Synthesis and characterization of highly active and coke resistant Ni/SBA-15 catalysts for dry reforming of methane

Authors

  • Saeed Hajimirzaee School of Computing, Engineering & Digital Technologies, Teesside University, Southfield Rd, Middlesbrough TS1 3BX, UK; Clariant Qatar W.L.L, Mesaieed Industrial 50240, Qatar
  • Emmanuel Iro School of Computing, Engineering & Digital Technologies, Teesside University, Southfield Rd, Middlesbrough TS1 3BX, UK; UNICAT Catalysts Technologies, LLC, TX 77511, USA
  • Maria Olea School of Computing, Engineering & Digital Technologies, Teesside University, Southfield Rd, Middlesbrough TS1 3BX, UK
Article ID: 553
39 Views

DOI:

https://doi.org/10.18686/cest553

Keywords:

Dry (CO2) reforming of methane (DRM); Ni/SBA-15 catalysts preparation; electrostatic adsorption; nickel complexes; carbon deposition; catalyst stability; ultrafine nickel nano particles

Abstract

A series of newly-developed Ni/SBA-15 catalysts were synthesised by combining strong electrostatic adsorption (SEA) of [Ni (En)3]2+ (En = ethylenediamine), [Ni (NH3)6]2+ and [Ni (EDTA)]2- complexes, respectively, and engineered SBA-15 supports, or, in other words, by adopting Charge Enhanced Dry Impregnation (CEDI), to produce highly active catalysts with very small nickel particles, resistant to carbon deposition, sintering and deactivation phenomena associated with nickel based catalysts in dry reforming of methane (DRM). In parallel, other Ni/SBA-15 catalysts were prepared by conventional incipient wetness impregnation method with [Ni (H2O)6]2+ complex and used as the reference catalysts. TEM, wide-angle XRD, EDX, TGA results, and temperature programmed experiments confirmed that the catalyst’s preparation method has a strong impact on the size of the generated nickel particles and the amount of Ni deposited, which in turn were responsible for the catalytic activity and coke resistance. SEA on SBA-15 deposits from 4.8 wt% to 6.1 wt% Ni, depending on the complex used, while the DI deposits only 3 wt% of Ni. The size of resulting Ni particles is between 3 and 8 nm for the unwashed SEA samples. For the DI unwashed samples, the size is significantly bigger, at 20–50 nm. For the SEA washed samples before calcination, i.e., those synthesised by using [Ni (NH3)6]2+ and [Ni (En)3]2+ complexes, the Ni particle size is less than 1 nm. For these catalyst samples, only a small amount of carbon was deposited during the DRM reaction as confirmed by TGA results, which indicated only 0.08 wt% and 0.13 wt% carbon deposition.

Downloads

Additional Files

Published

2026-01-05

How to Cite

Hajimirzaee, S., Iro, E., & Olea, M. (2026). Synthesis and characterization of highly active and coke resistant Ni/SBA-15 catalysts for dry reforming of methane. Clean Energy Science and Technology, 4(1), 553. https://doi.org/10.18686/cest553

Issue

Section

Article

References

1. Solymosi F, Kutsán, G, Erdöhelyi A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catalysis Letters. 1991; 11(2): 149–156. doi: 10.1007/bf00764080 DOI: https://doi.org/10.1007/BF00764080

2. Zhang ZL, Tsipouriari VA, Efstathiou AM, et al. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts. Journal of Catalysis. 1996; 158(1): 51–63. doi: 10.1006/jcat.1996.0005 DOI: https://doi.org/10.1006/jcat.1996.0005

3. Valderrama G, Goldwasser MR, Navarro CU de, et al. Dry reforming of methane over Ni perovskite type oxides. Catalysis Today. 2005; 107-108: 785–791. doi: 10.1016/j.cattod.2005.07.010s DOI: https://doi.org/10.1016/j.cattod.2005.07.010

4. Bradford M, Vannice M. CO2 Reforming of CH4. Catalysis Reviews. 1999; 41(1): 1–42. doi: 10.1081/cr-100101948 DOI: https://doi.org/10.1081/CR-100101948

5. Edwards JH. Potential sources of CO2 and the options for its large-scale utilisation now and in the future. Catal. 1995; 23: 59–66. doi: 10.1016/0920-5861(94)00081-c DOI: https://doi.org/10.1016/0920-5861(94)00081-C

6. Tsang SC, Claridge JB, Green MLH. Recent advances in the conversion of methane to synthesis gas. Catal. 1995; 23: 3–15. doi: 10.1016/0920-5861(94)00080-l DOI: https://doi.org/10.1016/0920-5861(94)00080-L

7. Teuner S. Make CO from CO2. Hydrocarbon Processing. 1985.pp. 106–107.

8. Maroto-Valer MM, Song C, Soong Y. Environmental challenges and greenhouse gas control for fossil fuel utilization in the 21st century. Springer Science & Business Media; 2012.

9. Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Bio/Technology. 2008; 7(2): 173–190. doi: 10.1007/s11157-008-9131-1 DOI: https://doi.org/10.1007/s11157-008-9131-1

10. Gunaseelan VN. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy. 1997; 13: 83–114. doi: 10.1016/S0961-9534(97)00020-2 DOI: https://doi.org/10.1016/S0961-9534(97)00020-2

11. McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol. 2002; 83: 47–54. doi: 10.1016/s0960-8524(01)00119-5 DOI: https://doi.org/10.1016/S0960-8524(01)00119-5

12. Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001; 42: 1357–1378. doi: 10.1016/s0196-8904(00)00137-0 DOI: https://doi.org/10.1016/S0196-8904(00)00137-0

13. Balat M, Balat M, Kırtay E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Conversion and Management. 2009; 50(12): 3158–3168. doi: 10.1016/j.enconman.2009.08.013 DOI: https://doi.org/10.1016/j.enconman.2009.08.013

14. Bereketidou OA, Goula MA. Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts. Catalysis Today. 2012; 195(1): 93–100. doi: 10.1016/j.cattod.2012.07.006 DOI: https://doi.org/10.1016/j.cattod.2012.07.006

15. Centi G, Quadrelli EA, Perathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy & Environmental Science. 2013; 6(6): 1711. doi: 10.1039/c3ee00056g DOI: https://doi.org/10.1039/c3ee00056g

16. Wang S, Lu GQ, Millar GJ. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy Fuels. 1996; 10: 896–904. doi: 10.1021/ef950227t DOI: https://doi.org/10.1021/ef950227t

17. Fukuhara C, Hyodo R, Yamamoto K, et al. A novel nickel-based catalyst for methane dry reforming: A metal honeycomb-type catalyst prepared by sol–gel method and electroless plating. Applied Catalysis A: General. 2013; 468: 18–25. doi: 10.1016/j.apcata.2013.08.024 DOI: https://doi.org/10.1016/j.apcata.2013.08.024

18. Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts. Journal of Catalysis. 1993; 141(1): 287–299. doi: 10.1006/jcat.1993.1136 DOI: https://doi.org/10.1006/jcat.1993.1136

19. Guo J, Lou H, Zhao H, et al. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General. 2004; 273(1-2): 75–82. doi: 10.1016/j.apcata.2004.06.014 DOI: https://doi.org/10.1016/j.apcata.2004.06.014

20. Hou Z, Chen P, Fang H, et al. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. International Journal of Hydrogen Energy. 2006; 31(5): 555–561. doi: 10.1016/j.ijhydene.2005.06.010 DOI: https://doi.org/10.1016/j.ijhydene.2005.06.010

21. Richardson JT, Paripatyadar SA. Carbon dioxide reforming of methane with supported rhodium. Applied Catalysis. 1990; 61: 293–309. doi: 10.1016/s0166-9834(00)82152-1 DOI: https://doi.org/10.1016/S0166-9834(00)82152-1

22. Verykios XE. Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. International Journal Hydrogen Energy. 2003; 28: 1045–1063. doi: 10.2298/hemind0206238v DOI: https://doi.org/10.1016/S0360-3199(02)00215-X

23. Kambolis A, Matralis H, Trovarelli A, et al. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Applied Catalysis A: General. 2010; 377(1-2): 16–26. doi: 10.1016/j.apcata.2010.01.013 DOI: https://doi.org/10.1016/j.apcata.2010.01.013

24. Bartholomew CH. Mechanisms of catalyst deactivation. Applied Catalysis a General. 2001; 212: 17–60. doi: 10.1016/s0926-860x(00)00843-7 DOI: https://doi.org/10.1016/S0926-860X(00)00843-7

25. Liu D, Quek XY, Cheo WNE, et al. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction. Journal of Catalysis. 2009; 266(2): 380–390. doi: 10.1016/j.jcat.2009.07.004 DOI: https://doi.org/10.1016/j.jcat.2009.07.004

26. Wang N, Chu W, Zhang T, et al. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. International Journal of Hydrogen Energy. 2012; 37(1): 19–30. doi: 10.1016/j.ijhydene.2011.03.138 DOI: https://doi.org/10.1016/j.ijhydene.2011.03.138

27. Barroso-Quiroga MM, Castro-Luna AE. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. International Journal of Hydrogen Energy. 2010; 35(11): 6052–6056. doi: 10.1016/j.ijhydene.2009.12.073 DOI: https://doi.org/10.1016/j.ijhydene.2009.12.073

28. Hou Z, Yashima T. Small amounts of Rh-promoted Ni catalysts for methane reforming with CO2. Catalysis Letter. 2003; 89: 193–197. doi: 10.1023/A:1025746211314 DOI: https://doi.org/10.1023/A:1025746211314

29. Therdthianwong S, Siangchin C, Therdthianwong A. Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition. Fuel Processing Technology. 2008; 89(2): 160–168. doi: 10.1016/j.fuproc.2007.09.003 DOI: https://doi.org/10.1016/j.fuproc.2007.09.003

30. Lemonidou AA, Vasalos IA. Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst. Applied Catalysis A Gen. 2002; 228: 227–235. doi: 10.1016/s0926-860x(01)00974-7 DOI: https://doi.org/10.1016/S0926-860X(01)00974-7

31. Corthals S, Van Nederkassel J, Geboers J, et al. Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catalysis. 2008; 138: 28–32. doi: 10.1016/j.cattod.2008.04.038 DOI: https://doi.org/10.1016/j.cattod.2008.04.038

32. Zhu YA, Chen D, Zhou XG, et al. DFT studies of dry reforming of methane on Ni catalyst. Catalysis Today. 2009; 148(3–4): 260-267. doi: 10.1016/j.cattod.2009.08.022 DOI: https://doi.org/10.1016/j.cattod.2009.08.022

33. Ginsburg JM, Piña J, El Solh T, et al. Coke Formation over a Nickel Catalyst under Methane Dry Reforming Conditions: Thermodynamic and Kinetic Models. Industrial & Engineering Chemistry Research. 2005; 44(14): 4846–4854. doi: 10.1021/ie0496333 DOI: https://doi.org/10.1021/ie0496333

34. Gadalla AM, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2. Chemical Engineering Science. 1988; 43: 3049–3062. doi: 10.1016/0009-2509(88)80058-7 DOI: https://doi.org/10.1016/0009-2509(88)80058-7

35. Rostrup-Nielsen J, Trimm DL. Mechanisms of carbon formation on nickel-containing catalysts. Journal of Catalysis. 1977; 48: 155–165. doi: 10.1016/0021-9517(77)90087-2 DOI: https://doi.org/10.1016/0021-9517(77)90087-2

36. Rostrupnielsen JR, Hansen JHB. CO2-Reforming of Methane over Transition Metals. Journal of Catalysis. 1993; 144(1): 38–49. doi: 10.1006/jcat.1993.1312 DOI: https://doi.org/10.1006/jcat.1993.1312

37. Chen D, Lødeng R, Anundskås A, et al. Deactivation during carbon dioxide reforming of methane over Ni catalyst: microkinetic analysis. Chemical Engineering Science. 2001; 56: 1371–1379. doi: 10.1016/s0009-2509(00)00360-2 DOI: https://doi.org/10.1016/S0009-2509(00)00360-2

38. Kroll VCH, Swaan HM, Mirodatos C. Methane Reforming Reaction with Carbon Dioxide Over Ni/SiO2Catalyst. Journal of Catalysis. 1996; 161(1): 409-422. doi: 10.1006/jcat.1996.0199 DOI: https://doi.org/10.1006/jcat.1996.0199

39. Tang SB, Qiu FL, Lu SJ. Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2. Catal. 1995; 24: 253–255. doi: 10.1016/0920-5861(95)00036-f DOI: https://doi.org/10.1016/0920-5861(95)00036-F

40. Olsbye U, Wurzel T, Mleczko L. Kinetic and Reaction Engineering Studies of Dry Reforming of Methane over a Ni/La/Al2O3 Catalyst. Industrial & Engineering Chemistry Research. 1997; 36(12): 5180–5188. doi: 10.1021/ie970246l DOI: https://doi.org/10.1021/ie970246l

41. Huang T, Huang W, Huang J, et al. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni–Mo bimetallic catalysts. Fuel Processing Technology. 2011; 92(10): 1868–1875. doi: 10.1016/j.fuproc.2011.05.002 DOI: https://doi.org/10.1016/j.fuproc.2011.05.002

42. Jensen C, Duyar MS. Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas. Energy Technology. 2021; 9(7). doi: 10.1002/ente.202100106 DOI: https://doi.org/10.1002/ente.202100106

43. Hayakawa T, Suzuki S, Nakamura J, et al. CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method. Applied Catalysis A-general. 1999; 183: 273–285. doi: 10.1016/s0926-860x(99)00071-x DOI: https://doi.org/10.1016/S0926-860X(99)00071-X

44. Tomishige K, Chen Y, Fujimoto K. Studies on carbon deposition in CO2 reforming of CH4 over nickel–magnesia solid solution catalysts. Journal of Catalysis. 1999; 181(1): 91–103. doi: 10.1006/jcat.1998.2286 DOI: https://doi.org/10.1006/jcat.1998.2286

45. Agún B, Abánades A. Comprehensive review on dry reforming of methane: Challenges and potential for greenhouse gas mitigation. International Journal of Hydrogen Energy. 2025; 103: 395–414. doi: 10.1016/j.ijhydene.2025.01.160

46. Beck JS, Vartuli JC, Roth WJ, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society. 1992; 114(27): 10834–10843. doi: 10.1021/ja00053a020 DOI: https://doi.org/10.1021/ja00053a020

47. Kresge CT, Leonowicz ME, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992; 359(6397): 710–712. doi: 10.1038/359710a0 DOI: https://doi.org/10.1038/359710a0

48. Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews. 1997; 97(6): 2373–2420. doi: 10.1021/cr960406n DOI: https://doi.org/10.1021/cr960406n

49. Zhao D, Feng J, Huo Q, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998; 279(5350): 548–552. doi: 10.1126/science.279.5350.548 DOI: https://doi.org/10.1126/science.279.5350.548

50. Bore MT, Pham HN, Ward TL, et al. Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica. Chemical Communications. 2004; (22): 2620. doi: 10.1039/b407575g DOI: https://doi.org/10.1039/b407575g

51. Sun N, Wen X, Wang F, et al. Effect of pore structure on Ni catalyst for CO2 reforming of CH4. Energy & Environmental Science. 2010; 3(3): 366. doi: 10.1039/b925503f DOI: https://doi.org/10.1039/b925503f

52. Zhang M, Ji S, Hu L, et al. Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO2. Chinese Journal of Catalysis. 2006; 27: 777–781. doi: 10.1016/S1872-2067(06)60043-0 DOI: https://doi.org/10.1016/S1872-2067(06)60043-0

53. Ungureanu A, Dragoi B, Chirieac A, et al. Composition-Dependent Morphostructural Properties of Ni–Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Applied Materials & Interfaces. 2013; 5(8): 3010–3025. doi: 10.1021/am302733ms DOI: https://doi.org/10.1021/am302733m

54. Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev. 2014; 43(22): 7813–7837. doi: 10.1039/c3cs60395d DOI: https://doi.org/10.1039/C3CS60395D

55. Iro EO. Synthesis, characterisation and testing of Au/SBA-15 catalysts for elimination of volatile organic compounds by complete oxidation at low temperatures [PhD thesis]. Teesside University. 2017.

56. Agún B, Abánades A. Comprehensive review on dry reforming of methane: Challenges and potential for greenhouse gas mitigation. International Journal of Hydrogen Energy. 2025; 103: 395–414. doi: 10.1016/j.ijhydene.2025.01.160 DOI: https://doi.org/10.1016/j.ijhydene.2025.01.160

57. Iro E, Hajimirzaee S, Sasaki T, et al. Novel Ni/SBA-15 Catalyst Pellets for Tar Catalytic Cracking in a Dried Sewage Sludge Pyrolysis Pilot Plant. Catalysts. 2025; 15(2): 142. doi: 10.3390/catal15020142 DOI: https://doi.org/10.3390/catal15020142

58. Ahmed R, Sasaki T, Olea M. Original Method to Predict and Monitor Carbon Deposition on Ni-Based Catalysts During Dry Reforming of Methane. Frontiers in Chemical Engineering. 2020; 2. doi: 10.3389/fceng.2020.00009 DOI: https://doi.org/10.3389/fceng.2020.00009

59. Xu Z, Park ED. Recent Advances in Coke Management for Dry Reforming of Methane over Ni-Based Catalysts. Catalysts. 2024; 14(3): 176. doi: 10.3390/catal14030176 DOI: https://doi.org/10.3390/catal14030176

60. Arora S, Prasad R. An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Advances. 2016; 6: 108668. doi: 10.1039/c6ra20450c DOI: https://doi.org/10.1039/C6RA20450C

61. Karam L, Casale S, El Zakhem H, et al. Tuning the properties of nickel nanoparticles inside SBA-15 mesopores for enhanced stability in methane reforming. Journal of CO2 Utilization. 2017; 17: 119–124. doi: 10.1016/j.jcou.2016.12.002 DOI: https://doi.org/10.1016/j.jcou.2016.12.002

62. Mile B, Stirling D, Zammitt MA, et al. The location of nickel oxide and nickel in silica-supported catalysts: Two forms of “NiO” and the assignment of temperature-programmed reduction profiles. Journal of Catalysis. 1988; 114: 217–229. doi: 10.1016/0021-9517(88)90026-7 DOI: https://doi.org/10.1016/0021-9517(88)90026-7

63. Pompeo F, Nichio NN, González MG, et al. Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming. Catalysis Today. 2005; 107-108: 856-862. doi: 10.1016/j.cattod.2005.07.024 DOI: https://doi.org/10.1016/j.cattod.2005.07.024

64. Liu D, Quek XY, Wah HHA, et al. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catalysis Today. 2009; 148(3–4): 243–250. doi: 10.1016/j.cattod.2009.08.014 DOI: https://doi.org/10.1016/j.cattod.2009.08.014

65. Sodesawa T, Dobashi A, Nozaki F. Catalytic reaction of methane with carbon dioxide. React. Kinet. Catalysis Letters. 1979; 12: 107–111. doi: 10.1007/bf02071433 DOI: https://doi.org/10.1007/BF02071433

66. Tomishige K, Yamazaki O, Chen Y, et al. Development of ultra-stable Ni catalysts for CO2 reforming of methane. Catalysis. Today. 1998; 45: 35-39. doi: 10.1016/s0920-5861(98)00238-7 DOI: https://doi.org/10.1016/S0920-5861(98)00238-7

67. Shen J, Shang J, Tian X, et al. Highly dispersed Ni nanoparticles confined in mesoporous SBA-15 for methane dry reforming with improved coke resistance and stability. Chemical Engineering Journal. 2024; 497: 154813. doi: 10.1016/j.cej.2024.154813 DOI: https://doi.org/10.1016/j.cej.2024.154813

68. Zhu L, Lv Z, Huang X, et al. Understanding the role of support structure in methane dry reforming for syngas production. Fuel. 2022; 327: 125163. doi: 10.1016/j.fuel.2022.125163 DOI: https://doi.org/10.1016/j.fuel.2022.125163