, Wu Y, et al. Modelling and numerical simulation of n-heptane pyrolysis coking characteristics in a millimetre-sized tube reactor. Combustion and Flame. 2019; 201: 44-56. doi: 10.1016/j.combustflame.2018.12.006 DOI: https://doi.org/10.1016/j.combustflame.2018.12.006

10. Bao Z, Ye T, Wang R, et al. Experiment and modelling of supercritical pyrolysis and coking of RP-3 aviation kerosene in a U-bend tube. Chemical Engineering Journal. 2023; 454: 140234. doi: 10.1016/j.cej.2022.140234 DOI: https://doi.org/10.1016/j.cej.2022.140234

11. Xiao G, Xiong Z, Syed-Hassan SSA, et al. Coke formation during the pyrolysis of bio-oil: Further understanding on the evolution of radicals. Applications in Energy and Combustion Science. 2022; 9: 100050. doi: 10.1016/j.jaecs.2021.100050 DOI: https://doi.org/10.1016/j.jaecs.2021.100050

12. Tang S, Xu Q, Liu K, et al. Pyrolysis and coking behavior of CxHy with different structures in microchannel continuous flow reactor. Journal of Analytical and Applied Pyrolysis. 2022; 167: 105640. doi: 10.1016/j.jaap.2022.105640 DOI: https://doi.org/10.1016/j.jaap.2022.105640

13. Liu G, Wang X, Zhang X. Pyrolytic depositions of hydrocarbon aviation fuels in regenerative cooling channels. Journal of Analytical and Applied Pyrolysis. 2013; 104: 384-395. doi: 10.1016/j.jaap.2013.06.007 DOI: https://doi.org/10.1016/j.jaap.2013.06.007

14. Wang X, Lin Y, Zhang C. Carbon Deposition on the Venturi of a Gas Turbine Combustor Using Ethanol-Kerosene Blends. Journal of Thermal Science. 2022; 31(6): 2216-2224. doi: 10.1007/s11630-022-1628-3 DOI: https://doi.org/10.1007/s11630-022-1628-3

15. Zhang C, Gao H, Zhao J, et al. Dynamic coking simulation of supercritical n-decane in circular tubes. Fuel. 2023; 331: 125859. doi: 10.1016/j.fuel.2022.125859 DOI: https://doi.org/10.1016/j.fuel.2022.125859

16. Zhu M, Han H, Gao R, et al. Numerical investigation of pyrolysis coking characteristics of supercritical hydrocarbon fuels in sinusoidal cooling channels. Fuel. 2023; 344: 127881. doi: 10.1016/j.fuel.2023.127881 DOI: https://doi.org/10.1016/j.fuel.2023.127881

17. Li H, Wang X, Li T, et al. A transient coking model of hydrocarbon pyrolysis in hot pipe based on RPM analogy. Chemical Engineering Science. 2023; 269: 118495. doi: 10.1016/j.ces.2023.118495 DOI: https://doi.org/10.1016/j.ces.2023.118495

18. Tian K, Tang Z, Wang J, et al. Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel. Energy. 2022; 260: 125160. doi: 10.1016/j.energy.2022.125160 DOI: https://doi.org/10.1016/j.energy.2022.125160

19. Bernard S, Beyssac O, Benzerara K, et al. XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon. 2010; 48(9): 2506-2516. doi: 10.1016/j.carbon.2010.03.024 DOI: https://doi.org/10.1016/j.carbon.2010.03.024

20. Wang B, Gong X, Zhang Z, et al. Modelling and understanding deposit formation of hydrocarbon fuels from the coke characteristics. Fuel. 2022; 319: 123745. doi: 10.1016/j.fuel.2022.123745 DOI: https://doi.org/10.1016/j.fuel.2022.123745

21. Le KC, Pino T, Pham VT, et al. Raman spectroscopy of mini-CAST soot with various fractions of organic compounds: Structural characterization during heating treatment from 25 °C to 1000 °C. Combustion and Flame. 2019; 209: 291-302. doi: 10.1016/j.combustflame.2019.07.037 DOI: https://doi.org/10.1016/j.combustflame.2019.07.037

22. Tian ZY, Jin KR, Kuang JJ. An in situ combustion carbon deposit diagnostic instrument based on Raman microscopy. Review of Scientific Instruments. 2024; 95(10). doi: 10.1063/5.0207120 DOI: https://doi.org/10.1063/5.0207120

23. Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon. 2005; 43(8): 1731-1742. doi: 10.1016/j.carbon.2005.02.018 DOI: https://doi.org/10.1016/j.carbon.2005.02.018

24. Jäger C, Henning T, Schlögl R, et al., Spectral properties of carbon black. Journal of Non-Crystalline Solids. 1999; 258(1): 161-179. doi: 10.1016/S0022-3093(99)00436-6 DOI: https://doi.org/10.1016/S0022-3093(99)00436-6

25. Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Ferrari AC, Robertson J, eds. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 2004; 362(1824): 2477-2512. doi: 10.1098/rsta.2004.1452 DOI: https://doi.org/10.1098/rsta.2004.1452

26. Ess MN, Ferry D, Kireeva ED, et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating. Carbon. 2016; 105: 572-585. doi: 10.1016/j.carbon.2016.04.056 DOI: https://doi.org/10.1016/j.carbon.2016.04.056

27. Parent P, Laffon C, Marhaba I, et al. Nanoscale characterization of aircraft soot: A high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon. 2016; 101: 86-100. doi: 10.1016/j.carbon.2016.01.040 DOI: https://doi.org/10.1016/j.carbon.2016.01.040

28. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095-14107. doi: 10.1103/physrevb.61.14095 DOI: https://doi.org/10.1103/PhysRevB.61.14095

29. Cançado LG, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters. 2006; 88(16). doi: 10.1063/1.2196057 DOI: https://doi.org/10.1063/1.2196057

30. Yang C, Tang H, Magnotti G. Picosecond Kerr-gated Raman spectroscopy for measurements in sooty and PAH rich hydrocarbon flames. Proceedings of the Combustion Institute. 2021; 38(1): 1797-1804. doi: 10.1016/j.proci.2020.07.101 DOI: https://doi.org/10.1016/j.proci.2020.07.101

31. Cabo-Fernandez L, Neale AR, Braga F, et al. Kerr gated Raman spectroscopy of LiPF6salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries. Physical Chemistry Chemical Physics. 2019; 21(43): 23833-23842. doi: 10.1039/c9cp02430a DOI: https://doi.org/10.1039/C9CP02430A

32. Mallet-Ladeira P, Puech P, Weisbecker P, et al. Behavior of Raman D band for pyrocarbons with crystallite size in the 2–5 nm range. Applied Physics A. 2013; 114(3): 759-763. doi: 10.1007/s00339-013-7671-x DOI: https://doi.org/10.1007/s00339-013-7671-x

33. Seong HJ, Boehman AL. Evaluation of Raman Parameters Using Visible Raman Microscopy for Soot Oxidative Reactivity. Energy & Fuels. 2013; 27(3): 1613-1624. doi: 10.1021/ef301520y DOI: https://doi.org/10.1021/ef301520y

34. Le KC, Lefumeux C, Bengtsson PE, et al. Direct observation of aliphatic structures in soot particles produced in low-pressure premixed ethylene flames via online Raman spectroscopy. Proceedings of the Combustion Institute. 2019; 37(1): 869-876. doi: 10.1016/j.proci.2018.08.003 DOI: https://doi.org/10.1016/j.proci.2018.08.003

35. Andrésen JM, Strohm JJ, Sun L, et al. Relationship between the Formation of Aromatic Compounds and Solid Deposition during Thermal Degradation of Jet Fuels in the Pyrolytic Regime. Energy & Fuels. 2001; 15(3): 714-723. doi: 10.1021/ef000256q DOI: https://doi.org/10.1021/ef000256q

36. Commodo M, Joo PH, De Falco G, et al. Raman Spectroscopy of Soot Sampled in High-Pressure Diffusion Flames. Energy & Fuels. 2017; 31(9): 10158-10164. doi: 10.1021/acs.energyfuels.7b01674 DOI: https://doi.org/10.1021/acs.energyfuels.7b01674

37. Le KC, Lefumeux C, Pino T. Watching soot inception via online Raman spectroscopy. Combustion and Flame. 2022; 236: 111817. doi: 10.1016/j.combustflame.2021.111817 DOI: https://doi.org/10.1016/j.combustflame.2021.111817

38. Shu G, Dong L, Liang X. A review of experimental studies on deposits in the combustion chambers of internal combustion engines. International Journal of Engine Research. 2012; 13(4): 357-369. doi: 10.1177/1468087411427661 DOI: https://doi.org/10.1177/1468087411427661

39. Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion. 1991; 23(1): 1559-1566. doi: 10.1016/S0082-0784(06)80426-1 DOI: https://doi.org/10.1016/S0082-0784(06)80426-1

40. Deng Z, Chen Y, Hu X, et al. Investigation on bio-oil pyrolysis with Ni/Al2O3 blending: Influence of the blended catalyst on coke formation. Fuel. 2024; 358: 130274. doi: 10.1016/j.fuel.2023.130274 DOI: https://doi.org/10.1016/j.fuel.2023.130274

41. Han ZX. Deposition characteristics of thermal oxidation deposition of kerosene and the effects on heat transfer in cooling channels, in School of Energy Science and Engineering. Harbin Institute of Technology: Heilongjiang, China; 2022.