Recent advances in sustainable nanomaterials for energy conversion and environmental remediation via photocatalysis
DOI:
https://doi.org/10.18686/cest.v2i3.176Keywords:
photocatalysts; perovskite oxides; single-atom catalysts; heterojunctionsAbstract
Photocatalysis is of particular interest because it can be utilized for reducing air pollution and decreasing greenhouse gas emissions. This review examined the latest advances in layered photocatalytic nanomaterials and single-atom catalysts and discloses the synthesis, structural features, and ways to enhance their catalytic ability. In particular, we describe the peculiarities of catalysis mechanisms in CO2 conversion, pollutant and NOx removal, and nitrogen reduction. The current trends in this field and the potential areas for further research are also discussed in this review. It is important to emphasize that single-atom catalysts possess distinct advantages to substantially improve the efficiency of energy conversion processes. The materials related to the synthesizing and post-processing of layered semiconductor catalysts and single-atom catalysts can be useful for other researchers and stakeholders.
References
Maeda K. Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011; 12(4): 237-268. doi: 10.1016/j.jphotochemrev.2011.07.001 DOI: https://doi.org/10.1016/j.jphotochemrev.2011.07.001
Hassan JZ, Zaheer A, Raza A, et al. Au-based heterostructure composites for photo and electro catalytic energy conversions. Sustainable Materials and Technologies. 2023; 36: e00609. doi: 10.1016/j.susmat.2023.e00609 DOI: https://doi.org/10.1016/j.susmat.2023.e00609
Raza A, Rafi AA, Hassan JZ, et al. Rational design of 2D heterostructured photo- & electro-catalysts for hydrogen evolution reaction: A review. Applied Surface Science Advances. 2023; 15: 100402. doi: 10.1016/j.apsadv.2023.100402 DOI: https://doi.org/10.1016/j.apsadv.2023.100402
Shehzad N, Tahir M, Johari K, et al. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization. 2018; 26: 98-122. doi: 10.1016/j.jcou.2018.04.026 DOI: https://doi.org/10.1016/j.jcou.2018.04.026
Santos JI, Cesarin AE, Sales CaR, Triano, et al. Increase of Atmosphere CO2 Concentration and Its Effects on Culture/Weed Interaction. International Journal of Agricultural and Biosystems Engineering. 2017; 11(6): 419-426.
Hassan JZ, Raza A, Qumar U, et al. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation. Sustainable Materials and Technologies. 2022; 33: e00478. doi: 10.1016/j.susmat.2022.e00478 DOI: https://doi.org/10.1016/j.susmat.2022.e00478
Danesh Miah Md, Farhad Hossain Masum Md, Koike M. Global observation of EKC hypothesis for CO2, SO and NO emission: A policy understanding for climate change mitigation in Bangladesh. Energy Policy. 2010; 38(8): 4643-4651. doi: 10.1016/j.enpol.2010.04.022 DOI: https://doi.org/10.1016/j.enpol.2010.04.022
Shi Q, Zhang Y, Li Z, et al. Morphology effects in MnCeOx solid solution-catalyzed NO reduction with CO: Active sites, water tolerance, and reaction pathway. Nano Research. 2023; 16(5): 6951-6959. doi: 10.1007/s12274-023-5407-6 DOI: https://doi.org/10.1007/s12274-023-5407-6
Gu X, Guo S, Zhang Y, et al. Boosting oxygen evolution performance over synergistic Tiara nickel clusters and thin layered double hydroxides. Nano Research Energy. 2024; 3: e9120134. doi: 10.26599/NRE.2024.9120134 DOI: https://doi.org/10.26599/NRE.2024.9120134
Li Z, Xu M, Wang J, et al. Boosting Up Electrosynthesis of Urea with Nitrate and Carbon Dioxide via Synergistic Effect of Metallic Iron Cluster and Single‐Atom. Small. Published online May 15, 2024. doi: 10.1002/smll.202400036 DOI: https://doi.org/10.1002/smll.202400036
Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013; 368(1621): 20130164. doi: 10.1098/rstb.2013.0164 DOI: https://doi.org/10.1098/rstb.2013.0164
Lan R, Irvine JTS, Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy. 2012; 37(2): 1482-1494. doi: 10.1016/j.ijhydene.2011.10.004 DOI: https://doi.org/10.1016/j.ijhydene.2011.10.004
Klerke A, Christensen CH, Nørskov JK, et al. Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry. 2008; 18(20): 2304. doi: 10.1039/b720020j DOI: https://doi.org/10.1039/b720020j
Zhang J, Xu L, Yang X, et al. Amorphous MnRuOx Containing Microcrystalline for Enhanced Acidic Oxygen‐Evolution Activity and Stability. Angewandte Chemie International Edition. 2024; 63(33). doi: 10.1002/anie. DOI: https://doi.org/10.1002/anie.202405641
Schrauzer GN, Guth TD. Photolysis of Water and Photoreduction of Nitrogen on Titanium Dioxide. Journal of the American Chemical Society. 1977; 99(22): 7189-7193. doi: 10.1021/ja00464a015 DOI: https://doi.org/10.1021/ja00464a015
Mao C, Wang J, Zou Y, et al. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry. 2019; 21(11): 2852-2867. doi: 10.1039/c9gc01010f DOI: https://doi.org/10.1039/C9GC01010F
Koe WS, Lee JW, Chong WC, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research. 2019; 27(3): 2522-2565. doi: 10.1007/s11356-019-07193-5 DOI: https://doi.org/10.1007/s11356-019-07193-5
Huang S, Ouyang T, Zheng B, et al. Enhanced Photoelectrocatalytic Activities for CH3OH‐to‐HCHO Conversion on Fe2O3/MoO3: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angewandte Chemie International Edition. 2021; 60(17): 9546-9552. doi: 10.1002/anie.202101058 DOI: https://doi.org/10.1002/anie.202101058
Chen F, Zhang Y, Huang H. Layered photocatalytic nanomaterials for environmental applications. Chinese Chemical Letters. 2023; 34(3): 107523. doi: 10.1016/j.cclet.2022.05.037 DOI: https://doi.org/10.1016/j.cclet.2022.05.037
Yang W, Wang H, Liu R, et al. Tailoring Crystal Facets of Metal–Organic Layers to Enhance Photocatalytic Activity for CO2 Reduction. Angewandte Chemie International Edition. 2020; 60(1): 409-414. doi: 10.1002/anie.202011068 DOI: https://doi.org/10.1002/anie.202011068
Xiong Q, Shi Q, Gu X, et al. Visible-light S-scheme heterojunction of copper bismuthate quantum dots decorated Titania-spindles for exceptional tetracycline degradation. Journal of Colloid and Interface Science. 2024; 654: 1365-1377. doi: 10.1016/j.jcis.2023.10.141 DOI: https://doi.org/10.1016/j.jcis.2023.10.141
Qin Z, Hu S, Han W, et al. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Research. 2021; 15(4): 2971-2976. doi: 10.1007/s12274-021-3928-4 DOI: https://doi.org/10.1007/s12274-021-3928-4
Wang J, Kim E, Kumar DP, et al. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO2 Photoreduction to CH4. Angewandte Chemie. 2021; 134(6). doi: 10.1002/ange.202113044 DOI: https://doi.org/10.1002/ange.202113044
Zhang Y, Li Z, Zhang J, et al. Nanostructured Ni-MoCx: An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Research. 2023; 16(7): 8919-8928. doi: 10.1007/s12274-023-5598-x DOI: https://doi.org/10.1007/s12274-023-5598-x
Jerome MP, Alahmad FA, Salem MT, et al. Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges. Journal of Environmental Chemical Engineering. 2022; 10(5): 108151. doi: 10.1016/j.jece.2022.108151 DOI: https://doi.org/10.1016/j.jece.2022.108151
Chen Y, Li Y, Chen W, et al. Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1−xOδ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway. Nano Research. 2021; 15(2): 1366-1374. doi: 10.1007/s12274-021-3669-4 DOI: https://doi.org/10.1007/s12274-021-3669-4
Dong S, Cui L, Zhang W, et al. Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater. Chemical Engineering Journal. 2020; 384: 123279. doi: 10.1016/j.cej.2019.123279 DOI: https://doi.org/10.1016/j.cej.2019.123279
Di J, Xiong J, Li H, et al. Ultrathin 2D Photocatalysts: Electronic‐Structure Tailoring, Hybridization, and Applications. Advanced Materials. 2017; 30(1). doi: 10.1002/adma.201704548 DOI: https://doi.org/10.1002/adma.201704548
Zhang J, Zhang M, Sun R, et al. A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions. Angewandte Chemie International Edition. 2012; 51(40): 10145-10149. doi: 10.1002/anie.201205333 DOI: https://doi.org/10.1002/anie.201205333
Zhu J, Li H, Zhong L, et al. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catalysis. 2014; 4(9): 2917-2940. doi: 10.1021/cs500606g DOI: https://doi.org/10.1021/cs500606g
Zhang G, Liu G, Wang L, et al. Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews. 2016; 45(21): 5951-5984. doi: 10.1039/c5cs00769k DOI: https://doi.org/10.1039/C5CS00769K
Zeng S, Kar P, Thakur UK, et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology. 2018; 29(5): 052001. doi: 10.1088/1361-6528/aa9fb1 DOI: https://doi.org/10.1088/1361-6528/aa9fb1
Kong J, Yang T, Rui Z, et al. Perovskite-based photocatalysts for organic contaminants removal: Current status and future perspectives. Catalysis Today. 2019; 327: 47-63. doi: 10.1016/j.cattod.2018.06.045 DOI: https://doi.org/10.1016/j.cattod.2018.06.045
Hu Y, Mao L, Guan X, et al. Layered perovskite oxides and their derivative nanosheets adopting different modification strategies towards better photocatalytic performance of water splitting. Renewable and Sustainable Energy Reviews. 2020; 119: 109527. doi: 10.1016/j.rser.2019.109527 DOI: https://doi.org/10.1016/j.rser.2019.109527
Attfield JP, Lightfoot P, Morris RE. Perovskites. Dalton Transactions. 2015; 44(23): 10541-10542. doi: 10.1039/c5dt90083b DOI: https://doi.org/10.1039/C5DT90083B
Chen D, Chen C, Baiyee ZM, et al. Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews. 2015; 115(18): 9869-9921. doi: 10.1021/acs.chemrev.5b00073 DOI: https://doi.org/10.1021/acs.chemrev.5b00073
Zhu Y, Zhou W, Shao Z. Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small. 2017; 13(12). doi: 10.1002/smll.201603793 DOI: https://doi.org/10.1002/smll.201603793
Wang Q, Yuan Y, Li C, et al. Research Progress on Photocatalytic CO2 Reduction Based on Perovskite Oxides. Small. 2023; 19(38). doi: 10.1002/smll.202301892 DOI: https://doi.org/10.1002/smll.202301892
Sun YR, Zhang X, Wang LG, et al. Lattice contraction tailoring in perovskite oxides towards improvement of oxygen electrode catalytic activity. Chemical Engineering Journal. 2021; 421: 129698. doi: 10.1016/j.cej.2021.129698 DOI: https://doi.org/10.1016/j.cej.2021.129698
Li S, Bai L, Ji N, et al. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. Journal of Materials Chemistry A. 2020; 8(18): 9268-9277. doi: 10.1039/d0ta02102d DOI: https://doi.org/10.1039/D0TA02102D
Yu H, Huang H, Reshak AH, et al. Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Applied Catalysis B: Environmental. 2021; 284: 119709. doi: 10.1016/j.apcatb.2020.119709 DOI: https://doi.org/10.1016/j.apcatb.2020.119709
Kumar A, Kumar A, Krishnan V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catalysis. 2020; 10(17): 10253-10315. doi: 10.1021/acscatal.0c02947 DOI: https://doi.org/10.1021/acscatal.0c02947
Li Y, Chen G, Zhou C, et al. Photocatalytic Water Splitting Over a Protonated Layered Perovskite Tantalate H1.81Sr0.81Bi0.19Ta2O7. Catalysis Letters. 2008; 123(1-2): 80-83. doi: 10.1007/s10562-008-9397-5 DOI: https://doi.org/10.1007/s10562-008-9397-5
Sorkh-Kaman-Zadeh A, Dashtbozorg A. Facile chemical synthesis of nanosize structure of Sr2TiO4 for degradation of toxic dyes from aqueous solution. Journal of Molecular Liquids. 2016; 223: 921-926. doi: 10.1016/j.molliq.2016.09.016 DOI: https://doi.org/10.1016/j.molliq.2016.09.016
Tao Y, Wu L, Zhao X, et al. Strong Hollow Spherical La2NiO4 Photocatalytic Microreactor for Round-the-Clock Environmental Remediation. ACS Applied Materials & Interfaces. 2019; 11(29): 25967-25975. doi: 10.1021/acsami.9b07216 DOI: https://doi.org/10.1021/acsami.9b07216
Machida M, Yabunaka J ichi, Kijima T. Synthesis and Photocatalytic Property of Layered Perovskite Tantalates, RbLnTa2O7 (Ln = La, Pr, Nd, and Sm). Chemistry of Materials. 2000; 12(3): 812-817. doi: 10.1021/cm990577j DOI: https://doi.org/10.1021/cm990577j
Oshima T, Lu D, Maeda K. Preparation of Pt‐Intercalated KCa2Nb3O10 Nanosheets and Their Photocatalytic Activity for Overall Water Splitting. ChemNanoMat. 2016; 2(7): 748-755. doi: 10.1002/cnma.201600072 DOI: https://doi.org/10.1002/cnma.201600072
Ida S, Okamoto Y, Matsuka M, et al. Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, CsCa2Ta3O10–xNy, and Their Photocatalytic Activity. Journal of the American Chemical Society. 2012; 134(38): 15773-15782. doi: 10.1021/ja3043678 DOI: https://doi.org/10.1021/ja3043678
Shi R, Waterhouse GIN, Zhang T. Recent Progress in Photocatalytic CO2 Reduction Over Perovskite Oxides. Solar RRL. 2017; 1(11). doi: 10.1002/solr.201700126 DOI: https://doi.org/10.1002/solr.201700126
Chen Y, Gu X, Guo S, et al. Enhancing the Performance of 2D Ni‐Fe Layered Double Hydroxides by Cabbage‐Inspired Carbon Conjunction for Oxygen Evolution Reactions. ChemSusChem. Published online May 23, 2024. doi: 10.1002/cssc.202400309 DOI: https://doi.org/10.1002/cssc.202400309
Zhang J, Raza A, Zhao Y, et al. Intrinsically robust cubic MnCoOx solid solution: Achieving high activity for sustainable acidic water oxidation. Journal of Materials Chemistry A. 2023; 11(46): 25345-25355. doi: 10.1039/d3ta05233h DOI: https://doi.org/10.1039/D3TA05233H
Gong X, Shi Q, Khalid MS, et al. Configuration Effect of Plasmonic Vanadium–Titanium Solid Solutions for Photo-oxidation of Benzyl Alcohol. ACS Applied Nano Materials. 2024; 7(2): 2062-2071. doi: 10.1021/acsanm.3c05332 DOI: https://doi.org/10.1021/acsanm.3c05332
Yamaguchi Y, Hamamoto K, Hamao N, et al. Near room temperature synthesis of perovskite oxides. Ceramics International. 2019; 45(18): 24936-24940. doi: 10.1016/j.ceramint.2019.08.205 DOI: https://doi.org/10.1016/j.ceramint.2019.08.205
Parida KM, Reddy KH, Martha S, et al. Fabrication of nanocrystalline LaFeO3: An efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. International Journal of Hydrogen Energy. 2010; 35(22): 12161-12168. doi: 10.1016/j.ijhydene.2010.08.029 DOI: https://doi.org/10.1016/j.ijhydene.2010.08.029
Salavati-Niasari M, Soofivand F, Sobhani-Nasab A, et al. Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Advanced Powder Technology. 2016; 27(5): 2066-2075. doi: 10.1016/j.apt.2016.07.018 DOI: https://doi.org/10.1016/j.apt.2016.07.018
Ebina Y, Sakai N, Sasaki T. Photocatalyst of Lamellar Aggregates of RuOx-Loaded Perovskite Nanosheets for Overall Water Splitting. The Journal of Physical Chemistry B. 2005; 109(36): 17212-17216. doi: 10.1021/jp051823j DOI: https://doi.org/10.1021/jp051823j
Kwak BS, Do JY, Park NK, et al. Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-16605-w DOI: https://doi.org/10.1038/s41598-017-16605-w
Sanwal P, Raza A, Miao YX, et al. Advances in coinage metal nanoclusters: From synthesis strategies to electrocatalytic performance. Polyoxometalates. 2024; 3(3): 9140057. doi: 10.26599/pom.2024.9140057 DOI: https://doi.org/10.26599/POM.2024.9140057
Kalaiselvi CR, Senthil TS, Shankar MV, et al. Solvothermal fusion of Ag‐ and N‐doped LiTaO3 perovskite nanospheres for improved photocatalytic hydrogen production. Applied Organometallic Chemistry. 2021; 35(6). doi: 10.1002/aoc.6207 DOI: https://doi.org/10.1002/aoc.6207
Dawi EA, Padervand M, Ghasemi S, et al. Multi-functional fluorinated NiTiO3 perovskites for CO2 photocatalytic reduction, electrocatalytic water splitting, and biomedical waste management. Journal of Water Process Engineering. 2023; 54: 103979. doi: 10.1016/j.jwpe.2023.103979 DOI: https://doi.org/10.1016/j.jwpe.2023.103979
Azad AM, Subramaniam S. Synthesis of BaZrO3 by a solid-state reaction technique using nitrate precursors. Materials Research Bulletin. 2002; 37(1): 85-97. doi: 10.1016/S0025-5408(01)00801-7 DOI: https://doi.org/10.1016/S0025-5408(01)00801-7
Li Z, Xie Y, Gao J, et al. The promotional effect of multiple active sites on Fe-based oxygen reduction electrocatalysts for a zinc–air battery. Journal of Materials Chemistry A. 2023; 11(48): 26573-26579. doi: 10.1039/d3ta03926a DOI: https://doi.org/10.1039/D3TA03926A
Amdouni W, Otoničar M, Gemeiner P, et al. A General Synthetic Route to High‐Quality Perovskite Oxide Nanoparticles and Their Enhanced Solar Photocatalytic Activity. Angewandte Chemie. 2023; 135(7). doi: 10.1002/ange.202215700 DOI: https://doi.org/10.1002/ange.202215700
Zhang X, Li Z, Pei W, et al. Crystal-Phase-Mediated Restructuring of Pt on TiO2 with Tunable Reactivity: Redispersion versus Reshaping. ACS Catalysis. 2022; 12(6): 3634-3643. doi: 10.1021/acscatal.1c05695 DOI: https://doi.org/10.1021/acscatal.1c05695
Cao D, Luo C, Luo T, et al. Dry reforming of methane by La2NiO4 perovskite oxide, part I: Preparation and characterization of the samples. Fuel Processing Technology. 2023; 247: 107765. doi: 10.1016/j.fuproc.2023.107765 DOI: https://doi.org/10.1016/j.fuproc.2023.107765
Shi Q, Zhang X, Li Z, et al. Plasmonic Au Nanoparticle of a Au/TiO2–C3N4 Heterojunction Boosts up Photooxidation of Benzyl Alcohol Using LED Light. ACS Applied Materials & Interfaces. 2023; 15(25): 30161-30169. doi: 10.1021/acsami.3c03451 DOI: https://doi.org/10.1021/acsami.3c03451
Busari FK, Babar ZUD, Raza A, et al. Unlocking new frontiers: Boosting up electrochemical catalysis with metal clusters and single-atoms. Sustainable Materials and Technologies. 2024; 40: e00958. doi: 10.1016/j.susmat.2024.e00958 DOI: https://doi.org/10.1016/j.susmat.2024.e00958
Shi H, Shi Q, Gu X, et al. Integrating the 2D/2D heterostructure of the MXene monolayer and BiOBr nano-sheets for superior photo-catalysis. Journal of Colloid and Interface Science. 2024; 673: 527-536. doi: 10.1016/j.jcis.2024.06.064 DOI: https://doi.org/10.1016/j.jcis.2024.06.064
Wang M, Fan S, Li X, et al. Construction of Monoatomic-Modified Defective Ti4+αTi3+1-αO2−δ Nanofibers for Photocatalytic Oxidation of HMF to Valuable Chemicals. ACS Applied Materials & Interfaces. 2024; 16(5): 5735-5744. doi: 10.1021/acsami.3c14110 DOI: https://doi.org/10.1021/acsami.3c14110
Yang Y, Yin W, Wu S, et al. Perovskite-Type LaSrMnO Electrocatalyst with Uniform Porous Structure for an Efficient Li–O2 Battery Cathode. ACS Nano. 2015; 10(1): 1240-1248. doi: 10.1021/acsnano.5b06592 DOI: https://doi.org/10.1021/acsnano.5b06592
Liu R, Liang F, Zhou W, et al. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy. 2015; 12: 115-122. doi: 10.1016/j.nanoen.2014.12.025 DOI: https://doi.org/10.1016/j.nanoen.2014.12.025
Chen CF, King G, Dickerson RM, et al. Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy. 2015; 13: 423-432. doi: 10.1016/j.nanoen.2015.03.005 DOI: https://doi.org/10.1016/j.nanoen.2015.03.005
Han X, Hu Y, Yang J, et al. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li–O2 batteries. Chem Commun. 2014; 50(12): 1497-1499. doi: 10.1039/c3cc48207c DOI: https://doi.org/10.1039/C3CC48207C
Zhao Y, Xu L, Mai L, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proceedings of the National Academy of Sciences. 2012; 109(48): 19569-19574. doi: 10.1073/pnas.1210315109 DOI: https://doi.org/10.1073/pnas.1210315109
Jin C, Cao X, Zhang L, et al. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. Journal of Power Sources. 2013; 241: 225-230. doi: 10.1016/j.jpowsour.2013.04.116 DOI: https://doi.org/10.1016/j.jpowsour.2013.04.116
Bai S, Zhang N, Gao C, et al. Defect engineering in photocatalytic materials. Nano Energy. 2018; 53: 296-336. doi: 10.1016/j.nanoen.2018.08.058 DOI: https://doi.org/10.1016/j.nanoen.2018.08.058
Guo H, Wan S, Wang Y, et al. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chemical Engineering Journal. 2021; 412: 128646. doi: 10.1016/j.cej.2021.128646 DOI: https://doi.org/10.1016/j.cej.2021.128646
Lv M, Sun X, Wei S, et al. Ultrathin Lanthanum Tantalate Perovskite Nanosheets Modified by Nitrogen Doping for Efficient Photocatalytic Water Splitting. ACS Nano. 2017; 11(11): 11441-11448. doi: 10.1021/acsnano.7b06131 DOI: https://doi.org/10.1021/acsnano.7b06131
Black AP, Suzuki H, Higashi M, et al. New rare earth hafnium oxynitride perovskites with photocatalytic activity in water oxidation and reduction. Chemical Communications. 2018; 54(12): 1525-1528. doi: 10.1039/c7cc08965a DOI: https://doi.org/10.1039/C7CC08965A
Grabowska E, Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review. Applied Catalysis B: Environmental, 2016; 186: 97–126. doi: 10.1016/j.apcatb.2015.12.035 DOI: https://doi.org/10.1016/j.apcatb.2015.12.035
Chen F, Ma T, Zhang T, et al. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Advanced Materials. 2021; 33(10): 2005256. doi: 10.1002/adma.202005256 DOI: https://doi.org/10.1002/adma.202005256
Low J, Yu J, Jaroniec M, et al. Heterojunction Photocatalysts. Advanced Materials. 2017; 29(20). doi: 10.1002/adma.201601694 DOI: https://doi.org/10.1002/adma.201601694
He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review. Environmental Chemistry Letters. 2021; 19(6): 4563-4601. doi: 10.1007/s10311-021-01295-8 DOI: https://doi.org/10.1007/s10311-021-01295-8
Li X, Yu Z, Shao L, et al. A novel strategy to construct a visible-light-driven Z-scheme (ZnAl-LDH with active phase/g-C3N4) heterojunction catalyst via polydopamine bridge (a similar “bridge” structure). Journal of Hazardous Materials. 2020; 386: 121650. doi: 10.1016/j.jhazmat.2019.121650 DOI: https://doi.org/10.1016/j.jhazmat.2019.121650
Barkaoui S, Wang Y, Zhang Y, et al. Critical role of NiO support morphology for high activity of Au/NiO nanocatalysts in CO oxidation. iScience. 2024; 27(7): 110255. doi: 10.1016/j.isci.2024.110255 DOI: https://doi.org/10.1016/j.isci.2024.110255
Zhao J, Li X, Zhang M, et al. Enhancing the catalytic performance of Co–N–C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural. Nanoscale. 2023; 15(9): 4612-4619. doi: 10.1039/d2nr05831f DOI: https://doi.org/10.1039/D2NR05831F
Moniz SJA, Shevlin SA, Martin DJ, et al. Visible-light driven heterojunction photocatalysts for water splitting – A critical review. Energy & Environmental Science. 2015; 8(3): 731-759. doi: 10.1039/c4ee03271c DOI: https://doi.org/10.1039/C4EE03271C
Su J, Li G, Li X, et al. 2D/2D Heterojunctions for Catalysis. Advanced Science. 2019; 6(7). doi: 10.1002/advs.201801702 DOI: https://doi.org/10.1002/advs.201801702
Rhimi B, Wang C, Bahnemann DW. Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review. Journal of Physics: Energy. 2020; 2(4): 042003. doi: 10.1088/2515-7655/abb782 DOI: https://doi.org/10.1088/2515-7655/abb782
Lu L, Wu B, Shi W, et al. Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorganic Chemistry Frontiers. 2019; 6(12): 3456-3467. doi: 10.1039/c9qi00964g DOI: https://doi.org/10.1039/C9QI00964G
Afroz K, Moniruddin M, Bakranov N, et al. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. Journal of Materials Chemistry A. 2018; 6(44): 21696-21718. doi: 10.1039/c8ta04165b DOI: https://doi.org/10.1039/C8TA04165B
Khan MS, Zhang F, Osada M, et al. Graphitic Carbon Nitride‐Based Low‐Dimensional Heterostructures for Photocatalytic Applications. Solar RRL. 2019; 4(8). doi: 10.1002/solr.201900435 DOI: https://doi.org/10.1002/solr.201900435
He M, Sun K, Suryawanshi MP, et al. Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review. Journal of Energy Chemistry. 2021; 60: 1-8. doi: 10.1016/j.jechem.2020.12.019 DOI: https://doi.org/10.1016/j.jechem.2020.12.019
Liao X, Li TT, Ren HT, et al. Enhanced photocatalytic performance through the ferroelectric synergistic effect of p-n heterojunction BiFeO3/TiO2 under visible-light irradiation. Ceramics International. 2021; 47(8): 10786-10795. doi: 10.1016/j.ceramint.2020.12.195 DOI: https://doi.org/10.1016/j.ceramint.2020.12.195
Paramanik L, Reddy KH, Sultana S, et al. Architecture of Biperovskite-Based LaCrO3/PbTiO3 p–n Heterojunction with a Strong Interface for Enhanced Charge Anti-recombination Process and Visible Light-Induced Photocatalytic Reactions. Inorganic Chemistry. 2018; 57(24): 15133-15148. doi: 10.1021/acs.inorgchem.8b02364 DOI: https://doi.org/10.1021/acs.inorgchem.8b02364
Li S, Hu S, Xu K, et al. Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts. Journal of Colloid and Interface Science. 2017; 504: 561-569. doi: 10.1016/j.jcis.2017.06.018 DOI: https://doi.org/10.1016/j.jcis.2017.06.018
Heng H, Gan Q, Meng P, et al. The visible-light-driven type III heterojunction H3PW12O40/TiO2-In2S3: A photocatalysis composite with enhanced photocatalytic activity. Journal of Alloys and Compounds. 2017; 696: 51-59. doi: 10.1016/j.jallcom.2016.11.116 DOI: https://doi.org/10.1016/j.jallcom.2016.11.116
Ani IJ, Akpan UG, Olutoye MA, et al. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. Journal of Cleaner Production. 2018; 205: 930-954. doi: 10.1016/j.jclepro.2018.08.189 DOI: https://doi.org/10.1016/j.jclepro.2018.08.189
Fu J, Yu J, Jiang C, et al. g‐C3N4‐Based Heterostructured Photocatalysts. Advanced Energy Materials. 2017; 8(3). doi: 10.1002/aenm.201701503 DOI: https://doi.org/10.1002/aenm.201701503
Chen C, Zhou J, Geng J, et al. Perovskite LaNiO3/TiO2 step-scheme heterojunction with enhanced photocatalytic activity. Applied Surface Science. 2020; 503: 144287. doi: 10.1016/j.apsusc.2019.144287 DOI: https://doi.org/10.1016/j.apsusc.2019.144287
Fan H, Zhou H, Li W, et al. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Applied Surface Science. 2020; 504: 144351. doi: 10.1016/j.apsusc.2019.144351 DOI: https://doi.org/10.1016/j.apsusc.2019.144351
Li X, Xiong J, Gao X, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. Journal of Hazardous Materials. 2020; 387: 121690. doi: 10.1016/j.jhazmat.2019.121690 DOI: https://doi.org/10.1016/j.jhazmat.2019.121690
Wang R, Shen J, Zhang W, et al. Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceramics International. 2020; 46(1): 23-30. doi: 10.1016/j.ceramint.2019.08.226 DOI: https://doi.org/10.1016/j.ceramint.2019.08.226
He F, Meng A, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese Journal of Catalysis. 2020; 41(1): 9-20. doi: 10.1016/S1872-2067(19)63382-6 DOI: https://doi.org/10.1016/S1872-2067(19)63382-6
He X, Wang A, Wu P, et al. Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of The Total Environment. 2020; 743: 140694. doi: 10.1016/j.scitotenv.2020.140694 DOI: https://doi.org/10.1016/j.scitotenv.2020.140694
Guo H, Yi S, Yang S, et al. Structural symmetry impressing carrier dynamics of halide Perovskite. Advanced Functional Materials. 2023; 33(17): 2214180. doi: 10.1002/adfm.202214180 DOI: https://doi.org/10.1002/adfm.202214180
Liang L, Lei F, Gao S, et al. Single Unit Cell Bismuth Tungstate Layers Realizing Robust Solar CO2 Reduction to Methanol. Angewandte Chemie International Edition. 2015; 54(47): 13971-13974. doi: 10.1002/anie.201506966 DOI: https://doi.org/10.1002/anie.201506966
Cao S, Shen B, Tong T, et al. 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction. Advanced Functional Materials. 2018; 28(21). doi: 10.1002/adfm.201800136 DOI: https://doi.org/10.1002/adfm.201800136
Kong XY, Lee WQ, Mohamed AR, et al. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chemical Engineering Journal. 2019; 372: 1183-1193. doi: 10.1016/j.cej.2019.05.001 DOI: https://doi.org/10.1016/j.cej.2019.05.001
Zhang J, Xie Y, Jiang Q, et al. Facile synthesis of cobalt cluster-CoNx composites: Synergistic effect boosts electrochemical oxygen reduction. Journal of Materials Chemistry A. 2022; 10(32): 16920-16927. doi: 10.1039/d2ta04413g DOI: https://doi.org/10.1039/D2TA04413G
Choi BN, Seo JY, An Z, et al. An in-situ spectroscopic study on the photochemical CO2 reduction on CsPbBr3 perovskite catalysts embedded in a porous copper scaffold. Chemical Engineering Journal. 2022; 430: 132807. doi: 10.1016/j.cej.2021.132807 DOI: https://doi.org/10.1016/j.cej.2021.132807
Xu Q, Wang L, Sheng X, et al. Understanding the synergistic mechanism of single atom Co-modified perovskite oxide for piezo-photocatalytic CO2 reduction. Applied Catalysis B: Environmental. 2023; 338: 123058. doi: 10.1016/j.apcatb.2023.123058 DOI: https://doi.org/10.1016/j.apcatb.2023.123058
Stolarczyk JK, Bhattacharyya S, Polavarapu L, et al. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis. 2018; 8(4): 3602-3635. doi: 10.1021/acscatal.8b00791 DOI: https://doi.org/10.1021/acscatal.8b00791
Álvarez A, Bansode A, Urakawa A, et al. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews. 2017; 117(14): 9804-9838. doi: 10.1021/acs.chemrev.6b00816 DOI: https://doi.org/10.1021/acs.chemrev.6b00816
Xu L, Ha MN, Guo Q, et al. Photothermal catalytic activity of combustion synthesized LaCoxFe1−xO3 (0 ≤ x ≤ 1) perovskite for CO2 reduction with H2O to CH4 and CH3OH. RSC Adv. 2017; 7(73): 45949-45959. doi: 10.1039/c7ra04879c DOI: https://doi.org/10.1039/C7RA04879C
Jiao X, Chen Z, Li X, et al. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. Journal of the American Chemical Society. 2017; 139(22): 7586-7594. doi: 10.1021/jacs.7b02290 DOI: https://doi.org/10.1021/jacs.7b02290
Xie K, Umezawa N, Zhang N, et al. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science. 2011; 4(10): 4211. doi: 10.1039/c1ee01594j DOI: https://doi.org/10.1039/c1ee01594j
Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications. 2020; 11(1). doi: 10.1038/s41467-020-18350-7 DOI: https://doi.org/10.1038/s41467-020-18350-7
Sun Z, Wang H, Wu Z, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today. 2018; 300: 160-172. doi: 10.1016/j.cattod.2017.05.033 DOI: https://doi.org/10.1016/j.cattod.2017.05.033
Li K, Handoko AD, Khraisheh M, et al. Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes. Nanoscale. 2014; 6(16): 9767. doi: 10.1039/c4nr01490a DOI: https://doi.org/10.1039/C4NR01490A
Yoshida H, Zhang L, Sato M, et al. Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catalysis Today. 2015; 251: 132-139. doi: 10.1016/j.cattod.2014.10.039 DOI: https://doi.org/10.1016/j.cattod.2014.10.039
Wu X, Wang C, Wei Y, et al. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. Journal of Catalysis. 2019; 377: 309-321. doi: 10.1016/j.jcat.2019.07.037 DOI: https://doi.org/10.1016/j.jcat.2019.07.037
Teramura K, Okuoka S ichi, Tsuneoka H, et al. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Applied Catalysis B: Environmental. 2010; 96(3-4): 565-568. doi: 10.1016/j.apcatb.2010.03.021 DOI: https://doi.org/10.1016/j.apcatb.2010.03.021
Cheng YH, Nguyen VH, Chan HY, et al. Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor. Applied Energy. 2015; 147: 318-324. doi: 10.1016/j.apenergy.2015.02.085 DOI: https://doi.org/10.1016/j.apenergy.2015.02.085
Shi H, Zhang C, Zhou C, et al. Conversion of CO2 into renewable fuel over Pt–g-C3N4/KNbO3 composite photocatalyst. RSC Advances. 2015; 5(113): 93615-93622. doi: 10.1039/c5ra16870h DOI: https://doi.org/10.1039/C5RA16870H
Do JY, Im Y, Kwak BS, et al. Preparation of basalt fiber@perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction. Ceramics International. 2016; 42(5): 5942-5951. doi: 10.1016/j.ceramint.2015.12.142 DOI: https://doi.org/10.1016/j.ceramint.2015.12.142
Chen X, Wang J, Huang C, et al. Barium zirconate: a new photocatalyst for converting CO2 into hydrocarbons under UV irradiation. Catalysis Science & Technology. 2015; 5(3): 1758-1763. doi: 10.1039/c4cy01201a DOI: https://doi.org/10.1039/C4CY01201A
Jia L, Li J, Fang W, et al. Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method. Catalysis Communications. 2009; 10(8): 1230-1234. doi: 10.1016/j.catcom.2009.01.025 DOI: https://doi.org/10.1016/j.catcom.2009.01.025
Fresno F, Jana P, Reñones P, et al. CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochemical & Photobiological Sciences. 2017; 16(1): 17-23. doi: 10.1039/c6pp00235h DOI: https://doi.org/10.1039/c6pp00235h
Wang J, Huang C, Chen X, et al. Photocatalytic CO2 reduction of BaCeO3 with 4f configuration electrons. Applied Surface Science. 2015; 358: 463-467. doi: 10.1016/j.apsusc.2015.08.063 DOI: https://doi.org/10.1016/j.apsusc.2015.08.063
Hou J, Cao S, Wu Y, et al. Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. Chemistry – A European Journal. 2017; 23(40): 9481-9485. doi: 10.1002/chem.201702237 DOI: https://doi.org/10.1002/chem.201702237
Zhou H, Li P, Guo J, et al. Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: towards CO2 photo-fixation into CO and CH4. Nanoscale. 2015; 7(1): 113-120. doi: 10.1039/c4nr03019b DOI: https://doi.org/10.1039/C4NR03019B
Wang S, Hou Y, Wang X. Development of a Stable MnCo2O4 Cocatalyst for Photocatalytic CO2 Reduction with Visible Light. ACS Applied Materials & Interfaces. 2015; 7(7): 4327-4335. doi: 10.1021/am508766s DOI: https://doi.org/10.1021/am508766s
Li H, Shang J, Ai Z, et al. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. Journal of the American Chemical Society. 2015; 137(19): 6393-6399. doi: 10.1021/jacs.5b03105 DOI: https://doi.org/10.1021/jacs.5b03105
Hoffman BM, Lukoyanov D, Yang ZY, et al. Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews. 2014; 114(8): 4041-4062. doi: 10.1021/cr400641x DOI: https://doi.org/10.1021/cr400641x
Giddey S, Badwal SPS, Kulkarni A. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy. 2013; 38(34): 14576-14594. doi: 10.1016/j.ijhydene.2013.09.054 DOI: https://doi.org/10.1016/j.ijhydene.2013.09.054
Yang J, Guo Y, Jiang R, et al. High-Efficiency “Working-in-Tandem” Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. Journal of the American Chemical Society. 2018; 140(27): 8497-8508. doi: 10.1021/jacs.8b03537 DOI: https://doi.org/10.1021/jacs.8b03537
Li Q, Bai X, Luo J, et al. Fe doped SrWO4 with tunable band structure for photocatalytic nitrogen fixation. Nanotechnology. 2020; 31(37): 375402. doi: 10.1088/1361-6528/ab9863 DOI: https://doi.org/10.1088/1361-6528/ab9863
Chen X, Li N, Kong Z, et al. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Materials Horizons. 2018; 5(1): 9-27. doi: 10.1039/c7mh00557a DOI: https://doi.org/10.1039/C7MH00557A
Shipman MA, Symes MD. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today. 2017; 286: 57-68. doi: 10.1016/j.cattod.2016.05.008 DOI: https://doi.org/10.1016/j.cattod.2016.05.008
Azofra LM, Li N, MacFarlane DR, et al. Promising prospects for 2D d2–d4M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science. 2016; 9(8): 2545-2549. doi: 10.1039/c6ee01800a DOI: https://doi.org/10.1039/C6EE01800A
Zhou S, Zhang C, Liu J, et al. Formation of an oriented Bi2WO6 photocatalyst induced by in situ Bi reduction and its use for efficient nitrogen fixation. Catalysis Science & Technology. 2019; 9(20): 5562-5566. doi: 10.1039/c9cy00972h DOI: https://doi.org/10.1039/C9CY00972H
Xing P, Wu S, Chen Y, et al. New Application and Excellent Performance of Ag/KNbO3 Nanocomposite in Photocatalytic NH3 Synthesis. ACS Sustainable Chemistry & Engineering. Published online June 26, 2019. doi: 10.1021/acssuschemeng.9b01938 DOI: https://doi.org/10.1021/acssuschemeng.9b01938
Tao R, Li X, Li X, et al. TiO2/SrTiO3/g-C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation. Nanoscale. 2020; 12(15): 8320-8329. doi: 10.1039/d0nr00219d DOI: https://doi.org/10.1039/D0NR00219D
Mansingh S, Sultana S, Acharya R, et al. Correction to Efficient Photon Conversion via Double Charge Dynamics CeO2–BiFeO3 p–n Heterojunction Photocatalyst Promising toward N2 Fixation and Phenol–Cr(VI) Detoxification. Inorganic Chemistry. 2020; 59(9): 6646-6646. doi: 10.1021/acs.inorgchem.0c00981 DOI: https://doi.org/10.1021/acs.inorgchem.0c00981
Mansingh S, Sultana S, Acharya R, et al. Efficient Photon Conversion via Double Charge Dynamics CeO2–BiFeO3 p–n Heterojunction Photocatalyst Promising toward N2 Fixation and Phenol–Cr(VI) Detoxification. Inorganic Chemistry. 2020; 59(6): 3856-3873. doi: 10.1021/acs.inorgchem.9b03526 DOI: https://doi.org/10.1021/acs.inorgchem.9b03526
Zhang H, Li X, Su H, et al. Sol–gel synthesis of upconversion perovskite/attapulgite heterostructures for photocatalytic fixation of nitrogen. Journal of Sol-Gel Science and Technology. 2019; 92(1): 154-162. doi: 10.1007/s10971-019-05071-7 DOI: https://doi.org/10.1007/s10971-019-05071-7
Shi L, Ren X, Wang Q, et al. Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal–Support Interaction Boosts Photocatalysis. Small. 2020; 16(35). doi: 10.1002/smll.202002356 DOI: https://doi.org/10.1002/smll.202002356
Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry. 2011; 3(8): 634-641. doi: 10.1038/nchem.1095 DOI: https://doi.org/10.1038/nchem.1095
Qin Z, Li Z, Sharma S, et al. Self-Assembly of Silver Clusters into One- and Two-Dimensional Structures and Highly Selective Methanol Sensing. Research. 2022; 2022. doi: 10.34133/research.0018 DOI: https://doi.org/10.34133/research.0018
Liu X, Zhang Y, Li Z, et al. Surface ligand engineering on the optical properties of atomically precise AuAg nanoclusters. Chinese Journal of Structural Chemistry. 2023; 42(9): 100154. doi: 10.1016/j.cjsc.2023.100154 DOI: https://doi.org/10.1016/j.cjsc.2023.100154
Cao Y, Su Y, Xu L, et al. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. Journal of Energy Chemistry. 2022; 71: 167-173. doi: 10.1016/j.jechem.2022.03.044 DOI: https://doi.org/10.1016/j.jechem.2022.03.044
Huang G, Lin G, Niu Q, et al. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. Journal of Materials Science & Technology. 2022; 116: 41-49. doi: 10.1016/j.jmst.2021.11.035 DOI: https://doi.org/10.1016/j.jmst.2021.11.035
Gao C, Chen S, Wang Y, et al. Heterogeneous Single‐Atom Catalyst for Visible‐Light‐Driven High‐Turnover CO2 Reduction: The Role of Electron Transfer. Advanced Materials. 2018; 30(13). doi: 10.1002/adma.201704624 DOI: https://doi.org/10.1002/adma.201704624
Shi Q, Zhang X, Liu X, et al. In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: Enhanced photo-oxidation of benzyl alcohol under visible light. Carbon. 2022; 196: 401-409. doi: 10.1016/j.carbon.2022.05.007 DOI: https://doi.org/10.1016/j.carbon.2022.05.007
Jin C, Dai Y, Wei W, et al. Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2. Applied Surface Science. 2017; 426: 639-646. doi: 10.1016/j.apsusc.2017.07.065 DOI: https://doi.org/10.1016/j.apsusc.2017.07.065
Yang C, Zhao ZY, Wei HT, et al. DFT calculations for single-atom confinement effects of noble metals on monolayer g-C3N4 for photocatalytic applications. RSC Advances. 2021; 11(7): 4276-4285. doi: 10.1039/d0ra09815a DOI: https://doi.org/10.1039/D0RA09815A
Guo Y, Xia M, Zhang M, et al. A strategy for enhancing the photoactivity of g-C3N4-based single-atom catalysts via sulphur doping: A theoretical study. Physical Chemistry Chemical Physics. 2021; 23(11): 6632-6640. doi: 10.1039/d1cp00192b DOI: https://doi.org/10.1039/D1CP00192B
Xin J, Li F, Li Z, et al. Controlling the band structure and photocatalytic performance of single atom Ag/C3N4 catalysts by variation of silver concentration. Inorganic Chemistry Frontiers. 2022; 9(2): 302-309. doi: 10.1039/d1qi01138c DOI: https://doi.org/10.1039/D1QI01138C
Xiong X, Mao C, Yang Z, et al. Photocatalytic CO2 Reduction to CO over Ni Single Atoms Supported on Defect‐Rich Zirconia. Advanced Energy Materials. 2020; 10(46). doi: 10.1002/aenm.202002928 DOI: https://doi.org/10.1002/aenm.202002928
Liu Y, Xu L, Zhang N, et al. A promoted charge separation/transfer and surface plasmon resonance effect synergistically enhanced photocatalytic performance in Cu nanoparticles and single-atom Cu supported attapulgite/polymer carbon nitride photocatalyst. Materials Today Chemistry. 2022; 26: 101250. doi: 10.1016/j.mtchem.2022.101250 DOI: https://doi.org/10.1016/j.mtchem.2022.101250
Gao Y, Wu J, Wang G, et al. Construction of the charge transfer channels for enhanced photocatalytic CO2 reduction reaction. Chemical Engineering Science. 2022; 264: 118166. doi: 10.1016/j.ces.2022.118166 DOI: https://doi.org/10.1016/j.ces.2022.118166
Yan B, He Y, Yang G. Electronic structure regulation of cobalt oxide clusters for promoting photocatalytic hydrogen evolution. Journal of Materials Chemistry A. 2022; 10(4): 1899-1908. doi: 10.1039/d1ta08279e DOI: https://doi.org/10.1039/D1TA08279E
Feng Y, Wang C, Cui P, et al. Ultrahigh Photocatalytic CO2 Reduction Efficiency and Selectivity Manipulation by Single‐Tungsten‐Atom Oxide at the Atomic Step of TiO2. Advanced Materials. 2022; 34(17). doi: 10.1002/adma.202109074 DOI: https://doi.org/10.1002/adma.202109074
Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature. 1978; 275(5676): 115-116. doi: 10.1038/275115a0 DOI: https://doi.org/10.1038/275115a0
Gao G, Jiao Y, Waclawik ER, et al. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. Journal of the American Chemical Society. 2016; 138(19): 6292-6297. doi: 10.1021/jacs.6b02692 DOI: https://doi.org/10.1021/jacs.6b02692
Zhao C, Liu J, Li B, et al. Multiscale Construction of Bifunctional Electrocatalysts for Long‐Lifespan Rechargeable Zinc–Air Batteries. Advanced Functional Materials. 2020; 30(36). doi: 10.1002/adfm.202003619 DOI: https://doi.org/10.1002/adfm.202003619
Wu S, He C, Wang L, et al. High-efficiency electron tandem flow mode on carbon nitride/titanium dioxide heterojunction for visible light nitrogen photofixation. Chemical Engineering Journal. 2022; 443: 136425. doi: 10.1016/j.cej.2022.136425 DOI: https://doi.org/10.1016/j.cej.2022.136425
Wang J, Liu W, Luo G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy & Environmental Science. 2018; 11(12): 3375-3379. doi: 10.1039/c8ee02656d DOI: https://doi.org/10.1039/C8EE02656D
Yin H, Chen Z, Peng Y, et al. Dual Active Centers Bridged by Oxygen Vacancies of Ruthenium Single‐Atom Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angewandte Chemie International Edition. 2022; 61(14). doi: 10.1002/anie.202114242 DOI: https://doi.org/10.1002/anie.202114242
Li J, Liu P, Tang Y, et al. Single-Atom Pt–N3 Sites on the Stable Covalent Triazine Framework Nanosheets for Photocatalytic N2 Fixation. ACS Catalysis. 2020; 10(4): 2431-2442. doi: 10.1021/acscatal.9b04925 DOI: https://doi.org/10.1021/acscatal.9b04925
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Shoaib Khalid, Gao Li, Tasmia Azam, Muhammad Asad, Zhen Zhao
This work is licensed under a Creative Commons Attribution 4.0 International License.