Research progress of low-temperature plasma polishing technology in chip material processing

Authors

  • Hui Yan Beijing University of Chemical Technology, Beijing 100029, China
  • Shuang Xue Beijing University of Chemical Technology, Beijing 100029, China
  • Peiwen Guo Beijing University of Chemical Technology, Beijing 100029, China
  • Jiale He Beijing University of Chemical Technology, Beijing 100029, China
  • Guangning Wang Beijing University of Chemical Technology, Beijing 100029, China
  • Yinlong Zeng Beijing University of Chemical Technology, Beijing 100029, China
  • Longfei Qie Beijing University of Chemical Technology, Beijing 100029, China
  • Ruixue Wang Beijing University of Chemical Technology, Beijing 100029, China
Article ID: 263
113 Views

DOI:

https://doi.org/10.18686/cest263

Keywords:

low-temperature plasma polishing; plasma-assisted polishing (PAP); plasma electrolytic processing-mechanical polishing (PEP-MP); plasma chemical vaporization machining (PCVM); plasma assisted selective etching (PASE)

Abstract

Low-temperature plasma polishing technology, by virtue of the plasma’s highly ionized characteristics, can accurately remove tiny defects and impurities on the surface of chip materials, improve the flatness and finish of chip materials, reduce mechanical damage and subsurface damage, and has a high material removal rate. This paper reviews the application status, advantages and limitations of plasma polishing technologies in the field of chip material processing. The principles and applications of plasma-assisted polishing, plasma chemical vaporization machining, plasma electrolytic processing-mechanical polishing and plasma assisted selective etching are specifically discussed, and their advantages and limitations are analyzed. Finally, the development of plasma chip-polishing technology is prospected, aiming to provide a useful reference for the continuous improvement of chip manufacturing processes and the future development of the microelectronics industry.

References

1. Zhang H, Qu Z, Tang H, et al. On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Letters. 2021; 6(7): 2491-2498. doi: 10.1021/acsenergylett.1c00768 DOI: https://doi.org/10.1021/acsenergylett.1c00768

2. Qi D, Liu Y, Liu Z, et al. Design of Architectures and Materials in In‐Plane Micro‐supercapacitors: Current Status and Future Challenges. Advanced Materials. 2016; 29(5). doi: 10.1002/adma.201602802 DOI: https://doi.org/10.1002/adma.201602802

3. Peng Y, Akuzum B, Kurra N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science. 2016; 9(9): 2847-2854. doi: 10.1039/c6ee01717g DOI: https://doi.org/10.1039/C6EE01717G

4. Song Y, Wang J, Liang L. Thickness effect on the mechanical performance of cathodes in lithium-ion batteries. Journal of Energy Storage. 2024; 86: 111417. doi: 10.1016/j.est.2024.111417 DOI: https://doi.org/10.1016/j.est.2024.111417

5. Chaniotakis N, Sofikiti N. Novel semiconductor materials for the development of chemical sensors and biosensors: A review. Analytica Chimica Acta. 2008; 615(1): 1-9. doi: 10.1016/j.aca.2008.03.046 DOI: https://doi.org/10.1016/j.aca.2008.03.046

6. Li Q. Integrated Circuit Chip Manufacturing Technology and Process Analysis (Chinese). Digital Technology & Application. 2023; 41(12): 46-48. doi: 10.19695/j.cnki.cn12-1369.2023.12.14

7. Lyons JL, Wickramaratne D, Janotti A. Dopants and defects in ultra-wide bandgap semiconductors. Current Opinion in Solid State and Materials Science. 2024; 30: 101148. doi: 10.1016/j.cossms.2024.101148 DOI: https://doi.org/10.1016/j.cossms.2024.101148

8. Jiang K, Zhang P, Song S, et al. A review of ultra-short pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN. Materials Science in Semiconductor Processing. 2024; 180: 108559. doi: 10.1016/j.mssp.2024.108559 DOI: https://doi.org/10.1016/j.mssp.2024.108559

9. Zhang Q. Research on the development of China’s third-generation semiconductor industry (Chinese). Science and Technology Square. 2024; 2: 19-25. doi: 10.13838/j.cnki.kjgc.2024.02.008

10. Casady JB, Johnson RW. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electronics. 1996; 39(10): 1409-1422. doi: 10.1016/0038-1101(96)00045-7 DOI: https://doi.org/10.1016/0038-1101(96)00045-7

11. Hu D, Lin Q, Wu H, et al. Exploration of semiconductor technology development trends—Taking RF power amplifiers as an example (Chinese). Journal of Guilin University of Electronic Technology. 2023; 43(4): 271-281. doi: 10.16725/j.cnki.cn45-1351/tn.2023.04.001

12. Zhang Y, Zhang Q. SiC chip miniaturization and development trend (Chinese). Electric Drive for Locomotives. 2023; 5: 46-62. doi: 10.13890/j.issn.1000-128X.2023.05.005

13. Srivastava M, Singh J, Mishra DK, et al. Review on the various strategies adopted for the polishing of silicon wafer—A chemical perspective. Materials Today: Proceedings. 2022; 63: 62-68. doi: 10.1016/j.matpr.2022.02.300 DOI: https://doi.org/10.1016/j.matpr.2022.02.300

14. Dong Z, Lin Y. Ultra-thin wafer technology and applications: A review. Materials Science in Semiconductor Processing. 2020; 105: 104681. doi: 10.1016/j.mssp.2019.104681 DOI: https://doi.org/10.1016/j.mssp.2019.104681

15. Zhang R, Yu X, Cheng R, et al. Progress and Trends in Integrated Circuit Advanced Manufacturing Technology (Chinese). Frontiers of Data & Computing. 2021; 3(5): 28-39.

16. Dranczewski J, Fischer A, Tiwari P, et al. Plasma etching for fabrication of complex nanophotonic lasers from bonded InP semiconductor layers. Micro and Nano Engineering. 2023; 19: 100196. doi: 10.1016/j.mne.2023.100196 DOI: https://doi.org/10.1016/j.mne.2023.100196

17. Baek KH, Edgar TF, Song K, et al. An effective procedure for sensor variable selection and utilization in plasma etching for semiconductor manufacturing. Computers & Chemical Engineering. 2014; 61: 20-29. doi: 10.1016/j.compchemeng.2013.09.016 DOI: https://doi.org/10.1016/j.compchemeng.2013.09.016

18. Qin Y, Zhao C, Gao F. Multi-stage Process Analysis and Modelling based Online Monitoring for Chip Packaging Process. IFAC-PapersOnLine. 2015; 48(28): 993-998. doi: 10.1016/j.ifacol.2015.12.260 DOI: https://doi.org/10.1016/j.ifacol.2015.12.260

19. Kong X, Li S, Li H, et al. Distribution patterns of reactive species in the interaction between atmospheric pressure plasma jet and fiber membrane. Plasma Sources Science and Technology. 2023; 32(10): 105004. doi: 10.1088/1361-6595/acfd5b DOI: https://doi.org/10.1088/1361-6595/acfd5b

20. Kong X, Li H, Yang W, et al. Atmospheric pressure plasma jet impinging on fiber arrays: Penetration pattern determined by fiber spacing. Applied Physics Letters. 2023; 122(8). doi: 10.1063/5.0139361 DOI: https://doi.org/10.1063/5.0139361

21. Ma G, Li S, Liu F, et al. A Review on Precision Polishing Technology of Single-Crystal SiC. Crystals. 2022; 12(1): 101. doi: 10.3390/cryst12010101 DOI: https://doi.org/10.3390/cryst12010101

22. Li Z, Jiang F, Jiang Z, et al. Energy beam-based direct and assisted polishing techniques for diamond: A review. International Journal of Extreme Manufacturing. 2023; 6(1): 012004. doi: 10.1088/2631-7990/acfd67 DOI: https://doi.org/10.1088/2631-7990/acfd67

23. Geng Z, Huang N, Castelli M, et al. Polishing Approaches at Atomic and Close-to-Atomic Scale. Micromachines. 2023; 14(2): 343. doi: 10.3390/mi14020343 DOI: https://doi.org/10.3390/mi14020343

24. Zong WJ, Cheng X, Zhang JJ. Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal. Carbon. 2016; 99: 186-194. doi: 10.1016/j.carbon.2015.12.001 DOI: https://doi.org/10.1016/j.carbon.2015.12.001

25. Luo Q, Lu J, Xu X, et al. Removal mechanism of sapphire substrates (0001, 112(–)0 and 101(–)0) in mechanical planarization machining. Ceramics International. 2017; 43(18): 16178-16184. doi: 10.1016/j.ceramint.2017.08.194 DOI: https://doi.org/10.1016/j.ceramint.2017.08.194

26. Kubota A, Fukuyama S, Ichimori Y, et al. Surface smoothing of single-crystal diamond (100) substrate by polishing technique. Diamond and Related Materials. 2012; 24: 59-62. doi: 10.1016/j.diamond.2011.10.022 DOI: https://doi.org/10.1016/j.diamond.2011.10.022

27. Kubota A, Nagae S, Touge M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution. Diamond and Related Materials. 2016; 70: 39-45. doi: 10.1016/j.diamond.2016.09.028 DOI: https://doi.org/10.1016/j.diamond.2016.09.028

28. Tatsumi N, Harano K, Ito T, et al. Polishing mechanism and surface damage analysis of type IIa single crystal diamond processed by mechanical and chemical polishing methods. Diamond and Related Materials. 2016; 63: 80-85. doi: 10.1016/j.diamond.2015.11.021 DOI: https://doi.org/10.1016/j.diamond.2015.11.021

29. Li Q, Liu L, Yu J, et al. Investigation on chemical mechanical polishing of Ga-faced GaN crystal with weak alkaline slurry. Applied Surface Science. 2024; 653: 159396. doi: 10.1016/j.apsusc.2024.159396 DOI: https://doi.org/10.1016/j.apsusc.2024.159396

30. Deng H, Hosoya K, Imanishi Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochemistry Communications. 2015; 52: 5-8. doi: 10.1016/j.elecom.2015.01.002 DOI: https://doi.org/10.1016/j.elecom.2015.01.002

31. Hu Y, Shi D, Hu Y, et al. Investigation on the Material Removal and Surface Generation of a Single Crystal SiC Wafer by Ultrasonic Chemical Mechanical Polishing Combined with Ultrasonic Lapping. Materials. 2018; 11(10): 2022. doi: 10.3390/ma11102022 DOI: https://doi.org/10.3390/ma11102022

32. Chen G, Pan L, Luo H, et al. Chemical mechanical polishing of silicon carbide (SiC) based on coupling effect of ultrasonic vibration and catalysis. Journal of Environmental Chemical Engineering. 2023; 11(5): 111080. doi: 10.1016/j.jece.2023.111080 DOI: https://doi.org/10.1016/j.jece.2023.111080

33. Deng H, Hosoya K, Imanishi Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochemistry Communications. 2015; 52: 5-8. doi: 10.1016/j.elecom.2015.01.002 DOI: https://doi.org/10.1016/j.elecom.2015.01.002

34. Wang L. Research on Electrochemical Mechanical Polishing Process of Silicon Carbide Crystals (Chinese) [Master’s thesis]. Dalian University of Technology; 2022.

35. Sidpara A, Jain VK. Nano–level finishing of single crystal silicon blank using magnetorheological finishing process. Tribology International. 2012; 47: 159-166. doi: 10.1016/j.triboint.2011.10.008 DOI: https://doi.org/10.1016/j.triboint.2011.10.008

36. Ma X, Tian Y, Qian C, et al. Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate. Ceramics International. 2024; 50(20): 40069-40078. doi: 10.1016/j.ceramint.2024.07.392 DOI: https://doi.org/10.1016/j.ceramint.2024.07.392

37. Jang KI, Nam E, Lee CY, et al. Mechanism of synergetic material removal by electrochemomechanical magnetorheological polishing. International Journal of Machine Tools and Manufacture. 2013; 70: 88-92. doi: 10.1016/j.ijmachtools.2013.03.011 DOI: https://doi.org/10.1016/j.ijmachtools.2013.03.011

38. Saraswathamma K, Jha S, Venkateswara Rao P. Rheological behaviour of Magnetorheological polishing fluid for Si polishing. Materials Today: Proceedings. 2017; 4(2): 1478-1491. doi: 10.1016/j.matpr.2017.01.170 DOI: https://doi.org/10.1016/j.matpr.2017.01.170

39. Yin T, Zhao P, Doi T, et al. Effect of Using High-Pressure Gas Atmosphere with UV Photocatalysis on the CMP Characteristics of a 4H-SiC Substrate. ECS Journal of Solid State Science and Technology. 2021; 10(2): 024010. doi: 10.1149/2162-8777/abe7a8 DOI: https://doi.org/10.1149/2162-8777/abe7a8

40. Lu J, Wang Y, Luo Q, et al. Photocatalysis assisting the mechanical polishing of a single-crystal SiC wafer utilizing an anatase TiO2-coated diamond abrasive. Precision Engineering. 2017; 49: 235-242. doi: 10.1016/j.precisioneng.2017.02.011 DOI: https://doi.org/10.1016/j.precisioneng.2017.02.011

41. Kawabata Y, Taniguchi J, Miyamoto I. XPS studies on damage evaluation of single-crystal diamond chips processed with ion beam etching and reactive ion beam assisted chemical etching. Diamond and Related Materials. 2004; 13(1): 93-98. doi: 10.1016/j.diamond.2003.09.005 DOI: https://doi.org/10.1016/j.diamond.2003.09.005

42. Luo Q, Chen J, Cheng Z, Lu J. Research progress and development trend of grinding and polishing technology of silicon carbide substrate (Chinese). Journal of Hunan University (Natural Sciences). 2024; 51(4): 140-152. doi:10.16339/j.cnki.hdxbzkb.2024180

43. Niu S, Chen Y, Wang Y, et al. Chemical mechanical polishing process of gallium nitride chips (Chinese). Science Technology and Engineering. 2020; 20(19): 7639-7643.

44. Sun X, Li J, Zhang W, et al. Research progress on material removal non-uniformity in chemical mechanical polishing of silicon carbide (Chinese). Journal of Synthetic Crystals. 2024; 53(4): 585-599. doi: 10.16553/j.cnki.issn1000-985x.20240013.001

45. Xu H, Wang J, Li Q, Pan F. Research progress in chemical mechanical polishing of silicon carbide wafers (Chinese). Modern Manufacturing Engineering. 2022; 6: 153-161+116.

46. Li Y. Experimental Study on Optimization of Chemical Mechanical Polishing Process for Silicon Carbide Wafer (Chinese) [Master’s thesis]. Henan University of Technology; 2023.

47. Li H, Ren K, Yin Z, et al. A review of research on ultrasonic vibration assisted abrasive flow polishing technology (Chinese). Journal of Mechanical Engineering. 2021; 57(9): 233-253. DOI: https://doi.org/10.3901/JME.2021.09.233

48. Chen G, Xiao Q. Research progress on polishing process of single crystal sapphire substrate (Chinese). Tool Engineering. 2018; 52(3): 3-9. doi: 10.16567/j.cnki.1000-7008.2018.03.001

49. Tang A. Research on the Mechanism of Vibration Assisted Photocatalytic Polishing of Silicon Carbide (Chinese) [Master’s thesis]. Shenyang University of Technology; 2023.

50. Zhu X, Gui Y, Fu H, et al. Photocatalytic assisted chemical mechanical polishing for silicon carbide using developed ceria coated diamond core-shell abrasives. Tribology International. 2024; 197: 109827. doi: 10.1016/j.triboint.2024.109827 DOI: https://doi.org/10.1016/j.triboint.2024.109827

51. Xiao H, Dai Y, Duan J, et al. Material removal and surface evolution of single crystal silicon during ion beam polishing. Applied Surface Science. 2021; 544: 148954. doi: 10.1016/j.apsusc.2021.148954 DOI: https://doi.org/10.1016/j.apsusc.2021.148954

52. Mi S, Toros A, Graziosi T, et al. Non-contact polishing of single crystal diamond by ion beam etching. Diamond and Related Materials. 2019; 92: 248-252. doi: 10.1016/j.diamond.2019.01.007 DOI: https://doi.org/10.1016/j.diamond.2019.01.007

53. Yamamura K, Takiguchi T, Ueda M, et al. High-Integrity Finishing of 4H-SiC (0001) by Plasma-Assisted Polishing. Advanced Materials Research. 2010; 126-128: 423-428. doi: 10.4028/www.scientific.net/amr.126-128.423 DOI: https://doi.org/10.4028/www.scientific.net/AMR.126-128.423

54. Deng H, Yamamura K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing. CIRP Annals. 2013; 62(1): 575-578. doi: 10.1016/j.cirp.2013.03.028 DOI: https://doi.org/10.1016/j.cirp.2013.03.028

55. Deng H, Ueda M, Yamamura K. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing. The International Journal of Advanced Manufacturing Technology. 2014; 72: 1-7. doi: 10.1007/s00170-012-4430-7 DOI: https://doi.org/10.1007/s00170-012-4430-7

56. Ji J, Yamamura K, Deng H. Plasma assisted polishing technology for manufacturing single-crystal SiC atomic level surfaces (Chinese). Acta Physica Sinica. 2021; 70(6): 74-86. DOI: https://doi.org/10.7498/aps.70.20202014

57. Sun R, Yang X, Arima K, et al. High-quality plasma-assisted polishing of aluminum nitride ceramic. CIRP Annals. 2020; 69(1): 301-304. doi: 10.1016/j.cirp.2020.04.096 DOI: https://doi.org/10.1016/j.cirp.2020.04.096

58. Deng H, Endo K, Yamamura K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface. CIRP Annals. 2015; 64(1): 531-534. doi: 10.1016/j.cirp.2015.04.002 DOI: https://doi.org/10.1016/j.cirp.2015.04.002

59. Peguiron A, Moras G, Walter M, et al. Activation and mechanochemical breaking of C–C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon. 2016; 98: 474-483. doi: 10.1016/j.carbon.2015.10.098 DOI: https://doi.org/10.1016/j.carbon.2015.10.098

60. Yamamura K, Emori K, Sun R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing. CIRP Annals. 2018; 67(1): 353-356. doi: 10.1016/j.cirp.2018.04.074 DOI: https://doi.org/10.1016/j.cirp.2018.04.074

61. Luo H, Ajmal KM, Liu W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma. Carbon. 2021; 182: 175-184. doi: 10.1016/j.carbon.2021.05.062 DOI: https://doi.org/10.1016/j.carbon.2021.05.062

62. Liu N, Sugimoto K, Yoshitaka N, et al. Effects of polishing pressure and sliding speed on the material removal mechanism of single crystal diamond in plasma-assisted polishing. Diamond and Related Materials. 2022; 124: 108899. doi: 10.1016/j.diamond.2022.108899 DOI: https://doi.org/10.1016/j.diamond.2022.108899

63. Nestler K, Böttger-Hiller F, Adamitzki W, et al. Plasma Electrolytic Polishing – An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range. Procedia CIRP. 2016; 42: 503-507. doi: 10.1016/j.procir.2016.02.240 DOI: https://doi.org/10.1016/j.procir.2016.02.240

64. Huang Y, Wang C, Ding F, et al. Principle, process, and application of metal plasma electrolytic polishing: a review. The International Journal of Advanced Manufacturing Technology. 2021; 114(7-8): 1893-1912. doi: 10.1007/s00170-021-07012-7 DOI: https://doi.org/10.1007/s00170-021-07012-7

65. Ma G, Li S, Liu X, et al. Combination of Plasma Electrolytic Processing and Mechanical Polishing for Single-Crystal 4H-SiC. Micromachines. 2021; 12(6): 606. doi: 10.3390/mi12060606 DOI: https://doi.org/10.3390/mi12060606

66. Zhang C. Simulation and Experimental Study on Ultrasonic Assisted Electrolyte Plasma Polishing of SiC Single Crystal (Chinese) [Master’s thesis]. Xi’an University of Technology; 2023. pp. 13-20.

67. Liu N, Yi R, Deng H. Study of initiation and development of local oxidation phenomena during anodizing of SiC. Electrochemistry Communications. 2018; 89: 27-31. doi: 10.1016/j.elecom.2018.02.013 DOI: https://doi.org/10.1016/j.elecom.2018.02.013

68. Chen Y, Yi J, Wang Z, et al. Experimental study on ultrasonic-assisted electrolyte plasma polishing of SUS304 stainless steel. The International Journal of Advanced Manufacturing Technology. 2022; 124(7-8): 2835-2846. doi: 10.1007/s00170-022-10646-w DOI: https://doi.org/10.1007/s00170-022-10646-w

69. Sano Y, Watanabe M, Yamamura K, et al. Polishing Characteristics of Silicon Carbide by Plasma Chemical Vaporization Machining. Japanese Journal of Applied Physics. 2006; 45(10B): 8277. doi: 10.1143/jjap.45.8277 DOI: https://doi.org/10.1143/JJAP.45.8277

70. Nakahama Y, Kanetsuki N, Funaki T, et al. Etching characteristics of GaN by plasma chemical vaporization machining. Surface and Interface Analysis. 2008; 40(12): 1566-1570. doi: 10.1002/sia.2955 DOI: https://doi.org/10.1002/sia.2955

71. Yamamura K, Yamamoto Y, Deng H. Preliminary Study on Chemical Figuring and Finishing of Sintered SiC Substrate Using Atmospheric Pressure Plasma. Procedia CIRP. 2012; 3: 335-339. doi: 10.1016/j.procir.2012.07.058 DOI: https://doi.org/10.1016/j.procir.2012.07.058

72. Nakanishi Y, Mukai R, Matsuyama S, et al. Cause of Etch Pits during the High Speed Plasma Etching of Silicon Carbide and an Approach to Reduce their Size. Materials Science Forum. 2020; 1004: 161-166. doi: 10.4028/www.scientific.net/msf.1004.161 DOI: https://doi.org/10.4028/www.scientific.net/MSF.1004.161

73. Ueda M, Shibahara M, Zettsu N, et al. Effect of Substrate Heating in Thickness Correction of Quartz Crystal Wafer by Plasma Chemical Vaporization Machining. Key Engineering Materials. 2010; 447-448: 218-222. doi: 10.4028/www.scientific.net/kem.447-448.218 DOI: https://doi.org/10.4028/www.scientific.net/KEM.447-448.218

74. Fang Z, Zhang Y, Li R, et al. An efficient approach for atomic-scale polishing of single-crystal silicon via plasma-based atom-selective etching. International Journal of Machine Tools and Manufacture. 2020; 159: 103649. doi: 10.1016/j.ijmachtools.2020.103649 DOI: https://doi.org/10.1016/j.ijmachtools.2020.103649

75. Fang Z. Study on the Process of Atmospheric Pressure Plasma Lateral Etching and Polishing of Single Crystal Silicon Wafers (Chinese) [Master’s thesis]. Harbin Institute of Technology; 2020.

76. Zhang L, Wu B, Zhang Y, et al. Highly efficient and atomic scale polishing of GaN via plasma-based atom-selective etching. Applied Surface Science. 2023; 620: 156786. doi: 10.1016/j.apsusc.2023.156786 DOI: https://doi.org/10.1016/j.apsusc.2023.156786

77. Liu W, Xiao Y, Zhang Y, et al. Highly efficient and atomic-scale smoothing of single crystal diamond through plasma-based atom-selective etching. Diamond and Related Materials. 2024; 143: 110840. doi: 10.1016/j.diamond.2024.110840 DOI: https://doi.org/10.1016/j.diamond.2024.110840

Downloads

Published

2024-11-21

How to Cite

Yan, H., Xue, S., Guo, P., He, J., Wang, G., Zeng, Y., Qie, L., & Wang, R. (2024). Research progress of low-temperature plasma polishing technology in chip material processing. Clean Energy Science and Technology, 2(4), 263. https://doi.org/10.18686/cest263

Issue

Section

Article