Inverting tristate step-up converter

Authors

  • Felix A. Himmelstoss University of Applied Sciences Technikum Wien, 1200 Wien, Austria
Article ID: 305
293 Views

DOI:

https://doi.org/10.18686/cest305

Keywords:

DC/DC converter; inverting step-up; modelling; transfer function; tristate

Abstract

The here-treated step-up converter with two interference possibilities has several interesting features. First the output voltage is inverse to the input voltage, second the voltage transformation ratio is linearized, third the dynamic behavior is that of a phase-minimum system, and fourth the stress of the electronic switches is reduced. The function of the converter is explained, the steady state presented, the large and small signal models are derived, and the Bode plots concerning the output voltage around the operating point are given. The start-up is investigated. LTSpice is used to check the considerations.

Downloads

Published

2025-03-14

How to Cite

Himmelstoss, F. A. (2025). Inverting tristate step-up converter. Clean Energy Science and Technology, 3(2), 305. https://doi.org/10.18686/cest305

References

1. Zach F. In: Leistungselektronik, 6th ed. Springer Fachmedien Wiesbaden; 2022. DOI: https://doi.org/10.1007/978-3-658-35727-6_7

2. Mohan N, Undeland TM, Robbins WP. In: Power Electronics, Converters, Applications and Design, 3rd ed. John Wiley & Sons; 2003

3. Rozanov Y, Ryvkin SE, Chaplygin E, Voronin P. In: Power Electronics Basics. CRC Press; 2015. DOI: https://doi.org/10.1201/b18397

4. Cuk S. General topological properties of switching structures. 1979 IEEE Power Electronics Specialists Conference. 1979; 109–130. doi: 10.1109/pesc.1979.7081016 DOI: https://doi.org/10.1109/PESC.1979.7081016

5. Forouzesh M, Siwakoti YP, Gorji SA, et al. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics. 2017; 32(12): 9143–9178. doi: 10.1109/tpel.2017.2652318 DOI: https://doi.org/10.1109/TPEL.2017.2652318

6. Maksimovic D, Cuk S. Switching converters with wide DC conversion range. IEEE Transactions on Power Electronics. 1991; 6(1): 151–157. doi: 10.1109/63.65013 DOI: https://doi.org/10.1109/63.65013

7. Williams BW. Generation and Analysis of Canonical Switching Cell DC-to-DC Converters. IEEE Transactions on Industrial Electronics. 2014; 61(1): 329–346. doi: 10.1109/tie.2013.2240633 DOI: https://doi.org/10.1109/TIE.2013.2240633

8. Marquez R, Contreras-Ordaz MA. The Three-Terminal Converter Cell, Graphs, and Generation of DC-to-DC Converter Families. IEEE Transactions on Power Electronics. 2020; 35(8): 7725–7728. doi: 10.1109/tpel.2020.2964700 DOI: https://doi.org/10.1109/TPEL.2020.2964700

9. Hosseinpour M, Seifi E, Seifi A, Shahparasti M. Design and analysis of an interleaved step-up DC–DC converter with enhanced characteristics. Scientific Reports. 2024; 14(1). doi: 10.1038/s41598-024-65171-5 DOI: https://doi.org/10.1038/s41598-024-65171-5

10. Banaei MR, Bonab HAF. A High Efficiency Nonisolated Buck–Boost Converter Based on ZETA Converter. IEEE Transactions on Industrial Electronics. 2020; 67(3): 1991–1998. doi: 10.1109/tie.2019.2902785 DOI: https://doi.org/10.1109/TIE.2019.2902785

11. Mishima T, Liu S, Taguchi R, Lai CM. MHz-Driven Snubberless Soft-Switching Current-Fed Multiresonant DC–DC Converter. IEEE Transactions on Power Electronics. 2024; 39(7): 8404–8416. doi: 10.1109/tpel.2024.3380069 DOI: https://doi.org/10.1109/TPEL.2024.3380069

12. Colalongo L, Duina G, Richelli A, Kovacs-Vajna ZM. A Modular Boost Converter with Low Switch Stress and High Conversion Ratio for Automotive Applications. In: Proceedings of the 2018 International Conference of Electrical and Electronic Technologies for Automotive; 9–11 July 2018; Milan, Italy. pp. 1–4. DOI: https://doi.org/10.23919/EETA.2018.8493186

13. Luo FL, Ye H. Positive output super-lift converters. IEEE Transactions on Power Electronics. 2003; 18(1): 105–113. doi: 10.1109/tpel.2002.807198 DOI: https://doi.org/10.1109/TPEL.2002.807198

14. Luo FL. Six self-lift DC-DC converters, voltage lift technique. IEEE Transactions on Industrial Electronics. 2001; 48(6): 1268–1272. doi: 10.1109/41.969408 DOI: https://doi.org/10.1109/41.969408

15. Himmelstoss FA. Improved positive output voltage super-lift boost converter. WSEAS Transactions on Power Systems. 2022; 17: 68–75. doi: 10.37394/232016.2022.17.8 DOI: https://doi.org/10.37394/232016.2022.17.8

16. Himmelstoss FA, Hochmeister G, Petrovic D. Inverting step-up converter. International Journal of Scientific Engineering and Applied Science (IJSEAS). 2024; 10(1): 1–14.

17. Luo FL, Ye H. Negative output super-lift converters. IEEE Transactions on Power Electronics. 2003; 18(5): 1113–1121. doi: 10.1109/tpel.2003.816185 DOI: https://doi.org/10.1109/TPEL.2003.816185

18. Viswanathan K, Oruganti R, Srinivasan D. Dual-mode control of tri-state boost converter for improved performance. IEEE Transactions on Power Electronics. 2005; 20(4): 790–797. doi: 10.1109/tpel.2005.850907 DOI: https://doi.org/10.1109/TPEL.2005.850907

19. Viswanathan K, Oruganti R, Srinivasan D. A novel tri-state boost converter with fast dynamics. IEEE Transactions on Power Electronics. 2002; 17(5): 677–683. doi: 10.1109/tpel.2002.802197 DOI: https://doi.org/10.1109/TPEL.2002.802197

20. Viswanathan K, Oruganti R, Srinivasan D. Dual mode control of tri-state boost converter for improved performance. IEEE 34th Annual Conference on Power Electronics Specialist. 2003; 2: 944–950. DOI: https://doi.org/10.1109/PESC.2003.1218182