Analysis on thermo-mechanical reliability of laser-electricity converter

Authors

  • Ziyi Zhang Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • Chenwu Wu Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Article ID: 288
127 Views

DOI:

https://doi.org/10.18686/cest288

Abstract

Thermal and mechanical responses of a typical Laser-Electricity Converter (LEC) used in laser power beaming to continuous wave (CW) Laser, as well as the damage behavior of key sensor illuminated by laser have been investigated to evaluate the reliability of the converter. Firstly, temperature elevation and thermal stress arising in the whole LEC are calculated and analyzed to find out the vulnerable parts, i.e., the infrared detectors for optical path alignment during wireless power transfer. Then, the parameter dependence of thermo-mechanical behaviors of the detector is revealed with a group of numerical simulations. Finally, the typical experimental tests are carried through to verify the theoretical analysis.

References

1. Zhang R, Zhou J. Ultrafast-adsorption-kinetics molecular sieving of propylene from propane. Clean Energy Science and Technology. 2024; 2(2): 126. doi: 10.18686/cest.v2i2.126

2. Dai Y, Sun J, Zhang X, et al. Supramolecular assembly boosting the phototherapy performances of BODIPYs. Coordination Chemistry Reviews. 2024; 517: 216054. doi: 10.1016/j.ccr.2024.216054

3. Kabir E, Kumar P, Kumar S, et al. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews. 2018; 82: 894-900. doi: 10.1016/j.rser.2017.09.094

4. Rodgers E, Sotudeh J, Mullins C, et al. Space Based Solar Power. OTPS; 2024.

5. Viswanathan V, Epstein AH, Chiang YM, et al. The challenges and opportunities of battery-powered flight. Nature. 2022; 601(7894): 519–525. doi: 10.1038/s41586-021-04139-1

6. Marouani I. Contribution of renewable energy technologies in combating phenomenon of global warming and minimizing GHG emissions. Clean Energy Science and Technology. 2024; 2(2): 164. doi: 10.18686/cest.v2i2.164

7. Wu CW, Chang RT, Huang CG. Transient coupled model on efficiency prediction of laser power beaming for aerostat. Optics & Laser Technology. 2020; 127: 106140. doi: 10.1016/j.optlastec.2020.106140

8. Wu CW, Wang J, Huang CG. A coupled model on energy conversion in laser power beaming. Journal of Power Sources. 2018; 393: 211–216. doi: 10.1016/j.jpowsour.2018.05.010

9. Zhang M, Zhang G, Liu Y, et al. High-performance PbS detectors sensitized from one-step sensitization. Materials Science in Semiconductor Processing. 2024; 178: 108456. doi: 10.1016/j.mssp.2024.108456

10. Chang RT, Liu C, Huang CG, et al. Behaviors of photovoltaic cells illuminated by a laser of different operation modes. Applied Optics. 2022; 61(19): 5728. doi: 10.1364/ao.460270

11. Xu L, Cai H, Li C, et al. Degradation of responsivity for photodiodes under intense laser irradiation. Optik. 2013; 124(3): 225–228. doi: 10.1016/j.ijleo.2011.11.055

12. Arora VK, Dawar AL. Laser-induced damage studies in silicon and silicon-based photodetectors. Applied Optics. 1996; 35(36): 7061. doi: 10.1364/ao.35.007061

13. Xiao K, Wu X, Song X, et al. Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-020-80879-w

14. Lowe RA, Landis GA, Jenkins P. Response of photovoltaic cells to pulsed laser illumination. IEEE Transactions on Electron Devices. 1995; 42(4): 744–751. doi: 10.1109/16.372080

15. Yao C, Mei H, Xiao Y, et al. Correcting thermal-emission-induced detector saturation in infrared spectroscopy. Optics Express. 2022; 30(21): 38458. doi: 10.1364/oe.466102

16. Jiang T, Zheng X, Cheng XA, et al. The carrier transportation of photoconductive HgCdTe detector irradiated by CW band-off laser. Journal of infrared and millimeter waves. 2012; 31(3): 216–221. doi: 10.3724/sp.j.1010.2012.00216

17. Eliseev PG. Optical strength of semiconductor laser materials. Progress in quantum electronics. 1996; 20(1): 1-82. doi: 10.1016/0079-6727(95)00002-X

18. Bartoli F, Esterowitz L, Kruer M, et al. Irreversible laser damage in ir detector materials. Applied Optics. 1977; 16(11): 2934. doi: 10.1364/ao.16.002934

19. Xi J, Wang X, Tao Z, et al. Enhanced Thermal Stress Reliability of Photodetector Devices Based on Thermal-Mechanical Simulation and Temperature Cycling Experiments. In: Proceedings of the 23rd International Conference on Electronic Packaging Technology (ICEPT); 10–13 August 2022; Dalian, China.

20. Meyer JR, Bartoli FJ, Kruer MR. Optical heating in semiconductors. Physical Review B. 1980; 21(4): 1559–1568. doi: 10.1103/physrevb.21.1559

21. Chen CS, Liu AH, Sun G, et al. Analysis of laser damage threshold and morphological changes at the surface of a HgCdTe crystal. Journal of Optics A: Pure and Applied Optics. 2005; 8(1): 88–92. doi: 10.1088/1464-4258/8/1/014

22. Bartoli F, Esterowitz L, Allen R, et al. A generalized thermal model for laser damage in infrared detectors. Journal of Applied Physics. 1976; 47(7): 2875–2881. doi: 10.1063/1.323064

23. Lin IK, Zhang Y, Zhang X. The deformation of microcantilever-based infrared detectors during thermal cycling. Journal of Micromechanics and Microengineering. 2008; 18(7): 075012. doi: 10.1088/0960-1317/18/7/075012

24. Rajic N, Street N. A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis. Quantitative InfraRed Thermography Journal. 2014; 11(2): 207–221. doi: 10.1080/17686733.2014.962835

25. Titterton DH. A review of the development of optical countermeasures. Technologies for Optical Countermeasures. 2004.

26. Li L, Lu Q. Numerical Simulation of Dynamic Response of PC-Type HgCdTe Detector Irradiated by in-Band and Out-of-Band Laser Beams. Acta Optica Sinica. 2008; 28(10): 1952–1958. doi: 10.3788/aos20082810.1952

27. Noda N. Thermal Stresses. Taylor & Francis; 2003. pp.1.

28. Larson MG, Bengzon F. The Finite Element Method: Theory, Implementation, and Applications. Springer Nature Link; 2013.

29. Lienhard JH IV, Lienhard JH V. A Heat Transfer Textbook (3rd Ed.). Cambridge Massachusetts; 2005.

30. Kiocek P. Handbook of Infrared Optical Materials. Marcel Dekker; 1991.

31. Solymar L, Walsh D. Electrical Properties of Materials. Oxford University Press; 2004.

32. Watkins SE, Zhang CZ, Walser RM, et al. Electrical performance of laser damaged silicon photodiodes. Applied Optics. 1990; 29(6): 827. doi: 10.1364/ao.29.000827

Downloads

Published

2024-12-30

How to Cite

Zhang, Z., & Wu, C. (2024). Analysis on thermo-mechanical reliability of laser-electricity converter. Clean Energy Science and Technology, 2(4), 288. https://doi.org/10.18686/cest288

Issue

Section

Article