Rotation-based heat transfer enhancement for shell-and-tube latent thermal energy storage systems: From mechanisms to applications
DOI:
https://doi.org/10.18686/cest237Keywords:
latent thermal energy storage; phase-change materials; heat transfer enhancement; rotationAbstract
Latent thermal energy storage (LTES) is an important energy storage technology to mitigate the discrepancy between energy source and energy supply, and it has great application prospects in many areas, such as solar energy utilization, geothermal energy utilization and electricity storage. However, LTES systems suffer from the low thermal conductivity of most phase-change materials (PCMs), threatening their large-scale commercial applications. To tackle this challenge, heat transfer enhancement for LTES systems is critically important and has been widely investigated worldwide. Convectional heat transfer enhancement techniques, including fins, nanoparticles and multiple PCMs, can significantly improve the charging and discharging rates of an LTES system. Recently, rotation-based methods have emerged to provide new routes for the heat transfer enhancement of LTES systems, and many achievements have been obtained by researchers around the world. This study conducted a short review of the mechanisms and applications of three rotation-based heat transfer enhancement methods, aiming to provide deep insights into these novel heat transfer enhancement methods and propel their future development and applications.
References
1. Li Z, Lu Y, Huang R, et al. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Applied Energy. 2021; 283: 116277. doi: 10.1016/j.apenergy.2020.116277
2. Zhang Y, Xiao Y, Abuelgasim S, Liu C. A brief review of hydrogen production technologies. Clean Energy Science and Technology. 2024; 2(1): 117. doi: 10.18686/cest.v2i1.117
3. Jiang R, Zhi X, Qian G, Li Z, Yu X. Design and techno-economic analysis of a thermal battery for residential hot water supply under different charging modes. Journal of Energy Storage. 2024; 94: 112578. doi: 10.1016/j.est.2024.112578
4. Li Z, Yu X, Wang L, et al. Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process. Energy. 2020; 199: 117400. doi: 10.1016/j.energy.2020.117400
5. Li Z, Lu Y, Huang R, et al. Parametric study on melting process of a shell-and-tube latent thermal energy storage under fluctuating thermal conditions. Applied Thermal Engineering. 2020; 180: 115898. doi: 10.1016/j.applthermaleng.2020.115898
6. Zheng J, Su Y, Wang W, et al. Hydrogen-electricity coupling energy storage systems: Models, applications, and deep reinforcement learning algorithms. Clean Energy Science and Technology. 2024; 2(1): 96. doi: 10.18686/cest.v2i1.96
7. Yu X, Zhang Z, Qian G, et al. Evaluation of PCM thermophysical properties on a compressed air energy storage system integrated with packed-bed latent thermal energy storage. Journal of Energy Storage. 2024; 81: 110519. doi: 10.1016/j.est.2024.110519
8. Li Z, Zhi X, Wu Z, et al. Role of different energy storage methods in decarbonizing urban distributed energy systems: A case study of thermal and electricity storage. Journal of Energy Storage. 2023; 73: 108931. doi: 10.1016/j.est.2023.108931
9. Shoeibi S, Jamil F, Parsa SM, et al. Recent advancements in applications of encapsulated phase change materials for solar energy systems: A state of the art review. Journal of Energy Storage. 2024; 94: 112401. doi: 10.1016/j.est.2024.112401
10. Li Z, Yu X, Wang L, et al. Comparative investigations on dynamic characteristics of basic ORC and cascaded LTES-ORC under transient heat sources. Applied Thermal Engineering. 2022; 207: 118197. doi: 10.1016/j.applthermaleng.2022.118197
11. Li Z, Wang L, Jiang R, et al. Experimental investigations on dynamic performance of organic Rankine cycle integrated with latent thermal energy storage under transient engine conditions. Energy. 2022; 246: 123413. doi: 10.1016/j.energy.2022.123413
12. Yu X, Li Z, Zhang Z, et al. Energy, exergy, economic performance investigation and multi-objective optimization of reversible heat pump-organic Rankine cycle integrating with thermal energy storage. Case Studies in Thermal Engineering. 2022; 38: 102321. doi: 10.1016/j.csite.2022.102321
13. Zhao Y, Huang J, Song J, Ding Y. Thermodynamic investigation of a Carnot battery based multi-energy system with cascaded latent thermal (heat and cold) energy stores. Energy. 2024; 296: 131148. doi: 10.1016/j.energy.2024.131148
14. Yu X, Chang J, Huang R, et al. Sensitivity analysis of thermophysical properties on PCM selection under steady and fluctuating heat sources: A comparative study. Applied Thermal Engineering. 2021; 186: 116527. doi: 10.1016/j.applthermaleng.2020.116527
15. Wu T, Wu D, Deng Y, et al. Three-dimensional network-based composite phase change materials: Construction, structure, performance and applications. Renewable and Sustainable Energy Reviews. 2024; 199: 114480. doi: 10.1016/j.rser.2024.114480
16. Jiang R, Yu X, Chang J, et al. Effects evaluation of fin layouts on charging performance of shell-and-tube LTES under fluctuating heat sources. Journal of Energy Storage. 2021; 44: 103428. doi: 10.1016/j.est.2021.103428
17. Zhang Y, Yang X, Zou S, et al. Enhancing the phase change material based shell-tube thermal energy storage units with unique hybrid fins. International Communications in Heat and Mass Transfer. 2024; 157: 107763. doi: 10.1016/j.icheatmasstransfer.2024.107763
18. Li Z, Baghaei Oskouei S, Fu G, et al. Enhanced power density during energy charging of a shell-and-tube thermal storage unit: Comparison between the inclusion of metal fins and foams. Journal of Energy Storage. 2022; 55: 105576. doi: 10.1016/j.est.2022.105576
19. Ji C, Waqas H, Liu D, et al. Melting performance improvement of phase change materials with thermal energy storage unit using nanoparticles. Case Studies in Thermal Engineering. 2024; 61: 104892. doi: 10.1016/j.csite.2024.104892
20. Shailesh K, Naresh Y, Banerjee J. Heat transfer performance of a novel PCM based heat sink coupled with heat pipe: An experimental study. Applied Thermal Engineering. 2023; 229: 120552. doi: 10.1016/j.applthermaleng.2023.120552
21. Wang Z, Zhu J, Wang M, Gao Q. Experimental study on heat transfer and storage of a heating system coupled with solar flat heat pipe and phase change material unit. Journal of Energy Storage. 2023; 73: 108971. doi: 10.1016/j.est.2023.108971
22. Liu J, Liu Z, Nie C. Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube. Journal of Energy Storage. 2021; 40: 102672. doi: 10.1016/j.est.2021.102672
23. Li M, Li M, Xue X, Li D. Optimization and design criterion of the shell-and-tube thermal energy storage with cascaded PCMs under the constraint of outlet threshold temperature. Renewable Energy. 2022; 181: 1371-1385. doi: 10.1016/j.renene.2021.09.086
24. Gao Y, Li Y, Chen X. Hygroscopic all-polymer composite for moisture management and evaporative cooling. Clean Energy Science and Technology. 2024; 2(1): 111. doi: 10.18686/cest.v2i1.111
25. Yang W, Zhang W, Chen J, Zhou J. Mono-functionalized pillar[n]arenes: Syntheses, host–guest properties and applications. Chinese Chemical Letters. 2024; 35(1): 108740. doi: 10.1016/j.cclet.2023.108740
26. Zhang R, Zhou J. Ultrafast-adsorption-kinetics molecular sieving of propylene from propane. Clean Energy Science and Technology. 2024; 2(2): 126. doi: 10.18686/cest.v2i2.126
27. Hu Y, Shi L, Zhang Z, et al. Magnetic regulating the phase change process of Fe3O4-paraffin wax nanocomposites in a square cavity. Energy Conversion and Management. 2020; 213: 112829. doi: 10.1016/j.enconman.2020.112829
28. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. Journal of Molecular Liquids. 2018; 263: 303-315. doi: 10.1016/j.molliq.2018.04.144
29. Luo K, Pérez AT, Wu J, et al. Efficient lattice Boltzmann method for electrohydrodynamic solid-liquid phase change. Physical Review E. 2019; 100(1): 013306. doi: 10.1103/PhysRevE.100.013306
30. Sun Z, Yang P, Luo K, Wu J. Experimental investigation on the melting characteristics of n-octadecane with electric field inside macrocapsule. International Journal of Heat and Mass Transfer. 2021; 173: 121238. doi: 10.1016/j.ijheatmasstransfer.2021.121238
31. Mahdi AH, Mussa MA. Comprehensive review of optimization of latent thermal energy storage systems using multiple parameters. Journal of Energy Storage. 2024; 86: 111120. doi: 10.1016/j.est.2024.111120
32. Shank K, Tiari S. A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems. Energies. 2023; 16(10): 4165. doi: 10.3390/en16104165
33. Rashid FL, Rahbari A, Ibrahem RK, et al. Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration. Journal of Energy Storage. 2023; 67: 107501. doi: 10.1016/j.est.2023.107501
34. Jiang R, Qian G, Li Z, et al. Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods. Energy. 2024; 304: 132101. doi: 10.1016/j.energy.2024.132101
35. Huang X, Li F, Li Z, et al. An in-depth study on melting performance of latent heat thermal energy storage system under rotation mechanism by fluctuating heat source. Solar Energy Materials and Solar Cells. 2023; 263: 112584. doi: 10.1016/j.solmat.2023.112584
36. Huang X, Li F, Guo J, et al. Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source. Applied Energy. 2024; 362: 122997. doi: 10.1016/j.apenergy.2024.122997
37. Huang X, Li F, Li Y, et al. Solar photothermal utilization of coupled latent heat storage: A numerical and optimization study. Solar Energy Materials and Solar Cells. 2024; 271: 112864. doi: 10.1016/j.solmat.2024.112864
38. Kurnia JC, Sasmito AP, Ping SI. Investigation of Heat Transfer on a Rotating Latent Heat Energy Storage. Energy Procedia. 2017; 105: 4173-4178. doi: 10.1016/j.egypro.2017.03.887
39. Kurnia JC, Sasmito AP. Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage. Applied Energy. 2018; 227: 542-554. doi: 10.1016/j.apenergy.2017.08.087
40. Yu X, Jiang R, Li Z, et al. Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage. Applied Thermal Engineering. 2023; 219: 119480. doi: 10.1016/j.applthermaleng.2022.119480
41. Soltani H, Soltani M, Karimi H, Nathwani J. Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms. International Journal of Heat and Mass Transfer. 2021; 179: 121667. doi: 10.1016/j.ijheatmasstransfer.2021.121667
42. Huang X, Li F, Li Y, et al. Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method. Energy. 2023; 271: 127100. doi: 10.1016/j.energy.2023.127100
43. Huang X, Li F, Li Y, et al. Investigation and optimization on melting performance of a triplex-tube heat storage tank by rotational mechanism. International Journal of Heat and Mass Transfer. 2023; 205: 123892. doi: 10.1016/j.ijheatmasstransfer.2023.123892
44. Huang X, Li F, Li Y, et al. Influence of different rotational speeds of inner and outer tubes on phase change heat storage: An optimization study. Applied Thermal Engineering. 2023; 233: 121154. doi: 10.1016/j.applthermaleng.2023.121154
45. Huang X, Li F, Lu L, et al. Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism. Energy and Buildings. 2023; 290: 113099. doi: 10.1016/j.enbuild.2023.113099
46. Huang X, Li F, Xiao T, et al. Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism. Applied Energy. 2023; 331: 120435. doi: 10.1016/j.apenergy.2022.120435
47. Guo J, Yang B, Li Z, et al. Charging characteristics of finned thermal energy storage tube under variable rotation. Applied Thermal Engineering. 2024; 236: 121887. doi: 10.1016/j.applthermaleng.2023.121887
48. Ren F, Li Q, Wang P. Investigation and optimization on a Y-shaped fins for phase change heat storage by rotational mechanism. Journal of Energy Storage. 2024; 94: 112436. doi: 10.1016/j.est.2024.112436
49. Huang X, Hu R, Gao X, et al. Study on melting process of latent heat energy storage system by nano-enhanced phase change material under rotation condition. Applied Thermal Engineering. 2024; 247: 123040. doi: 10.1016/j.applthermaleng.2024.123040
50. Huang X, Li Z, Xie Y, et al. Phase change heat storage and enhanced heat transfer based on metal foam under unsteady rotation conditions. Energy. 2024; 306: 132501. doi: 10.1016/j.energy.2024.132501
51. Yang C, Wang X, Xu X, et al. Numerical study of solidification and melting behavior of the thermal energy storage system with non-uniform metal foam and active rotation. Journal of Energy Storage. 2024; 86: 111353. doi: 10.1016/j.est.2024.111353
52. Yang C, Xu X, Bake M, et al. Numerical investigation and optimization of the melting performance of latent heat thermal energy storage unit strengthened by graded metal foam and mechanical rotation. Renewable Energy. 2024: 120537. doi: 10.1016/j.renene.2024.120537
53. Yang C, Xu Y, Xu X, et al. Melting performance analysis of finned metal foam thermal energy storage tube under steady rotation. International Journal of Heat and Mass Transfer. 2024; 226: 125458. doi: 10.1016/j.ijheatmasstransfer.2024.125458
54. Shahsavar A, Yekta A, Arıcı M. Numerical investigation of the effect of eccentricity on the melting performance of a rotating triplex-tube latent heat energy storage system. Journal of Energy Storage. 2024; 98: 113018. doi: 10.1016/j.est.2024.113018
55. Shahsavar A, Naderi M, Selimefendigil F. Exploring the impact of tube rotation on the melting performance of multi-tube latent heat storage systems: A numerical investigation. Journal of Energy Storage. 2024; 93: 112355. doi: 10.1016/j.est.2024.112355
56. Yang C, Zheng Z, Cai X, Xu Y. Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit. Applied Thermal Engineering. 2022; 215: 118877. doi: 10.1016/j.applthermaleng.2022.118877
57. Fathi MI, Mussa MA. The effect of whole system rotation on the thermal performance of a phase change energy storage. Journal of Energy Storage. 2023; 68: 107732. doi: 10.1016/j.est.2023.107732
58. Yang B, Guo J, Huang X, et al. Evaluation of variable rotation on enhancing thermal performance of phase change heat storage tank. International Journal of Heat and Fluid Flow. 2024; 106: 109328. doi: 10.1016/j.ijheatfluidflow.2024.109328
59. Mehryan SAM, Raahemifar K, Gargari LS, et al. Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder. Sustainability. 2021; 13(5): 2590. doi: 10.3390/su13052590
60. Solano JP, Martínez DS, Vicente PG, Viedma A. Enhanced thermal-hydraulic performance in tubes of reciprocating scraped surface heat exchangers. Applied Thermal Engineering. 2023; 220: 119667. doi: 10.1016/j.applthermaleng.2022.119667
61. Nogami H, Aonuma K, Chiba Y. Development of Heat Exchanger with New Mechanism of Scraping Temperature Boundary Layer. ISIJ International. 2010; 50: 1276-1281. doi: 10.2355/isijinternational.50.1276
62. Fathi MI, Mussa MA. Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage. Journal of Energy Storage. 2021; 39: 102626. doi: 10.1016/j.est.2021.102626
63. Sadr AN, Shekaramiz M, Zarinfar M, et al. Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder. Journal of Energy Storage. 2022; 47: 103606. doi: 10.1016/j.est.2021.103606
64. Maruoka N, Tsutsumi T, Ito A, et al. Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer. Energy. 2020; 205: 118055. doi: 10.1016/j.energy.2020.118055
65. Tombrink J, Jockenhöfer H, Bauer D. Experimental investigation of a rotating drum heat exchanger for latent heat storage. Applied Thermal Engineering. 2021; 183: 116221. doi: 10.1016/j.applthermaleng.2020.116221
66. Tombrink J, Bauer D. Simulation of a rotating drum heat exchanger for latent heat storage using a quasistationary analytical approach and a numerical transient finite difference scheme. Applied Thermal Engineering. 2021; 194: 117029. doi: 10.1016/j.applthermaleng.2021.117029
67. Tombrink J, Bauer D. Demand-based process steam from renewable energy: Implementation and sizing of a latent heat thermal energy storage system based on the Rotating Drum Heat Exchanger. Applied Energy. 2022; 321: 119325. doi: 10.1016/j.apenergy.2022.119325
68. Egea A, García A, Pérez-García J, Herrero-Martín R. Parametric study of a scraped surface heat exchanger for latent energy storage for domestic hot water generation. Applied Thermal Engineering. 2024; 248: 123214. doi: 10.1016/j.applthermaleng.2024.123214
69. Mehta DS, Solanki K, Rathod MK, Banerjee J. Influence of orientation on thermal performance of shell and tube latent heat storage unit. Applied Thermal Engineering. 2019; 157: 113719. doi: 10.1016/j.applthermaleng.2019.113719
70. Jaberi Khosroshahi A, Hossainpour S. Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system. Journal of Energy Storage. 2021; 36: 102442. doi: 10.1016/j.est.2021.102442
71. Jaberi Khosroshahi A, Hossainpour S. A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system. Journal of Energy Storage. 2022; 55: 105461. doi: 10.1016/j.est.2022.105461
72. Dai H, Zhou S, Niu P, et al. Numerical investigations of the effect of the flip method on charging/discharging performance of a vertical shell-and-tube latent heat thermal energy storage unit. Journal of Energy Storage. 2023; 73: 108976. doi: 10.1016/j.est.2023.108976
73. Huang X, Li F, Xiao T, et al. Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism. Energy. 2023; 280: 128164. doi: 10.1016/j.energy.2023.128164
74. Li F, Huang X, Li Y, et al. Application and analysis of flip mechanism in the melting process of a triplex-tube latent heat energy storage unit. Energy Reports. 2023; 9: 3989-4004. doi: 10.1016/j.egyr.2023.03.037
75. Modi N, Wang X, Negnevitsky M. Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage. Applied Thermal Engineering. 2022; 214: 118812. doi: 10.1016/j.applthermaleng.2022.118812
76. Shahsavar A, Yekta A. Numerical investigation of the effect of simultaneous use of eccentricity and rotation on the entropy generation characteristics in a triplex-tube latent heat storage system. International Communications in Heat and Mass Transfer. 2024; 156: 107648. doi: 10.1016/j.icheatmasstransfer.2024.107648
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zhi Li, Chengdong Fang, Qian Wu, Ruicheng Jiang, Xiaoli Yu
This work is licensed under a Creative Commons Attribution 4.0 International License.