Electronic, magnetic properties and magneto-caloric effects of NdSi Monte Carlo study
DOI:
https://doi.org/10.18686/cest338Keywords:
NdSi compound; first principal calculations; Monte Carlo simulations; magnetocaloric effect; magnetic propertiesAbstract
The increasing focus on rare-earth-based intermetallic materials has intensified the search for compounds capable of delivering superior performance in low-temperature magnetic refrigeration systems. In the present work, we theoretically examine the electronic, magnetic, and magnetocaloric characteristics of the NdSi intermetallic compound by employing a hybrid computational approach that combines density functional theory (DFT) and Monte Carlo simulations. DFT results indicate a magnetic moment of approximately 3.36 µB per Nd3+ ion. To further assess the magnetic response, Monte Carlo simulations were conducted using DFT-derived exchange coupling constants as input, enabling analysis of magnetic ordering, isothermal magnetic entropy variation, and relative cooling power (RCP) near the Curie temperature (Tc = 47 K). The computed peak value of the magnetic entropy change (ΔSm) is 12.1 J·kg−1·K−1, while the corresponding RCP reaches 201 J·kg−1 under an applied magnetic field change of Δh = 0–5 T. These outcomes underline the excellent magnetocaloric potential of NdSi, suggesting its viability as a high-efficiency, low-temperature refrigerant and a compelling substitute for other intermetallic systems in next-generation cooling technologies.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Romero Gómez J, Ferreiro Garcia R, De Miguel Catoira A, et al. Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration. Renewable and Sustainable Energy Reviews. 2013; 17: 74-82. doi: 10.1016/j.rser.2012.09.027 DOI: https://doi.org/10.1016/j.rser.2012.09.027
2. Mezaal NA, Osintsev KV, Zhirgalova TB. Review of magnetic refrigeration system as alternative to conventional refrigeration system. IOP Conference Series: Earth and Environmental Science. 2017; 87: 032024. doi: 10.1088/1755-1315/87/3/032024 DOI: https://doi.org/10.1088/1755-1315/87/3/032024
3. Sari O, Balli M. From conventional to magnetic refrigerator technology. International Journal of Refrigeration. 2014; 37: 8-15. doi: 10.1016/j.ijrefrig.2013.09.027 DOI: https://doi.org/10.1016/j.ijrefrig.2013.09.027
4. Gottschall T, Skokov KP, Fries M, et al. Making a Cool Choice: The Materials Library of Magnetic Refrigeration. Advanced Energy Materials. 2019; 9(34). doi: 10.1002/aenm.201901322 DOI: https://doi.org/10.1002/aenm.201901322
5. Pecharsky VK, Jr KAG. Magnetocaloric e!ect and magnetic refrigeration. Journal of Magnetism and Magnetic Materials. 1999; 200(1-3): 44-56. doi: 10.1016/S0304-8853(99)00397-2 DOI: https://doi.org/10.1016/S0304-8853(99)00397-2
6. Zimm C, Jastrab A, Sternberg A, et al. Description and Performance of a Near-Room Temperature Magnetic Refrigerator. In: Advances in Cryogenic Engineering. Springer; 1998. DOI: https://doi.org/10.1007/978-1-4757-9047-4_222
7. Alahmer A, Al-Amayreh M, Mostafa AO, et al. Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives. Energies. 2021; 14(15): 4662. doi: 10.3390/en14154662 DOI: https://doi.org/10.3390/en14154662
8. Hashimoto T, Numasawa T, Shino M, Okada T. Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants. Cryogenics. 1981; 21(11): 647-653. doi: 10.1016/0011-2275(81)90254-X DOI: https://doi.org/10.1016/0011-2275(81)90254-X
9. Lu SF, Ma L, Wang J, et al. Effect of configuration entropy on magnetocaloric effect of rare earth high-entropy alloy. Journal of Alloys and Compounds. 2021; 874: 159918. doi: 10.1016/j.jallcom.2021.159918 DOI: https://doi.org/10.1016/j.jallcom.2021.159918
10. Andreenko AS, Belov KP, Nikitin SA, et al. Magnetocaloric effects in rare-earth magnetic materials. Uspekhi Fizicheskih Nauk. 1989; 158(8): 553. doi: 10.3367/ufnr.0158.198908a.0553 DOI: https://doi.org/10.3367/UFNr.0158.198908a.0553
11. Sarlar K, Tekgul A, Kucuk I. Magnetocaloric Properties of Rare-Earth-Free Mn27Cr7Ni33Ge25Si8 High-Entropy Alloy. IEEE Magnetics Letters. 2019; 10: 1-5. doi: 10.1109/lmag.2019.2955667 DOI: https://doi.org/10.1109/LMAG.2019.2955667
12. Singh NK, Suresh KG, Nirmala R, et al. Magnetic and magnetocaloric properties of the intermetallic compound TbNiAl. Journal of Magnetism and Magnetic Materials. 2006; 302(2): 302-305. doi: 10.1016/j.jmmm.2005.09.023 DOI: https://doi.org/10.1016/j.jmmm.2005.09.023
13. Abbasi M, El Fdil R, Salmani E, et al. Evaluating the properties of the intermetallic compound HoN for magnetic refrigerator application: Combined DFT and Monte Carlo simulation. Solid State Communications. 2022; 350: 114737. doi: 10.1016/j.ssc.2022.114737 DOI: https://doi.org/10.1016/j.ssc.2022.114737
14. El Fdil R, Essajai R, Ennassiri N, et al. Electronic, magnetic and magneto-caloric properties in intermetallic compound PrSi. Phase Transitions. 2020; 93(12): 1123-1131. doi: 10.1080/01411594.2020.1844201 DOI: https://doi.org/10.1080/01411594.2020.1844201
15. Yamamoto TA, Nakagawa T, Sako K, et al. Magnetocaloric effect of rare earth mono-nitrides, TbN and HoN. Journal of Alloys and Compounds. 2004; 376(1-2): 17-22. doi: 10.1016/j.jallcom.2003.12.012 DOI: https://doi.org/10.1016/j.jallcom.2003.12.012
16. Szałowski K. Low-Temperature Magnetocaloric Properties of V12 Polyoxovanadate Molecular Magnet: A Theoretical Study. Materials. 2020; 13(19): 4399. doi: 10.3390/ma13194399 DOI: https://doi.org/10.3390/ma13194399
17. Kowalewska P, Szałowski K. Magnetocaloric properties of V6 molecular magnet. Journal of Magnetism and Magnetic Materials. 2020; 496: 165933. doi: 10.1016/j.jmmm.2019.165933 DOI: https://doi.org/10.1016/j.jmmm.2019.165933
18. Fitta M, Pełka R, Konieczny P, et al. Multifunctional Molecular Magnets: Magnetocaloric Effect in Octacyanometallates. Crystals. 2018; 9(1): 9. doi: 10.3390/cryst9010009 DOI: https://doi.org/10.3390/cryst9010009
19. Gottschall T, Kuz’min MD, Skokov KP, et al. Magnetocaloric effect of gadolinium in high magnetic fields. Physical Review B. 2019; 99(13). doi: 10.1103/physrevb.99.134429 DOI: https://doi.org/10.1103/PhysRevB.99.134429
20. Taskaev SV, Kuz’min MD, Skokov KP, et al. Giant induced anisotropy ruins the magnetocaloric effect in gadolinium. Journal of Magnetism and Magnetic Materials. 2013; 331: 33-36. doi: 10.1016/j.jmmm.2012.11.016 DOI: https://doi.org/10.1016/j.jmmm.2012.11.016
21. Kamantsev AP, Koledov VV, Mashirov AV, et al. Magnetocaloric Effect of Gadolinium at Adiabatic and Quasi-Isothermal Conditions in High Magnetic Fields. Solid State Phenomena. 2015; 233-234: 216-219. doi: 10.4028/www.scientific.net/ssp.233-234.216 DOI: https://doi.org/10.4028/www.scientific.net/SSP.233-234.216
22. Yue M, Zhang HG, Liu DM, et al. MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects. Chinese Physics B. 2015; 24(1): 017505. doi: 10.1088/1674-1056/24/1/017505 DOI: https://doi.org/10.1088/1674-1056/24/1/017505
23. Zou JD. Magnetocaloric and barocaloric effects in a Gd 5 Si 2 Ge 2 compound. Chinese Physics B. 2012; 21(3): 037503. doi: 10.1088/1674-1056/21/3/037503 DOI: https://doi.org/10.1088/1674-1056/21/3/037503
24. Zhuang YH, Li JQ, Huang WD, et al. Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound. Journal of Alloys and Compounds. 2006; 421(1-2): 49-53. doi: 10.1016/j.jallcom.2005.11.052 DOI: https://doi.org/10.1016/j.jallcom.2005.11.052
25. Fujieda S, Fujita A, Fukamichi K. Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds. Applied Physics Letters. 2002; 81(7): 1276-1278. doi: 10.1063/1.1498148 DOI: https://doi.org/10.1063/1.1498148
26. Nguyen VN, Tchéou F, Rossat-Mignod J. Magnetic structures of PrSi and NdSi intermetallic alloys. Solid State Communications. 1977; 23(11): 821-823. doi: 10.1016/0038-1098(77)90960-7 DOI: https://doi.org/10.1016/0038-1098(77)90960-7
27. Nirmala R, Morozkin AV, Buddhikot D, et al. Magnetocaloric effect in the binary intermetallic compound DySi. Journal of Magnetism and Magnetic Materials. 2008; 320(6): 1184-1187. doi: 10.1016/j.jmmm.2007.11.017 DOI: https://doi.org/10.1016/j.jmmm.2007.11.017
28. Xu ZY, Shen J, Zheng XQ, et al. Magnetocaloric Effect in ErSi Compound. IEEE Transactions on Magnetics. 2011; 47(10): 2470-2473. doi: 10.1109/tmag.2011.2153837 DOI: https://doi.org/10.1109/TMAG.2011.2153837
29. Wang LC, Shen BG. Magnetic properties and magnetocaloric effects of PrSi. Rare Metals. 2014; 33(3): 239-243. doi: 10.1007/s12598-014-0310-7 DOI: https://doi.org/10.1007/s12598-014-0310-7
30. Zhang QM, Gao RL, Cui L, et al. Magnetic properties and magnetocaloric effect of the compound NdSi. Physica B: Condensed Matter. 2015; 456: 258-260. doi: 10.1016/j.physb.2014.09.008 DOI: https://doi.org/10.1016/j.physb.2014.09.008
31. Jalal EM, Kerrai H, Saadi H, et al. Theoretical investigation of magnetic and magnetocaloric properties of the half-Heusler alloy MnCoBi for magnetic refrigeration applications. Physics Letters A. 2024; 527: 130007. doi: 10.1016/j.physleta.2024.130007 DOI: https://doi.org/10.1016/j.physleta.2024.130007
32. Kerrai H, Saadi H, Jalal EM, et al. Hysteresis behavior and magnetocaloric effect in MnNiGa2 full-Heusler alloy. Solid State Communications. 2024; 394: 115717. doi: 10.1016/j.ssc.2024.115717 DOI: https://doi.org/10.1016/j.ssc.2024.115717
33. Salama M, Jalal EM, Saadi H, et al. Theoretical study of magnetic, magnetocaloric, and hysteresis behavior of the antiperovskite compound Mn3AlN. Applied Physics A. 2025; 131(2). doi: 10.1007/s00339-025-08291-7 DOI: https://doi.org/10.1007/s00339-025-08291-7
34. Masrour R, Jabar A, Benyoussef A, et al. Monte Carlo simulation study of magnetocaloric effect in NdMnO 3 perovskite. Journal of Magnetism and Magnetic Materials. 2016; 401: 91-95. doi: 10.1016/j.jmmm.2015.10.019 DOI: https://doi.org/10.1016/j.jmmm.2015.10.019
35. Kadim G, Masrour R, Jabar A. Large magnetocaloric effect, magnetic and electronic properties in Ho3Pd2 compound: Ab initio calculations and Monte Carlo simulations. Journal of Magnetism and Magnetic Materials. 2020; 499: 166263. doi: 10.1016/j.jmmm.2019.166263 DOI: https://doi.org/10.1016/j.jmmm.2019.166263
36. Masrour R, Kadim G, Jabar A, et al. Emerging opportunities for Sr2FeReO6 and Sr2CrWO6 double perovskites in potential magnetic refrigerants and spintronics in room temperature regime. Applied Physics A. 2022; 128(11). doi: 10.1007/s00339-022-06152-1 DOI: https://doi.org/10.1007/s00339-022-06152-1
37. Elkoua IA, Masrour R. Structural, thermodynamics, optical, electronic, magnetic and thermoelectric properties of Heusler Ni2MnGa: An ab initio calculations. Optical and Quantum Electronics. 2022; 54(10). doi: 10.1007/s11082-022-03999-9 DOI: https://doi.org/10.1007/s11082-022-03999-9
38. Ennassiri N, Tahiri N, El Bounagui O, et al. Structural, electronic, magnetic, and magnetocaloric properties in metallic antiperovskite compound Mn3GaC. Materials Research Bulletin. 2018; 98: 335-339. doi: 10.1016/j.materresbull.2017.10.029 DOI: https://doi.org/10.1016/j.materresbull.2017.10.029
39. Ennassiri N, Tahiri N, El Bounagui O, et al. Magnetic, magnetocaloric and transport properties in AlCMn3 antiperovskite compound. Journal of Alloys and Compounds. 2018; 741: 1196-1202. doi: 10.1016/j.jallcom.2018.01.223 DOI: https://doi.org/10.1016/j.jallcom.2018.01.223
40. Bazine W, Tahiri N, El Bounagui O, et al. Structural, electronic, magnetic, and magnetocaloric properties in intermetallic compound TbCu2Si2. Journal of Magnetism and Magnetic Materials. 2019; 481: 72-76. doi: 10.1016/j.jmmm.2019.02.095 DOI: https://doi.org/10.1016/j.jmmm.2019.02.095
41. Bouhani H, Endichi A, Zaari H, et al. On the origin of the giant magnetocaloric effect in HoMn2O5 single crystals: First principles study and Monte Carlo simulations. Materials Chemistry and Physics. 2019; 231: 366-371. doi: 10.1016/j.matchemphys.2019.04.044 DOI: https://doi.org/10.1016/j.matchemphys.2019.04.044
42. Schwarz K. DFT calculations of solids with LAPW and WIEN2k. Journal of Solid State Chemistry. 2003; 176(2): 319-328. doi: 10.1016/S0022-4596(03)00213-5 DOI: https://doi.org/10.1016/S0022-4596(03)00213-5
43. Schwarz Km Blaha P. Solid state calculations using WIEN2k. Computational Materials Science. 2003; 28(2): 259-273. doi: 10.1016/S0927-0256(03)00112-5 DOI: https://doi.org/10.1016/S0927-0256(03)00112-5
44. Schwarz K, Blaha P, Trickey SB. Electronic structure of solids with WIEN2k. Molecular Physics. 2010; 108(21-23): 3147-3166. doi: 10.1080/00268976.2010.506451 DOI: https://doi.org/10.1080/00268976.2010.506451
45. Rached H, Bendaoudia S, Rached D. Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Materials Chemistry and Physics. 2017; 193: 453-469. doi: 10.1016/j.matchemphys.2017.03.006 DOI: https://doi.org/10.1016/j.matchemphys.2017.03.006
46. Sabiryanov RF, Jaswal SS. Ab InitioCalculations of the Curie Temperature of Complex Permanent-Magnet Materials. Physical Review Letters. 1997; 79(1): 155-158. doi: 10.1103/physrevlett.79.155 DOI: https://doi.org/10.1103/PhysRevLett.79.155
47. Sabiryanov RF, Jaswal SS. Ab initio calculations of the Curie temperature of complex permanent-magnet materials: Sm2Fe16A (A=Ga, Si). Journal of Applied Physics. 1997; 81(8): 5615-5617. doi: 10.1063/1.364616 DOI: https://doi.org/10.1063/1.364616
48. Boukhvalov DW, Son YW, Ruoff RS. Water Splitting over Graphene-Based Catalysts: Ab Initio Calculations. ACS Catalysis. 2014; 4(6): 2016-2021. doi: 10.1021/cs5002288 DOI: https://doi.org/10.1021/cs5002288
49. Nika DL, Balandin AA. Phonons and thermal transport in graphene and graphene-based materials. Reports on Progress in Physics. 2017; 80(3): 036502. doi: 10.1088/1361-6633/80/3/036502 DOI: https://doi.org/10.1088/1361-6633/80/3/036502
50. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996; 77(18): 3865-3868. doi: 10.1103/physrevlett.77.3865 DOI: https://doi.org/10.1103/PhysRevLett.77.3865
51. Gladyshevskii EI, Kripyakevich PI. Monosilicides of rare earth metals and their crystal structures. Journal of Structural Chemistry. 1965; 5(6): 789-794. doi: 10.1007/bf00744231 DOI: https://doi.org/10.1007/BF00744231
52. Roger J, Babizhetskyy V, Jardin R, et al. Solid state phase equilibria in the ternary Nd–Si–B system at 1270K. Journal of Alloys and Compounds. 2006; 415(1-2): 73-84. doi: 10.1016/j.jallcom.2005.07.045 DOI: https://doi.org/10.1016/j.jallcom.2005.07.045
53. U D R, K A, S S, et al. Griffiths-like behavior and magnetocaloric properties of rare-earth silicide Tb2Co0.8Si3.2. Journal of Physics: Condensed Matter. 2024; 36(19): 195806. doi: 10.1088/1361-648x/ad2586 DOI: https://doi.org/10.1088/1361-648X/ad2586
54. Pecharsky VK, Gschneidner KA. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). Journal of Magnetism and Magnetic Materials. 1997; 167(3): L179-L184. doi: 10.1016/S0304-8853(96)00759-7 DOI: https://doi.org/10.1016/S0304-8853(96)00759-7
55. Liu J, Moore JD, Skokov KP, et al. Exploring La(Fe,Si)13-based magnetic refrigerants towards application. Scripta Materialia. 2012; 67(6): 584-589. doi: 10.1016/j.scriptamat.2012.05.039 DOI: https://doi.org/10.1016/j.scriptamat.2012.05.039




.jpg)
.jpg)
