Assessing the effectiveness of bioclimatic strategies in improving thermal comfort and reducing energy consumption in a house located in a desert climate
DOI:
https://doi.org/10.18686/cest.v2i3.177Keywords:
bioclimatic strategies; thermal comfort; energy consumption; desert climate; thermal insulation; phase-change materials; natural ventilation; energy billsAbstract
This article examined the effectiveness of bioclimatic strategies to enhance thermal comfort and decrease energy consumption in a desert-climate residence. The study assessed the impact of thermal insulation, natural ventilation, and phase-change materials (PCMs) over a year, with each strategy evaluated both independently and in combination. Monthly energy bills were analyzed to determine the impact of these strategies. The results indicated substantial reductions in energy costs, with decreases of up to 50% during transitional seasons; however, the complete elimination of heating and cooling systems was not feasible due to significant thermal phase differences between indoor and outdoor environments. Further analysis of thermal discomfort hours revealed that increasing insulation thickness during specific seasons could mitigate peak heat intensity and delay its occurrence, thus extending periods of comfort and reducing discomfort hours. Despite these improvements, some periods of thermal distress persisted during the warmest months, underscoring the necessity for a balanced approach to climate adaptation strategies. Overall, the implementation of these strategies proved effective in improving comfort and reducing energy usage in desert-climate homes, although they do not fully negate the need for traditional heating and cooling systems.
References
Algérie Presse Service. The construction sector, the largest consumer of energy in Algeria (France). Available online: http://www.aps.dz/economie/85470-le-secteur-du-batiment-premier-consommateurd-energie-en-algerie (accessed on 1 January 2021).
Hamdani M, Bekkouche SMEA, Al‐Saadi S, et al. Judicious method of integrating phase change materials into a building envelope under Saharan climate. International Journal of Energy Research. 2021; 45(12): 18048-18065. doi: 10.1002/er.6951 DOI: https://doi.org/10.1002/er.6951
Cherier MK, Hamdani M, Guermoui M, et al. Multi‐hour ahead forecasting of building energy through a new integrated model. Environmental Progress & Sustainable Energy. 2022; 41(5). doi: 10.1002/ep.13823 DOI: https://doi.org/10.1002/ep.13823
M.K. Cherier, S.M.A. Bekkouche, T. Benouaz, S. Belaid, M. Hamdani, N. Benamrane, Energy efficiency and supplement interior comfort with passive solar heating in Saharan climate, Advances in Building Energy Research, 14(1), 2020, 94-114. https://doi.org/10.1080/17512549.2018.1502682. DOI: https://doi.org/10.1080/17512549.2018.1502682
Ayoube A, Maamar H, Yassine M, et al. Improvement of the thermal comfort of building roofs equipped with a phase change materials (PCM) layer under desert weather conditions. 2020 6th International Symposium on New and Renewable Energy (SIENR). Published online October 13, 2021. doi: 10.1109/sienr50924.2021.9631908 DOI: https://doi.org/10.1109/SIENR50924.2021.9631908
M. Hamdani, S.M.A. Bekkouche, T. Benouaz, R. Belarbi, M.K. Cherier. Parametric simulations to evaluate the necessary thickness of the massive layer in the soil of building. 2019 IOP Conf. Ser : Earth Environ. Sci. 214 012121 https://doi.org/10.1088/1755-1315/214/1/012121 DOI: https://doi.org/10.1088/1755-1315/214/1/012121
Hamdani M, Aggoune A, Marif Y, et al. Effect of a movable phase change materials (PCMs) layer on lowering energy usage in desert structures. In: Pong P (editor). Renewable Energy Resources and Conservation. Green Energy and Technology. Springer; 2024. doi: 10.1007/978-3-031-59005-4_21 DOI: https://doi.org/10.1007/978-3-031-59005-4_21
Hebbal B, Marif Y, Hamdani M, et al. The geothermal potential of underground buildings in hot climates: Case of Southern Algeria. Case Studies in Thermal Engineering. 2021; 28: 101422. doi: 10.1016/j.csite.2021.101422 DOI: https://doi.org/10.1016/j.csite.2021.101422
Hamdani M, Bekkouche S, Benouaz T, et al. A new modelling approach of a multizone building to assess the influence of building orientation in Saharan climate. Thermal Science. 2015; 19(suppl. 2): 591-601. doi: 10.2298/tsci131217026h DOI: https://doi.org/10.2298/TSCI131217026H
Álvarez S, Cabeza LF, Ruiz-Pardo A, et al. Building integration of PCM for natural cooling of buildings. Applied Energy. 2013; 109: 514-522. doi: 10.1016/j.apenergy.2013.01.080 DOI: https://doi.org/10.1016/j.apenergy.2013.01.080
Osterman E, Butala V, Stritih U. PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy and Buildings. 2015; 106: 125-133. doi: 10.1016/j.enbuild.2015.04.012 DOI: https://doi.org/10.1016/j.enbuild.2015.04.012
Zhou G, Yang Y, Wang X, et al. Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation. Applied Energy. 2009; 86(1): 52-59. doi: 10.1016/j.apenergy.2008.03.020 DOI: https://doi.org/10.1016/j.apenergy.2008.03.020
Xiong Q, Alshehri HM, Monfaredi R, et al. Application of phase change material in improving Trombe wall efficiency: An up-to-date and comprehensive overview. Energy and Buildings. 2022; 258: 111824. doi: 10.1016/j.enbuild.2021.111824 DOI: https://doi.org/10.1016/j.enbuild.2021.111824
Mathis D. Development of new high thermal inertia materials based on wood and bio-sourced phase change materials (France) [PhD thesis]. Laval University; 2019.
Delcroix B. Modeling of thermal mass energy storage in buildings with phase change materials [PhD thesis]. University of Montréal; 2015.
Aketouane Z, Malha M, Bruneau D, et al. Energy savings potential by integrating Phase Change Material into hollow bricks: The case of Moroccan buildings. Building Simulation. 2018; 11(6): 1109-1122. doi: 10.1007/s12273-018-0457-5 DOI: https://doi.org/10.1007/s12273-018-0457-5
Jin X, Medina MA, Zhang X. Numerical analysis for the optimal location of a thin PCM layer in frame walls. Applied Thermal Engineering. 2016; 103: 1057-1063. doi: 10.1016/j.applthermaleng.2016.04.056 DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.056
Wang J, Long E, Qin W, et al. Ultrathin envelope thermal performance improvement of prefab house by integrating with phase change material. Energy and Buildings. 2013; 67: 210-216. doi: 10.1016/j.enbuild.2013.08.029 DOI: https://doi.org/10.1016/j.enbuild.2013.08.029
Zhou S, Razaqpur AG. CFD modeling and experimental validation of the thermal performance of a novel dynamic PCM Trombe wall: Comparison with the companion static wall with and without PCM. Applied Energy. 2024; 353: 121985. doi: 10.1016/j.apenergy.2023.121985 DOI: https://doi.org/10.1016/j.apenergy.2023.121985
Anter AG, Sultan AA, Hegazi AA, et al. Thermal performance and energy saving using phase change materials (PCM) integrated in building walls. Journal of Energy Storage. 2023; 67: 107568. doi: 10.1016/j.est.2023.107568 DOI: https://doi.org/10.1016/j.est.2023.107568
Muzhanje AT, Hassan H. Microcapsule geometry and nanomaterial enhancement of PCMs (sp07&sp11) for free heating applications. Case Studies in Thermal Engineering. 2023; 49: 103327. doi: 10.1016/j.csite.2023.103327 DOI: https://doi.org/10.1016/j.csite.2023.103327
Kareem BE, Adham AM, Yaqob BN. Experimental analysis of air-multiple pcm heat exchanger in evaporative cooling systems for supply air temperature stabilization. Journal of Building Engineering. 2024; 82: 108269. doi: 10.1016/j.jobe.2023.108269 DOI: https://doi.org/10.1016/j.jobe.2023.108269
Kareem BE, Adham AM, Yaqob BN. Experimental and numerical investigation of a real-scale air to multiple PCM heat exchanger. Journal of Building Engineering. 2024; 89: 109323. doi: 10.1016/j.jobe.2024.109323 DOI: https://doi.org/10.1016/j.jobe.2024.109323
Kareem BE, Adham AM, Yaqob BN. Performance Enhancement of a Ventilation System in Hot and Dry Climate Using Air-PCM Heat Exchanger. International Journal of Heat and Technology. 2022; 40(3): 773-780. doi: 10.18280/ijht.400316 DOI: https://doi.org/10.18280/ijht.400316
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maamar Hamdani, Mohamed Kamal Cherier, Guermoui Mawloud, Sidi Mohammed El Amine Bekkouche, Belaid Abdelfetah, Zaiani Mohamed, Rachid Djeffal, Saleh Al-Saadi, Ehsan Kamel
This work is licensed under a Creative Commons Attribution 4.0 International License.