Chemical pretreatment of lignocellulosic biomass in anaerobic digestion and biomethanation

Authors

  • Erick Auma Omondi Department of Civil and Construction Engineering, University of Nairobi
  • Arnold Aluda Kegode Department of Civil and Structural Engineering, Moi University
Ariticle ID: 70
196 Views, 51 PDF Downloads

DOI:

https://doi.org/10.18686/cest.v1i2.70

Keywords:

pretreatment; lignocellulosic biomass; chemical pretreatment; anaerobic digestion

Abstract

The current impacts of climate change necessitate the promotion and use of renewable energy sources to avert the growing environmental and health concerns emanating from the use of fossil fuels. Lignocellulosic biomass (LCB) is a promising, renewable, and sustainable energy source based on its abundance and feedstock properties. Anaerobic digestion (AD) involves a biochemical process that can convert LCB to biogas through hydrolysis and biomethanation processes through the action of microorganisms, such as methanogens and sulfate-reducing bacteria. The hydrolysis of LCB releases various reducing sugars, which are essential in the production of biofuels, such as bioethanol and biogas, organic acids, phenols, and aldehydes. The resultant biogas can complement energy needs, while achieving economic, environmental, and health benefits. Enhancement of the AD process for converting LCB into bioenergy can be realized through appropriate pretreatment capable of disrupting the complex lignocellulosic structure and freeing cellulose and hemicellulose from the binding lignin for enzymatic saccharification and fermentation. Determining the optimal pretreatment technique for AD is critical for the success of the LCB energy production process. This study evaluated the application of chemical pretreatment techniques for the improvement of LCB digestion for bioenergy production. The study reviewed LCB characteristics, AD processes, and the role of various chemical pretreatment techniques, such as acid, alkali, organosolv, ozonolysis, and ionic fluids. The findings of this study can create an understanding of the action methods and benefits of different LCB chemical pretreatment techniques, while highlighting the outstanding drawbacks that require divergent strategies.

References

Surendra KC, Khanal SK, Shrestha P, Lamsal B. Current status of renewable energy in Nepal: Opportunities and challenges. Renew Sustain Energy Reviews 2011; 15(8): 4107–4117. doi: 10.1016/j.rser.2011.07.022

Blasi A, Verardi A, Lopresto CG, et al. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling 2023; 8(4): 61. doi: 10.3390/ recycling8040061

Kamperidou V, Terzopoulou P. Anaerobic digestion of lignocellulosic waste materials. Sustainability 2021; 13(22): 12810. doi: 10.3390/su132212810

Karki R, Chuenchart W, Surendra KC, et al. Anaerobic co-digestion: Current status and perspectives. Bioresource Technology 2021; 330: 125001. doi: 10.1016/j.biortech.2021.125001

Kusch-Brandt S, Heaven S, Banks CJ. Unlocking the full potential: New frontiers in anaerobic digestion (AD) processes. Processes 2023; 11(6): 1669. doi: 10.3390/pr11061669

Harirchi S, Wainaina S, Sar T, et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022; 13(3): 6521–6557. doi: 10.1080/21655979.2022.2035986

Paul S, Dutta A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resources, Conservation and Recycling 2018; 130: 164–174. doi: 10.1016/j.resconrec.2017.12.005

Omondi EA, Ndiba PK, Njuru PG. Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co substrates in biogas production. SN Applied Sciences 2019; 1: 848. doi: 10.1007/s42452-019-0871-z

Zoghlami A, Paës G. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry 2019; 7. doi: 10.3389/fchem.2019.00874

Zhang W, Diao C, Wang L. Degradation of lignin in different lignocellulosic biomass by steam explosion combined with microbial consortium treatment. Biotechnol Biofuels 2023; 16: 55. doi: 10.1186/s13068-023-02306-2

Su W, Sun Q, Xia M, et al. The resource utilization of water hyacinth (Eichhornia crassipes [Mart.] solms) and its challenges. Resources 2018; 7(3): 46. doi: 10.3390/resources7030046

Whitmore AP, Groot JJR. The decomposition of sugar beet residues: Mineralization versus immobilization in contrasting soil types. Plant and Soil 1997; 192: 237–247. doi: 10.1023/A:1004288828793

Hagos A, Jembere K, Feyisa T. Effects of soil and water conservation measures and soil depths on selected soil physico-chemical properties at asera watershed, Northern Ethiopia. Journal of Agricultural Science and Food Research 2023; 14(2): 144. doi: 10.35248/2593-9173.23.14.144

Osunde MO, Olayinka A, Fashina CD, Torimiro N. Effect of carbon-nitrogen ratios of lignocellulosic substrates on the yield of mushroom (pleurotus pulmonarius). Open Access Library Journal 2019; 6(10): 1–8. doi: 10.4236/oalib.1105777

Matsakas L, Bonturi N, Miranda EA, et al. High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides. Biotechnology for Biofuels and Bioproducts 2015; 8: 6. doi: 10.1186/s13068-014-0190-y

Carlini M, Castellucci S, Mennuni A. Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia 2018; 148: 431–438. doi: 10.1016/j.egypro.2018.08.106

Zhou S, Zhang Y, Dong Y. Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 2012; 46(1): 644–648. doi:10.1016/j.energy.2012.07.017

Zheng Y, Zhao Jia, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science 2014; 42: 35–53. doi: 10.1016/j.pecs.2014.01.001

Deepanraj B, Sivasubramanian V, Jayaraj S. Enhancement of biogas production by pretreatment: A review. In: Proceedings of the IVth International Conference on Advances in Energy Research. December 2013; Mumbai, India.

Den W, Sharma VK, Lee M, et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals. Frontiers in Chemistry 2018; 6: 141. doi: 10.3389/fchem.2018.001

Koupaie EH, Dahadha S, Bazyar Lakeh AA, et al. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production—A review. Journal of Environmental Management 2019; 233: 774–784. doi: 10.1016/j.jenvman.2018.09.106

Eswari AP, Ravi YK, Kavitha S, Banu JR. Recent insight into anaerobic digestion of lignocellulosic biomass for cost effective bioenergy generation. e-Prime—Advances in Electrical Engineering, Electronics and Energy 2023; 3: 100199. doi: 10.1016/j.prime.2023.100119

Pandit S, Savla N, Sonawane JM, et al. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation 2021; 7(3): 169. doi: 10.3390/fermentation7030169

Devi A, Bajar S, Kour H, et al. Lignocellulosic biomass valorization for bioethanol production: A circular bioeconomy approach. BioEnergy Research 2022; 15: 1820–1841. doi: 10.1007/s12155-022-10401-9

Sari FP, Budiyono B. Enhanced biogas production from rice straw with various pretreatment: A review. Waste Technology 2014; 2(1): 17–25. doi: 10.14710/2.1.17-25

Lo CC, Chang YW, Chen YL, et al. Lignin recovery from rice straw biorefinery solid waste by soda process with ethylene glycol as co-solvent. Journal of the Taiwan Institute of Chemical Engineers 2021; 126: 50–57. doi: 10.1016/j.jtice.2021.07.030

Gou G, Wei W, Jiang M, et al. Environmentally Friendly Method for the Separation of Cellulose from Steam-Exploded Rice Straw and Its High-Value Applications. InTech; 2018. doi: 10.5772/intechopen.79014

Tufail T, Saeed F, Afzaal M, et al. Wheat straw: A natural remedy against different maladies. Food Science & Nutr 2021; 9(4): 2335–2344. doi: 10.1002/fsn3.2030

Chen HZ, Liu ZH. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose. Biotechnology for Biofuels 2014; 7: 137. doi: 10.1186/s13068-014-0137-3

Silanikove N, Brosh A. Lignocellulose degradation and subsequent metabolism of lignin fermentation products by the desert black Bedouin goat fed on wheat straw as a single-component diet. British Journal of Nutrition 1989; 62(2): 509–520. doi: 10.1079/bjn19890049

García-Negrón V, Toht MJ. Corn stover pretreatment with Na2CO3 solution from absorption of recovered CO2. Fermentation 2022; 8(11): 600. doi: 10.3390/fermentation8110600

Woźniak M, Ratajczak I, Wojcieszak D, et al. Chemical and structural characterization of maize stover fractions in aspect of its possible applications. Materials (Basel, Switzerland) 2021; 14(6): 1527. doi: 10.3390/ma14061527

Kim S. Evaluation of alkali-pretreated soybean straw for lignocellulosic bioethanol production. International Journal of Polymer Science 2018; 2018: 5241748. doi: 10.1155/2018/5241748

Nishida VS, Woiciechowski AL, Valladares-Diestra KK, et al. Second generation bioethanol production from soybean hulls pretreated with imidazole as a new solvent. Fermentation 2023; 9(2): 93. doi: 10.3390/fermentation9020093

Doczekalska B, Bartkowiak M, Waliszewska B, et al. Characterization of chemically activated carbons prepared from miscanthus and switchgrass biomass. Materials 2020; 13(7): 1654. doi: 10.3390/ma13071654

Liu W, Wang K, Hao H, et al. Predicting potential climate change impacts of bioenergy from perennial grasses in 2050. Resources, Conservation and Recycling 2023; 190: 106818. doi: 10.1016/j.resconrec.2022.106818

Loomis G, Dari B, Rogers CW, Sihi D. Evaluation of residue management practices on barley residue decomposition. PLoS One 2020; 15(5): e0232896. doi: 10.1371/journal.pone.0232896

Yang C, Li J, Zhang G, et al. Barley straw combined with urea and controlled-release nitrogen fertilizer improves lint yield and nitrogen utilization of field-seeded cotton. Agronomy 2022; 12(5): 1208. doi: 10.3390/agronomy12051208

Chaiwarit T, Chanabodeechalermrung B, Kantrong N, et al. Fabrication and evaluation of water hyacinth cellulose-composited hydrogel containing quercetin for topical antibacterial applications. Gels 2022; 8(12): 767. doi: 10.3390/gels8120767

Mahmud MA, Anannya FR. Sugarcane bagasse—A source of cellulosic fiber for diverse applications. Heliyon 2021; 7(8): e07771. doi: 10.1016/j.heliyon.2021.e07771

Rezende CA, de Lima MA, Maziero P, et al. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels and Bioproducts 2011; 4: 54. doi: 10.1186/1754-6834-4-54

Zhou Z, Cheng Y, Zhang W, et al. Characterization of lignins from sugarcane bagasse pretreated with green liquor combined with ethanol and hydrogen peroxide. BioResources 2016; 11(2): 3191–3203.

Rego Filipe, Soares Dias AP, Casquilho M, et al. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass and Bioenergy 2019; 122: 375–380. doi: 10.1016/j.biombioe.2019.01.037

Biswal AK, Hengge NN, Black IM, et al. Composition and yield of non-cellulosic and cellulosic sugars in soluble and particulate fractions during consolidated bioprocessing of poplar biomass by Clostridium thermocellum. Biotechnology for Biofuels and Bioproducts 2022; 15: 23. doi: 10.1186/s13068-022-02119-9

Stolle-Smits T, Beekhuizen JG, Kok MTC, et al. Changes in cell wall polysaccharides of green bean pods during development. Plant Physiology 1999; 121(2): 363–372. doi: 10.1104/pp.121.2.363

Elfalleh W, Guo L, He S, et al. Characteristics of cell wall structure of green beans during controlled freezing point storage. International Journal of Food Properties 2015; 18(8): 1756–1772. doi: 10.1080/10942912.2014.933437

Valentín L, Kluczek-Turpeinen B, Willför S, et al. Scots pine (Pinus sylvestris) bark composition and degradation by fungi: Potential substrate for bioremediation. Bioresource Technology 2010; 101(7): 2203–2209. doi: 10.1016/j.biortech.2009.11.052

Szadkowska D, Auriga R, Lesiak A, et al. Influence of pine and alder woodchips storage method on the chemical composition and sugar yield in liquid biofuel production. Polymers 2022; 14(17): 3495. doi: 10.3390/polym14173495

Tarasov D, Leitch M, Fatehi P. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels and Bioproducts 2018; 11: 269. doi: 10.1186/s13068-018-1262-1

Lourenço A, Pereira H. Compositional Variability of Lignin in Biomass. InTech; 2018. doi: 10.5772/intechopen.71208

De’Nobili MD, Bernhardt DC, Basanta MF, Rojas AM. Sunflower (Helianthus annuus L.) seed hull waste: Composition, antioxidant activity, and filler performance in pectin-based film composites. Frontiers in Nutrition 2021; 8: 777214. doi: 10.3389/fnut.2021.777214

Zhurka M, Spyridonidis A, Vasiliadou IA, Stamatelatou K. Biogas production from sunflower head and stalk residues: Effect of alkaline pretreatment. Molecules 2020; 25(1): 164. doi: 10.3390/molecules25010164

Papadopoulos AN, Kyzas GZ, Mitropoulos AC. Lignocellulosic composites from acetylated sunflower stalks. Applied Sciences 2019; 9(4): 646. doi: 10.3390/app9040646

Covino C, Sorrentino A, Di Pierro P, et al. Lignocellulosic fibres from enzyme-treated tomato plants: Characterisation and application in paperboard manufacturing. International Journal of Biological Macromolecules 2020; 161: 787–796. doi: 10.1016/j.ijbiomac.2020.06.077

Kehili M, Schmidt LM, Reynolds W, et al. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnology for Biofuels and Bioproducts 2016; 9: 261. doi: 10.1186/s13068-016-0676-x

Kamperidou V, Terzopoulou P. Anaerobic digestion of lignocellulosic waste materials. Sustainability 2021; 13(22): 12810. doi: 10.3390/su132212810

Sarker S, Lamb JJ, Hjelme DR, Lien KM. A review of the role of critical parameters in the design and operation of biogas production plants. Applied Sciences 2019; 9(9): 1915. doi: 10.3390/app9091915

Oduor WW, Wandera SM, Murunga SI, Raude JM. Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery. Heliyon 2022; 8(9): e10580. doi: 10.1016/j.heliyon.2022.e10580

Kwietniewska E, Tys J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews 2014; 34: 491–500. doi: 10.1016/j.rser.2014.03.041

Liu C, Yuan X, Zeng G, et al. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology 2008; 99(4): 882–888. doi: 10.1016/j.biortech.2007.01.013

Gumisiriza R, Hawumba JF, Okure M. Hensel O. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnolpgy for Biofuels 2017; 10: 11. doi: 10.1186/s13068-016-0689-5

Steiniger B, Hupfauf S, Insam H, Schaum C. Exploring anaerobic digestion from mesophilic to thermophilic temperatures—Operational and microbial aspects. Fermentation 2023; 9(9): 798. doi: 10.3390/fermentation9090798

Sharma S, Tsai ML, Sharma V, et al. Environment friendly pretreatment approaches for the bioconversion of lignocellulosic biomass into biofuels and value-added products. Environments 2023; 10(1): 6. doi: 10.3390/environments10010006

Baruah J, Nath BK, Sharma R, et al. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research 2018; 6: 141. doi: 10.3389/fenrg.2018.00141

Shukla A, Kumar D, Girdhar M, et al. Strategies of pretreatment of feedstocks for optimized bioethanol production: Distinct and integrated approaches. Biotechnology for Biofuels and Bioproducts 2023; 16(1): 44. doi: 10.1186/s13068-023-02295-2

Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015; 5(5): 597–609. doi: 10.1007/s13205-015-0279-4

Kucharska K, Rybarczyk P, Hołowacz I, et al. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018; 23(11): 2937. doi: 10.3390/molecules23112937

Jędrzejczyk M, Soszka E, Czapnik M, et al. Physical and chemical pretreatment of lignocellulosic biomass. In: Second and Third Generation of Feedstocks: The Evolution of Biofuels. Elsevier; 2019. pp. 143–196. doi: 10.1016/B978-0-12-815162-4.00006-9

Abraham A, Mathew AK, Park H, et al. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology 2020; 301: 122725. doi: 10.1016/j.biortech.2019.122725.

Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels and Bioproducts 2013; 6: 16. doi: 10.1186/1754-6834-6-16

Digman MF, Shinners KJ, Casler MD, et al. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol 2010; 101(14): 5305–5314. doi: 10.1016/j.biortech.2010.02.014

Wyman C, Huber G. Biomass and America’s energy future discussed. Chemistry & Industry 2009; 283(5): 17.

Xu Y, Liu K, Yang Y, et al. Hemicellulose-based hydrogels for advanced applications. Frontiers in Bioengineering and Biotechnology 2023; 10: 1110004. doi: 10.3389/fbioe.2022.1110004

Oriez V, Peydecastaing J, Pontalier PY. Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules (Basel, Switzerland) 2019; 24(23): 4273. doi: 10.3390/molecules24234273

Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research 2009; 48(8): 3719–3729. doi: 10.1021/ie801542g

Banoth C, Sunkar B, Tondamanati PR, Bhukya B. Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 2017; 7(5): 334. doi: 10.1007/s13205-017-0980-6

Amin FR, Khalid H, Zhang H, et al. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017; 7: 72. doi: 10.1186/s13568-017-0375-4

Badiei M, Asim N, Jahim JM, Sopian K. Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Procedia 2014; 9: 170–174. doi: 10.1016/j.apcbee.2014.01.030

Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour Technol 2002; 83: 1–11. doi: 10.1016/S0960-8524(01)00212-7

Mudhoo A. Biogas Production: Pretreatment Methods in Anaerobic Digestion. Scrivener Publishing; 2012.

Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM, et al. Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: Current state, challenges, and opportunities. Applied Sciences 2019; 9(18): 3721. doi: 10.3390/app9183721

Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Frontiers in Microbiology 2022; 13: 933882. doi: 10.3389/fmicb.2022.933882

Donkor KO, Gottumukkala LD, Lin R, et al. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. Bioresource Technology 2022; 351: 126950. doi: 10.1016/j.biortech.2022.126950

Jiang D, Ge X, Zhang T, et al. Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH)2. Bioresource Technology 2020; 304. doi: 10.1016/j.biortech.2020.123001

Kang X, Sun Y, Li L, et al. Improving methane production from anaerobic digestion of Pennisetum Hybrid by alkaline pretreatment. Bioresource Technology 2018; 255: 205–212. doi: 10.1016/j.biortech.2017.12.001

Pavlostathis SG, Gossett JM. A kinetic model for anaerobic digestion of biological sludge. Biotechnology and Bioengineering 1986; 28(10): 1519–1530. doi: 10.1002/bit.260281010

Fox MH, Noike T, Ohki T. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Science & Technology 2003; 48(4): 77–84. doi: 10.2166/wst.2003.0226

He Y, Pang Y, Liu Y, et al. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 2008; 22(4): 2775–2781. doi: 10.1021/ef8000967

Wang LQ. Different Pretreatments to Enhance Biogas Production [Master’s thesis]. Halmstad University; 2011.

Alqaralleh RM. Effect of Alkaline Pretreatment on anaerobic Digestion of Organic Fraction of Municipal Solid Waste [Master’s thesis]. University of Ottawa; 2012.

Yang D, Zheng Y, Zhang R. Alkali pretreatment of rice straw for increasing the biodegradability. American Society of Agricultural and Biological Engineers 2009; 095685. doi: 10.13031/2013.26933

Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 2009; 82(5): 815–827. doi: 10.1007/s00253-009-1883-1

Sharma S, Tsai ML, Sharma V, et al. Environment friendly pretreatment approaches for the bioconversion of lignocellulosic biomass into biofuels and value-added products. Environments 2023; 10(1): 6. doi: 10.3390/environments10010006

Martin-Sampedro R, Revilla E, Villar JC, Eugenio ME. Enhancement of enzymatic saccharification of Eucalyptus globulus: Steam explosion versus steam treatment. Bioresource Technology 2014; 167: 186–191. doi: 10.1016/j.biortech.2014.06.027

Vaidya AA, Murton KD, Smith DA, Dedual G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conversion and Biorefinery 2022; 12: 5427–5442. doi: 10.1007/s13399-022-02373-9

Thoresen PP, Matsakas L, Rova U, Christakopoulos P. Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresource Technology 2020; 306: 123189. doi: 10.1016/j.biortech.2020.123189.

Kuznetsov B, Malyar Y, Kuznetsova SA, et al. Isolation, study, and application of organosolv lignins (Review). Journal of Siberian Federal University. Chemistry 2016; 9: 454–482. doi: 10.17516/1998-2836-2016-9-4-454-482

Tan J, Li Y, Tan X, et al. Advances in pretreatment of straw biomass for sugar production. Frontiers in Chemistry 2021; 9: 696030. doi: 10.3389/fchem.2021.696030

Chin DWK, Lim S, Pang YL, et al. Effects of organic solvents on the organosolv pretreatment of degraded empty fruit bunch for fractionation and lignin removal. Sustainability 2021; 13: 6757. doi: 10.3390/su13126757

Mardawati E, Badruzaman I, Kasuma CAW, et al. Effect of organosolv pretreatment on delignification for bioethanol feedstock from oil palm empty fruit bunch (OPEFB). IOP Conference Series: Earth and Environmental Science 2018; 209: 012009. doi: 10.1088/1755-1315/209/1/012009

Viola E, Zimbardi F, Morgana M, et al. Optimized organosolv pretreatment of biomass residues using 2-methyltetrahydrofuran and n-Butanol. Processes 2021; 9(11): 2051. doi: 10.3390/pr9112051

Sar T, Arifa VH, Hilmy MR, et al. Organosolv pretreatment of oat husk using oxalic acid as an alternative organic acid and its potential applications in biorefinery. Biomass Conversion Biorefinery 2022. doi: 10.1007/s13399-022-02408-1

Amiri H, Karimi K, Zilouei H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology 2014; 152: 450–456. doi: 10.1016/j.biortech.2013.11.038

Tsegaye B, Balomajumder C, Roy P. Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renewable Energy 2020; 148(C): 923–934. doi: 10.1016/j.renene.2019.10.176

Li P, Yang C, Jiang Z, et al. Lignocellulose pretreatment by deep eutectic solvents and related technologies: A review. Journal of Bioresources and Bioproducts 2023; 8(1): 33–44. doi: 10.1016/j.jobab.2022.11.004

Huijgen WJJ, Reith JH, de Uil H. Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Industrial & Engineering Chemistry Research 2010; 49(20): 10132–10140. doi: 10.1021/ie101247w

Park YC, Kim JS, Kim TH. Pretreatment of corn stover using organosolv with hydrogen peroxide for effective enzymatic saccharification. Energies 2018; 11(5): 1301. doi: 10.3390/en11051301

Salapa I, Topakas E, Sidiras D. Simulation and optimization of barley straw organosolv pretreatment. Industrial Crops and Products 2018; 113: 80–88. doi: 10.1016/j.indcrop.2018.01.018

Traviani R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology 2016; 199: 2–12. doi: 10.1016/j.biortech.2015.08.143

Sakthivel R, Harshini GV, Vardhan MS, et al. Biomass energy conversion through pyrolysis: A ray of hope for the current energy crisis. In: Green Energy Systems. Academic press; 2023. pp. 37–68. doi: 10.1016/B978-0-323-95108-1.00006-9

Kassim MA, Meng TK, Kamaludin R, et al. Bioprocessing of sustainable renewable biomass for bioethanol production. In: Value-Chain of Biofuels. Elesevier; 2022. pp. 195–234. doi: 10.1016/B978-0-12-824388-6.00004-X

Traviani R, Otero MDM, Coca M, et al. Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology 2013; 133: 332–339. doi: 10.1016/j.biortech.2013.01.133

De Cassia Pereira J, Travaini R, Marques NP, et al. Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and ethanol production. Bioresource Technology 2016; 204: 122–129. doi: 10.1016/j.biortech.2015.12.064

Onu P, Mbohwa C. Methodological approaches in agrowaste preparation and processes. In: Agricultural Waste Diversity and Sustainability Issues: Sub-Saharan Africa as a Case Study. Academic Press; 2021. pp. 37–54. doi: 10.1016/B978-0-323-85402-3.00009-7

Traviani R, Marangon-Jardim C, Colodette JL, et al. Ozonolysis. Pretreatment of Biomass: Processes and Technologies. Elsevier; 2015. pp. 105–135. doi: 10.1016/B978-0-12-800080-9.00007-4

Mulakhudair AR, Hanotu J, Zimmerman W. Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy 2017; 105: 147–154. doi: 10.1016/j.biombioe.2017.06.018

Garver MP, Liu S. Development of thermochemical and biochemical technologies for biorefineries. In: Bioenergy Research: Advances and Applications. Elsevier; 2014. 457–488. doi: 10.1016/B978-0-444-59561-4.00027-9

Patil R, Cimon C, Eskicioglu C, Goud V. Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production. Renewable Energy 2021; 179(C): 467–474. doi: 10.1016/j.renene.2021.07.048

Wang F, Li S, Sun Y, et al. Ionic liquids as efficient pretreatment solvents for lignocellulosic biomass. RSC Advances 2017; 7(76): 47990–47998. doi: 10.1039/C7RA08110C

Hou Q, Ju M, Li W, et al. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 2017; 22(3): 490. doi: 10.3390/molecules22030490

Moyer P, Kim K, Abdoulmoumine N, et al. Structural changes in lignocellulosic biomass during activation with ionic liquids comprising 3-methylimidazolium cations and carboxylate anions. Biotechnology for Biofuels and Bioproducts 2018; 11: 265. doi: 10.1186/s13068-018-1263-0

Usmani Z, Sharma M, Gupta P, et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology 2020; 304: 123003. doi: 10.1016/j.biortech.2020.123003

Haykir NI, Zahari SMSNS, Harirchi S, et al. Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: A critical review. Biochemical Engineering Journal 2023; 193: 108850. doi: 10.1016/j.bej.2023.108850

Amini E, Valls C, Roncero MB. Ionic liquid-assisted bioconversion of lignocellulosic biomass for the development of value-added product. Journal of Cleaner Production 2021; 326: 129275. doi: 10.1016/j.jclepro.2021.129275

Socha AM, Parthasarathi R, Shi J, et al. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of National Academy of Sciences 2014; 111(35): E3587–E3595. doi: 10.1073/pnas.1405685111

Brandt A, Ray MJ, To TQ, et al. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid—water mixtures. Green Chemistry 2011; 13(9): 2489–2499. doi: 10.1039/C1GC15374A

Sriariyanun M, Kitiborwornkul N, Tantayotai P, et al. One-pot ionic liquid-mediated bioprocess for pretreatment and enzymatic hydrolysis of rice straw with ionic liquid-tolerance bacterial cellulase. Bioengineering 2022; 9(1): 17. doi: 10.3390/bioengineering9010017

Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnology Advances 2018; 36(8): 2032–2050. doi: 10.1016/j.biotechadv.2018.08.009

Kalhor P, Ghandi K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019; 24(22): 4012. doi: 10.3390%2Fmolecules24224012

Zhang C, Xia S, Ma P. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology 2016; 219: 1–5. doi: 10.1016/j.biortech.2016.07.026

Scelsi E, Angelini A, Pastore C. Deep eutectic solvents for the valorisation of lignocellulosic biomasses towards fine chemicals. Biomass 2021; 1(1): 29–59. doi: 10.3390/biomass1010003

Mbous YP, Hayyan M, Hayyan A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnology Advances 2017; 35(2): 105–134. doi: 10.1016/j.biotechadv.2016.11.006

Bajpai P. Processing of biomass by DESs. In: Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass. Springer; 2021. pp. 29–54. doi: 10.1007/978-981-16-4013-1_4

Li W, Tan X, Miao C, et al. Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production. Green Chemistry 2023; 25: 1169–1178. doi: 10.1039/D2GC04404H

Chen Y, Mu T. Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy & Environment 2019; 4(2): 95–115. doi: 10.1016/j.gee.2019.01.012

Wang W, Lee D. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. Bioresource Technology 2021; 339: 125587. doi: 10.1016/j.biortech.2021.125587

Arriaga S, Aizpuru A. Innovative non-aqueous phases and partitioning bioreactor configurations. Advances in Chemical Engineering 2019; 54: 299–348. doi: 10.1016/bs.ache.2018.12.004

Kumar N, Muley PD, Boldor D, et al. Pretreatment of waste biomass in deep eutectic solvents: Conductive heating versus microwave heating. Industrial Crops and Products 2019; 142: 111865. doi: 10.1016/j.indcrop.2019.111865

Fang C, Thomsen MH, Frankær CG, et al. Reviving pretreatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Industrial & Engineering Chemistry Research 2017; 56(12): 3167–3174. doi: 10.1021/acs.iecr.6b04733

Closed-loop bio-refinery using Ionic fluids derived from lignocellulosic biomass.

Downloads

Published

2023-11-20

How to Cite

Auma Omondi, E., & Aluda Kegode, A. (2023). Chemical pretreatment of lignocellulosic biomass in anaerobic digestion and biomethanation. Clean Energy Science and Technology, 1(2), 70. https://doi.org/10.18686/cest.v1i2.70

Issue

Section

Review