Passive interfacial cooling sparks a major leap in solar-driven water and power cogeneration

Authors

  • Shengyou Li Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
  • Kaiying Zhao Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
  • Eun Ae Shin Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
  • Gwanho Kim Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
  • Guangtao Zan Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
Ariticle ID: 140
94 Views, 75 PDF Downloads

DOI:

https://doi.org/10.18686/cest.v2i1.140

Abstract

Freshwater and electricity are foundational to human civilization's advancement. Yet, the duel against their scarcity intensifies as modernization progresses. Solar energy, hailed for its inexhaustibility and environmental friendliness, has emerged as a promising ally in generating both freshwater and electricity. Despite significant interest and strides in solar cogeneration, the challenge of enhancing both freshwater and electricity outputs concurrently has stymied broader application.

References

Dang C, Cao Y, Nie H, et al. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications. Nature Water. 2024; 2(2): 115-126. doi: 10.1038/s44221-024-00200-1 DOI: https://doi.org/10.1038/s44221-024-00200-1

Xu N, Zhu P, Sheng Y, et al. Synergistic Tandem Solar Electricity-Water Generators. Joule. 2020; 4(2): 347-358. doi: 10.1016/j.joule.2019.12.010 DOI: https://doi.org/10.1016/j.joule.2019.12.010

Mao Z, Yao Y, Shen J, et al. Passive interfacial cooling-induced sustainable electricity–water cogeneration. Nature Water. 2024; 2(1): 93-100. doi: 10.1038/s44221-023-00190-6 DOI: https://doi.org/10.1038/s44221-023-00190-6

Xue G, Xu Y, Ding T, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology. 2017; 12(4): 317-321. doi: 10.1038/nnano.2016.300 DOI: https://doi.org/10.1038/nnano.2016.300

Li T, Wu M, Xu J, et al. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-34385-4 DOI: https://doi.org/10.1038/s41467-022-34385-4

Zhu L, Ding T, Gao M, et al. Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Advanced Energy Materials. 2019; 9(22). doi: 10.1002/aenm.201900250 DOI: https://doi.org/10.1002/aenm.201900250

Yu S, Gu Y, Chao X, et al. Recent advances in interfacial solar vapor generation: clean water production and beyond. Journal of Materials Chemistry A. 2023; 11(12): 5978-6015. doi: 10.1039/d2ta10083e DOI: https://doi.org/10.1039/D2TA10083E

Xu Y, Guo Z, Wang J, et al. Harvesting Solar Energy by Flowerlike Carbon Cloth Nanocomposites for Simultaneous Generation of Clean Water and Electricity. ACS Applied Materials & Interfaces. 2021; 13(23): 27129-27139. doi: 10.1021/acsami.1c07091 DOI: https://doi.org/10.1021/acsami.1c07091

Zhang Y, Ravi SK, Tan SC. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy. 2019; 65: 104006. doi: 10.1016/j.nanoen.2019.104006 DOI: https://doi.org/10.1016/j.nanoen.2019.104006

Chen L, Ren J, Gong J, et al. Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chemical Engineering Journal. 2023; 454: 140383. doi: 10.1016/j.cej.2022.140383 DOI: https://doi.org/10.1016/j.cej.2022.140383

Lin Z, Wu T, Feng YF, et al. Poly(N-phenylglycine)/MoS2 Nanohybrid with Synergistic Solar-Thermal Conversion for Efficient Water Purification and Thermoelectric Power Generation. ACS Applied Materials & Interfaces. 2021; 14(1): 1034-1044. doi: 10.1021/acsami.1c20393 DOI: https://doi.org/10.1021/acsami.1c20393

Ren J, Ding Y, Gong J, et al. Simultaneous Solar‐driven Steam and Electricity Generation by Cost‐effective, Easy Scale‐up MnO2‐based Flexible Membranes. Energy & Environmental Materials. 2022; 6(3). doi: 10.1002/eem2.12376 DOI: https://doi.org/10.1002/eem2.12376

Li X, Li M, Shi Q, et al. Exhausted Cr(VI) Sensing/Removal Aerogels Are Recycled for Water Purification and Solar‐Thermal Energy Generation. Small. 2022; 18(35). doi: 10.1002/smll.202201949 DOI: https://doi.org/10.1002/smll.202201949

Jiang H, Ai L, Chen M, et al. Broadband Nickel Sulfide/Nickel Foam-Based Solar Evaporator for Highly Efficient Water Purification and Electricity Generation. ACS Sustainable Chemistry & Engineering. 2020, 8(29): 10833-10841. doi:10.1021/acssuschemeng.0c02829 DOI: https://doi.org/10.1021/acssuschemeng.0c02829

Infrared images of the PICG under 1 Sun illumination

Downloads

Published

2024-03-30

How to Cite

Li, S., Zhao, K., Shin, E. A., Kim, G., & Zan, G. (2024). Passive interfacial cooling sparks a major leap in solar-driven water and power cogeneration. Clean Energy Science and Technology, 2(1), 140. https://doi.org/10.18686/cest.v2i1.140

Issue

Section

Commentary