Development and progress of radiative cooling materials

Authors

  • Cheng Jin Department of Thermal Sciences and Energy Engineering, University of Science and Technology of China, Hefei 230027, Anhui Province, China
  • Gang Pei Department of Thermal Sciences and Energy Engineering, University of Science and Technology of China, Hefei 230027, Anhui Province, China
  • Bin Zhao Department of Thermal Sciences and Energy Engineering, University of Science and Technology of China, Hefei 230027, Anhui Province, China
Ariticle ID: 144
369 Views, 337 PDF Downloads

DOI:

https://doi.org/10.18686/cest.v2i1.144

Abstract

Since the industrial era, the extensive use of fossil energy has led to a continuous increase in greenhouse gas emissions, thereby accelerating global warming. Cooling energy consumption represents a significant portion of total energy usage, accounting for approximately 20% of global energy consumption. Therefore, there is an urgent necessity to develop new cooling technologies that are low-energy consumption, highly efficient, and environmentally friendly to meet the growing demand for cooling.

References

Wu C. Rapid rising in radiative forcing. Clean Energy Science and Technology. 2024; 2(1). doi: 10.18686/cest.v2i1.110 DOI: https://doi.org/10.18686/cest.v2i1.110

Yin X, Yang R, Tan G, et al. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science. 2020; 370(6518): 786-791. doi: 10.1126/science.abb0971 DOI: https://doi.org/10.1126/science.abb0971

Zhao B, Hu M, Ao X, et al. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied Energy. 2019; 236: 489-513. doi: 10.1016/j.apenergy.2018.12.018 DOI: https://doi.org/10.1016/j.apenergy.2018.12.018

Cui Y, Luo X, Zhang F, et al. Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology. 2022; 67: 57-67. doi: 10.1016/j.partic.2021.10.004 DOI: https://doi.org/10.1016/j.partic.2021.10.004

Orel B, Gunde MK, Krainer A. Radiative cooling efficiency of white pigmented paints. Solar Energy 1993; 50: 477-482. doi: 10.1016/0038-092X(93)90108-Z DOI: https://doi.org/10.1016/0038-092X(93)90108-Z

Baranov DG, Xiao Y, Nechepurenko IA, et al. Nanophotonic engineering of far-field thermal emitters. Nature Materials. 2019; 18(9): 920-930. doi: 10.1038/s41563-019-0363-y DOI: https://doi.org/10.1038/s41563-019-0363-y

Zhang J, Shi K, Lu L, et al. Experiments on near-field radiative heat transfer: A review. Clean Energy Science and Technology. 2023; 1(1). doi: 10.18686/cest.v1i1.45 DOI: https://doi.org/10.18686/cest.v1i1.45

Raman AP, Anoma MA, Zhu L, et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014; 515(7528): 540-544. doi: 10.1038/nature13883 DOI: https://doi.org/10.1038/nature13883

Zhai Y, Ma Y, David SN, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017; 355(6329): 1062-1066. doi: 10.1126/science.aai7899 DOI: https://doi.org/10.1126/science.aai7899

Song J, Zhang W, Sun Z, et al. Durable radiative cooling against environmental aging. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-32409-7 DOI: https://doi.org/10.1038/s41467-022-32409-7

Mandal J, Fu Y, Overvig AC, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science. 2018; 362(6412): 315-319. doi: 10.1126/science.aat9513 DOI: https://doi.org/10.1126/science.aat9513

Li T, Zhai Y, He S, et al. A radiative cooling structural material. Science. 2019; 364(6442): 760-763. doi: 10.1126/science.aau9101 DOI: https://doi.org/10.1126/science.aau9101

Yang W, Zhang E, Zhao J, et al. Dawn of clean energy: Enhanced heat transfer, radiative cooling, and firecracker-style controlled nuclear fusion power generation system. Clean Energy Science and Technology. 2023; 1(1). doi: 10.18686/cest.v1i1.61 DOI: https://doi.org/10.18686/cest.v1i1.61

Meng X, Chen Z, Qian C, et al. Durable and mechanically robust superhydrophobic radiative cooling coating. Chemical Engineering Journal. 2023; 478: 147341. doi: 10.1016/j.cej.2023.147341 DOI: https://doi.org/10.1016/j.cej.2023.147341

Chen Y, Mandal J, Li W, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Science Advances. 2020; 6(17). doi: 10.1126/sciadv.aaz5413 DOI: https://doi.org/10.1126/sciadv.aaz5413

Li W, Shi Y, Chen Z, et al. Photonic thermal management of coloured objects. Nature Communications. 2018; 9(1). doi: 10.1038/s41467-018-06535-0 DOI: https://doi.org/10.1038/s41467-018-06535-0

Lin K, Chen S, Zeng Y, et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science. 2023; 382(6671): 691-697. doi: 10.1126/science.adi4725 DOI: https://doi.org/10.1126/science.adi4725

Zhao X, Li T, Xie H, et al. A solution-processed radiative cooling glass. Science. 2023; 382(6671): 684-691. doi: 10.1126/science.adi2224 DOI: https://doi.org/10.1126/science.adi2224

Zhao D, Tang H. Staying stably cool in the sunlight. Science. 2023; 382(6671): 644-645. doi: 10.1126/science.adk9614 DOI: https://doi.org/10.1126/science.adk9614

Principle of radiative cooling and high-performance radiative cooling materials.

Downloads

Published

2024-03-28

How to Cite

Jin, C., Pei, G., & Zhao, B. (2024). Development and progress of radiative cooling materials. Clean Energy Science and Technology, 2(1), 144. https://doi.org/10.18686/cest.v2i1.144

Issue

Section

Commentary