Research progress and applications of transcritical carbon dioxide heat pumps: A review

Authors

  • Shengong Mei Shanghai Research Center for Energy & Power
  • Zhongyi Liu Shanghai Research Center for Energy & Power
  • Xia Liu Shanghai Research Center for Energy & Power
Ariticle ID: 118
126 Views, 42 PDF Downloads

DOI:

https://doi.org/10.18686/cest.v1i2.118

Keywords:

transcritical; CO2 refrigerant; heat pump; application status; review

Abstract

Heat pump technology is an energy-saving technology that can efficiently utilize low-grade energy. It has broad application prospects in building heating, industrial waste heat utilization, new energy, and other fields. However, the refrigerants used in traditional heat pump systems have serious negative impacts on the environment, and there is an urgent need to find a safe, environmentally friendly, and efficient alternative refrigerant. As a natural refrigerant, CO2 has good physical and chemical properties and is very suitable as a working fluid in transcritical cycles, showing great advantages in the field of heat pump technology. At present, research on CO2 heat pumps has made certain progress, but there are few reviews of the research status and development trends of CO2 heat pumps in different applications. Therefore, in this article, the latest research results of transcritical CO2 heat pumps in different application fields are systematically summarized, pointing out the difficulties such as high pressure and low operating efficiency in system design and operation. The latest optimization research works on system components, cycle structure, mixed refrigerants, and control strategies are also summarized. The results showed that each optimization method can significantly improve system performance, among which mixed refrigerant is the simplest optimization method. Finally, the outlook for CO2 heat pump technology is put forward. With policy support and technological advancement, a more comprehensive, energy-saving, and intelligent CO2 heat pump technology will continue to be developed and innovated.

References

Yi L, Xiang X, Zhao X, et al. Atmospheric observation and emission of HFC-134a in China and its four cities. Environmental Science & Technology 2023; 57(12): 4732–4740. doi: 10.1021/acs.est.2c07711

Wang J. Green heating makes people’s hearts warmer and the sky bluer (Chinese). Qinghai Daily, 27 November 2023, p. 8.

Yan H, Zhang C, Shao Z, et al. The underestimated role of the heat pump in achieving China’s goal of carbon neutrality by 2060. Engineering 2023; 23: 13–18. doi: 10.1016/j.eng.2022.08.015

William S, Bodinus PE. The rise and fall of carbon dioxide systems: The first century of air conditioning. ASHRAE Journal 1999; 41(4): 37.

Liu J, Shang X, Zhang X. A review of international applications of transcritical carbon dioxide hot and cold supply technology (Chinese). Jie Neng Yu Huan Bao 2023; 8: 24–27.

Lorentzen G. Revival of carbon dioxide as a refrigerant. International Journal of Refrigeration 1994; 17(5): 292–301. doi: 10.1016/0140-7007(94)90059-0

Kim M. Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Combustion Science 2004; 30(2): 119–174. doi: 10.1016/j.pecs.2003.09.002

Kevin J. Denso looks to CO2 future. Available online: https://www.sae.org/automag/techbriefs/04-2002/page2. htm (accessed on 31 December 2023).

Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for car air-conditioning. International Journal of Refrigeration 1993; 16(1): 4–12. doi: 10.1016/0140-7007(93)90014-y

Pettersen J. An efficient new automobile air-conditioning system based on CO2 vapor compression. In: Proceedings of the 1994 American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) annual meeting; 25–29 June 1994; Orlando, FL, USA.

Saikawa M, Hashimoto K, Hasegawa H. A basic study on CO2 heat pump especially for hot water supply. In: Proceedings of the 3rd International Conference on the Use of Non Artificial Substance; 13 May 1997; Trondheim, Norway. pp. 125–129.

Holst H. Test rig for CO2 automotive air conditioning compressor. In: Proceedings of the International Conference CFCs, Meeting of IIR Commissions B1, B2, El and E2; 3–6 September 1996; Aarhus, Denmark.

Koehler J. Carbon dioxide as a refrigerant for vehicle air-conditioning with application to bus air conditioning. In: Proceedings of the International CFC & Halon Alternatives Conference. 23 October 1995; Washington, USA. pp. 376–385.

Schmidt EL, Klöcker K, Flacke N, et al. Applying the transcritical CO2 process to a drying heat pump. International Journal of Refrigeration 1998; 21(3): 202–211. doi: 10.1016/s0140-7007(98)00021-8

McEnaney RP, Boewe DE, Yin JM, et al. Experimental comparison of mobile A/C systems when operated with transcritical CO2 versus conventional R134a. International Refrigeration and Air Conditioning Conference 1998; 402.

Chen L. Haier launches the first CO2 air source water heater (Chinese). China Appliance 2013; 4: 1.

Banuti DT. Crossing the Widom-line—supercritical pseudo-boiling. The Journal of Supercritical Fluids 2015; 98: 12–16. doi: 10.1016/j.supflu.2014.12.019

Chen Z. Numerical Study on Cooling Heat Transfer Characteristics of Supercritical CO2 in Spiral Grooved Tubes (Chinese) [Master’s thesis]. Anhui University of Technology; 2022.

Guan H, Ma Y, Yang J. Analysis on the research and development status of household CO2 heat pump water heaters in Japan (Chinese). Journal of Appliance & Technology 2004; 6: 59–61.

Nekså P, Rekstad H, Zakeri GR, et al. CO2-heat pump water heater: Characteristics, system design and experimental results. International Journal of Refrigeration 1998; 21(3): 172–179. doi: 10.1016/s0140-7007(98)00017-6

Nawaz K, Shen B, Elatar A, et al. Performance optimization of CO2 heat pump water heater. International Journal of Refrigeration 2018; 85: 213–228. doi: 10.1016/j.ijrefrig.2017.09.027

Du S, Liu Y, Zhu H, et al. Research progress and application of CO2 trans-critical cycle. Energy Research and Information 2016; 32(4): 187–194.

Cabello R, Sánchez D, Llopis R, et al. Experimental evaluation of the energy efficiency of a CO2 refrigerating plant working in transcritical conditions. Applied Thermal Engineering 2008; 28(13): 1596–1604. doi: 10.1016/j.applthermaleng.2007.10.026

Nekså P. CO2 heat pump systems. International Journal of Refrigeration 2002; 25(4): 421–427. doi: 10.1016/s0140-7007(01)00033-0

Ma Y, Li M, Tian H, et al. Research and Development on Refrigeration and Heat Pump Cycle with Natural Working Fluid Carbon Dioxide (Chinese). China Science Publishing & Media Ltd. (CSPM); 2017.

Liang XY, He YJ, Cheng JH, et al. Difference analysis on optimal high pressure of transcritical CO2 cycle in different applications. International Journal of Refrigeration 2019; 106: 384–391. doi: 10.1016/j.ijrefrig.2019.06.024

Liu X, Gu Z, Xie J. Theoretical analysis and experiment on optimal exhaust pressure of CO2 heat pump (Chinese). Food & Machinery 2023; 39(5): 70–76.

Wang S, Tuo H, Cao F, et al. Experimental investigation on air-source transcritical CO2 heat pump water heater system at a fixed water inlet temperature. International Journal of Refrigeration 2013; 36(3): 701–716. doi: 10.1016/j.ijrefrig.2012.10.011

Ye Z, Wang Y, Song Y, et al. Optimal discharge pressure in transcritical CO2 heat pump water heater with internal heat exchanger based on pinch point analysis. International Journal of Refrigeration 2020; 118: 12–20. doi: 10.1016/j.ijrefrig.2020.06.003

Qin X, Liu H, Meng X, et al. A study on the compressor frequency and optimal discharge pressure of the transcritical CO2 heat pump system. International Journal of Refrigeration 2019; 99: 101–113. doi: 10.1016/j.ijrefrig.2018.12.028

Cecchinato L, Corradi M, Minetto S. A critical approach to the determination of optimal heat rejection pressure in transcritical systems. Applied Thermal Engineering 2010; 30(13): 1812–1823. doi: 10.1016/j.applthermaleng.2010.04.015

Shao LL, Zhang ZY, Zhang CL. Constrained optimal high pressure equation of CO2 transcritical cycle. Applied Thermal Engineering 2018; 128: 173–178. doi: 10.1016/j.applthermaleng.2017.09.023

Zhao XX, He YJ, Cheng JH, et al. Long-term performance evaluation of CO2 heat pump water heater under different discharge pressure control strategies. Applied Thermal Engineering 2023; 222: 119918. doi: 10.1016/j.applthermaleng.2022.119918

Cui C, Zong S, Song Y, et al. Experimental investigation of the extreme seeking control on a transcritical CO2 heat pump water heater. International Journal of Refrigeration 2022; 133: 111–122. doi: 10.1016/j.ijrefrig.2021.09.027

Wang W, Zhao Z, Zhou Q, et al. Model predictive control for the operation of a transcritical CO2 air source heat pump water heater. Applied Energy 2021; 300: 117339. doi: 10.1016/j.apenergy.2021.117339

Sieres J, Ortega I, Cerdeira F, et al. Influence of the refrigerant charge in an R407C liquid-to-water heat pump for space heating and domestic hot water production. International Journal of Refrigeration 2020; 110: 28–37. doi: 10.1016/j.ijrefrig.2019.10.021

Li Z, Jiang H, Chen X, et al. Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a. Applied Thermal Engineering 2020; 164: 114473. doi: 10.1016/j.applthermaleng.2019.114473

Wang D, Lu Y, Tao L. Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater. International Journal of Refrigeration 2018; 88: 626–636. doi: 10.1016/j.ijrefrig.2018.03.009

Wang Y, Ye Z, Song Y, et al. Energy, exergy, economic and environmental analysis of refrigerant charge in air source transcritical carbon dioxide heat pump water heater. Energy Conversion and Management 2020; 223: 113209. doi: 10.1016/j.enconman.2020.113209

Pettersen J, Hafner A, Skaugen G, et al. Development of compact heat exchangers for CO2 air-conditioning systems. International Journal of Refrigeration 1998; 21(3): 180–193. doi: 10.1016/s0140-7007(98)00013-9

Wang Y, Zong S, Song Y, et al. Experimental and techno-economic analysis of transcritical CO2 heat pump water heater with fin-and-tube and microchannel heat exchanger. Applied Thermal Engineering 2021; 199: 117606. doi: 10.1016/j.applthermaleng.2021.117606

Wang W, Ye Z, Yin X, et al. Theoretical and experimental studies for a transcritical CO2 heat pump with spirally fluted tube gas cooler. Applied Thermal Engineering 2024; 236: 121414. doi: 10.1016/j.applthermaleng.2023.121414

Yang Y, Li M, Wang K, et al. Study of multi-twisted-tube gas cooler for CO2 heat pump water heaters. Applied Thermal Engineering 2016; 102: 204–212. doi: 10.1016/j.applthermaleng.2016.03.123

Li G, Wang Z, Wang F, et al. Numerical investigation on the performance characteristics of a novel biomimetic honeycomb fractal gas cooler of transcritical CO2 heat pump. Journal of Building Engineering 2022; 59: 105091. doi: 10.1016/j.jobe.2022.105091

Sakakibara H, Kato H, Akiyama Y, et al. Development of natural refrigerant (CO2) hot water supplier for residential use. Denso Technical Review 2002; 7: 81–90.

Qu M, Tang Y, Zhang T, et al. Experimental investigation on the multi-mode heat discharge process of a PCM heat exchanger during TES based reverse cycle defrosting using in cascade air source heat pumps. Applied Thermal Engineering 2019; 151: 154–162. doi: 10.1016/j.applthermaleng.2019.02.003

Ye Z, Wang Y, Yin X, et al. Comparison between reverse cycle and hot gas bypass defrosting methods in a transcritical CO2 heat pump water heater. Applied Thermal Engineering 2021; 196: 117356. doi: 10.1016/j.applthermaleng.2021.117356

Wang Y, Ye Z, Song Y, et al. Experimental analysis of reverse cycle defrosting and control strategy optimization for transcritical carbon dioxide heat pump water heater. Applied Thermal Engineering 2021; 183: 116213. doi: 10.1016/j.applthermaleng.2020.116213

Hu B, Wang X, Cao F, et al. Experimental analysis of an air-source transcritical CO2 heat pump water heater using the hot gas bypass defrosting method. Applied Thermal Engineering 2014; 71(1): 528–535. doi: 10.1016/j.applthermaleng.2014.07.017

Qin P, Dang C, Liu M, et al. Research progress of small-scale CO2 two-phase expanders. Journal of Refrigeration 2023; 44(1): 24–34.

Xu XX, Chen GM, Tang LM, et al. Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure. Energy 2012; 44(1): 870–877. doi: 10.1016/j.energy.2012.04.062

Elbel S, Hrnjak P. Experimental validation and design study of a transcritical CO2 prototype ejector system. In: Proceedings of the 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids (GL2006); 29–31 May 2006; Trondheim, Norway.

Hu Y, Liu X, Li M, et al. Reanalysis of characteristics of CO2 transcritical heat pump system. Chemical Industry and Engineering Progress 2020; 39(4): 1252–1258. doi: 10.16085/j.issn.1000-6613.2019-1148

Wang D, Mei S, Gu Z, et al. The prediction for optimum combination of high pressure and intermediate pressure on a small refrigerated cabinet with CO2 transcritical two-stage cycle. International Journal of Refrigeration 2022; 140: 82–89. doi: 10.1016/j.ijrefrig.2022.05.014

Pitarch M, Navarro-Peris E, Gonzalvez J, et al. Analysis and optimisation of different two-stage transcritical carbon dioxide cycles for heating applications. International Journal of Refrigeration 2016; 70: 235–242. doi: 10.1016/j.ijrefrig.2015.08.013

Zhang B, Zhao D, Zhao Y, et al. Comparative analysis of typical improvement methods in transcritical carbon dioxide refrigeration cycle. Procedia Engineering 2017; 205: 1207–1214. doi: 10.1016/j.proeng.2017.10.355

Li R, Ye F, Zhang J, et al. Theoretical analysis of three CO2/C3H8 (R744-R290) cascade refrigeration systems with precooling processes in low-temperature circuits. Applied Thermal Engineering 2023; 234: 121238. doi: 10.1016/j.applthermaleng.2023.121238

Luo W. Research on Characteristics and Energy Consumption Simulation of R134a/CO2 Cascade Air Source Heat Pump System (Chinese) [Master’s thesis]. Hefei University of Technology; 2019.

Xu L, Li E, Xu Y, et al. An experimental energy performance investigation and economic analysis on a cascade heat pump for high-temperature water in cold region. Renewable Energy 2020; 152: 674–683. doi: 10.1016/j.renene.2020.01.104

Dai B, Zhao R, Liu S, et al. CO2 system integrated with ejector and mechanical subcooling: A comprehensive assessment. Applied Thermal Engineering 2023; 234: 121269. doi: 10.1016/j.applthermaleng.2023.121269

Llopis R, Cabello R, Sánchez D, et al. Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling. International Journal of Refrigeration 2015; 55: 129–141. doi: 10.1016/j.ijrefrig.2015.03.016

Dai B, Qi H, Liu S, et al. Evaluation of transcritical CO2 heat pump system integrated with mechanical subcooling by utilizing energy, exergy and economic methodologies for residential heating. Energy Conversion and Management 2019; 192: 202–220. doi: 10.1016/j.enconman.2019.03.094

Kim W, Choi J, Cho H. Performance analysis of hybrid solar-geothermal CO2 heat pump system for residential heating. Renewable Energy 2013; 50: 596–604. doi: 10.1016/j.renene.2012.07.020

Sun Z, Cui Q, Wang Q, et al. Experimental study on CO2/R32 blends in a water-to-water heat pump system. Applied Thermal Engineering 2019; 162: 114303. doi: 10.1016/j.applthermaleng.2019.114303

Ju F, Fan X, Chen Y, et al. Experimental investigation on a heat pump water heater using R744/R290 mixture for domestic hot water. International Journal of Thermal Sciences 2018; 132: 1–13. doi: 10.1016/j.ijthermalsci.2018.05.043

Zhang X, Wang F, Fan X, et al. An investigation of a heat pump system using CO2/propane mixture as a working fluid. International Journal of Green Energy 2016; 14(1): 105–111. doi: 10.1080/15435075.2016.1253577

Kundu A, Kumar R, Gupta A. Performance comparison of zeotropic and azeotropic refrigerants in evaporation through inclined tubes. Procedia Engineering 2014; 90: 452–458. doi: 10.1016/j.proeng.2014.11.755

Morrison G, McLinden MO. Azeotropy in refrigerant mixtures. International Journal of Refrigeration 1993; 16(2): 129–138. doi: 10.1016/0140-7007(93)90069-k

Zhao Y, Gong M, Dong X, et al. Prediction of ternary azeotropic refrigerants with a simple method. Fluid Phase Equilibria 2016; 425: 72–83. doi: 10.1016/j.fluid.2016.05.010

Wang D, Liu Y, Kou Z, et al. Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development. International Journal of Refrigeration 2019; 106: 628–638. doi: 10.1016/j.ijrefrig.2019.03.007

Wang D, Lu Y, Tao L. Thermodynamic analysis of CO2 blends with R41 as an azeotropy refrigerant applied in small refrigerated cabinet and heat pump water heater. Applied Thermal Engineering 2017; 125: 1490–1500. doi: 10.1016/j.applthermaleng.2017.07.009

Kravanja G, Zajc G, Knez Ž, et al. Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions. Energy 2018; 152: 190–201. doi: 10.1016/j.energy.2018.03.146

Dong J, Wang Y, Jia S, et al. Experimental study of R744 heat pump system for electric vehicle application. Applied Thermal Engineering 2021; 183: 116191. doi: 10.1016/j.applthermaleng.2020.116191

Song Y, Wang H, Ma Y, et al. Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems. Applied Energy 2022; 305: 117830. doi: 10.1016/j.apenergy.2021.117830

Lee JT, Kwon S, Lim Y, et al. Effect of air-conditioning on driving range of electric vehicle for various driving modes. SAE Technical Paper 2013. doi: 10.4271/2013-01-0040

Song X, Yu B, Zhang Y, et al. An investigation into the thermodynamic improvement potential of a transcritical automotive CO2 refrigeration cycle. Applied Thermal Engineering 2022; 216: 119137. doi: 10.1016/j.applthermaleng.2022.119137

Chen S, Yang W, Wu H, et al. Experimental study on the heating performance of transcritical CO2 heat pump for electric buses. Science and Technology for the Built Environment 2022; 29(1): 65–74. doi: 10.1080/23744731.2022.2133855

Li G, Tang Z, Zou H, et al. Experimental investigation of cooling performance of a CO2 heat pump system with an integrated accumulator heat exchanger for electric vehicles: Impact of refrigerant charge and valve opening. Applied Thermal Engineering 2023; 224: 120077. doi: 10.1016/j.applthermaleng.2023.120077

Wang A, Yin X, Xin Z, et al. Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system. Energy 2023; 266: 126455. doi: 10.1016/j.energy.2022.126455

Wang X, Xu K, Huang L, et al. The experimental study of an R744 heat pump system for an electric vehicle for cabin cooling or heating and battery fast charging cooling. Energies 2023; 16(4): 2061. doi: 10.3390/en16042061

Wang A, Cao F, Yin X, et al. Pseudo-optimal discharge pressure analysis of transcritical CO2 electric vehicle heat pumps due to temperature glide. Applied Thermal Engineering 2022; 215: 118856. doi: 10.1016/j.applthermaleng.2022.118856

Yin X, Wang A, Fang J, et al. Coupled effect of operation conditions and refrigerant charge on the performance of a transcritical CO2 automotive air conditioning system. International Journal of Refrigeration 2021; 123: 72–80. doi: 10.1016/j.ijrefrig.2020.10.031

Song Y, Xie H, Yang M, et al. A comprehensive assessment of the refrigerant charging amount on the global performance of a transcritical CO2-based bus air conditioning and heat pump system. Energies 2023; 16(6): 2600. doi: 10.3390/en16062600

Zheng S, Wei M, Hu C, et al. Flow characteristics of tangential leakage in a scroll compressor for automobile heat pump with CO2. Science China Technological Sciences 2021; 64(5): 971–983. doi: 10.1007/s11431-020-1765-3

Ma F, Wu J, Wang J. Discussion on the theoretical design of compact heat exchanger for CO2 automotive air conditioners (Chinese). Zhi Leng 2004; 23(4); 69–72.

Lei Q, Song X, Yu B, et al. Energetic performance evaluation of an automotive CO2 air conditioning system with a dual-evaporator configuration. International Journal of Refrigeration 2023; 152: 356–368. doi: 10.1016/j.ijrefrig.2023.04.011

Li W, Kadam S, Yu Z. Heat transfer enhancement of tubes in various shapes potentially applied to CO2 heat exchangers in refrigeration systems: Review and assessment. International Journal of Thermofluids 2023; 20: 100511. doi: 10.1016/j.ijft.2023.100511

Lee JS, Kim MS, Kim MS. Experimental study on the improvement of CO2 air conditioning system performance using an ejector. International Journal of Refrigeration 2011; 34(7): 1614–1625. doi: 10.1016/j.ijrefrig.2010.07.025

Yang T, Zou H, Tang M, et al. Experimental performance of a vapor-injection CO2 heat pump system for electric vehicles in −30 ℃ to 50 ℃ range. Applied Thermal Engineering 2022; 217: 119149. doi: 10.1016/j.applthermaleng.2022.119149

Chen Y, Zou H, Dong J, et al. Experimental investigation on the heating performance of a CO2 heat pump system with intermediate cooling for electric vehicles. Applied Thermal Engineering 2021; 182: 116039. doi: 10.1016/j.applthermaleng.2020.116039

Zhang T, Cao F, Song Y, et al. The model predictive control strategy of the transcritical CO2 air conditioning system used in railway vehicles. Applied Thermal Engineering 2023; 218: 119376. doi: 10.1016/j.applthermaleng.2022.119376

Wang H, Wang W, Song Y, et al. Data-driven model predictive control of transcritical CO2 systems for cabin thermal management in cooling mode. Applied Thermal Engineering 2023; 235: 121337. doi: 10.1016/j.applthermaleng.2023.121337

Wang A, Yin X, Fang J, et al. A novel frost-free control strategy and its energy evaluation of the CO2 heat pump system. Applied Thermal Engineering 2022; 201: 117745. doi: 10.1016/j.applthermaleng.2021.117745

Yin X, Fang J, Wang A, et al. A novel CO2 thermal management system with battery two-phase (evaporative) cooling for electric vehicles. Results in Engineering 2022; 16: 100735. doi: 10.1016/j.rineng.2022.100735

Oktay Z, Hepbasli A. Performance evaluation of a heat pump assisted mechanical opener dryer. Energy Conversion and Management 2003; 44(8): 1193–1207. doi: 10.1016/s0196-8904(02)00140-1

Zhou A. Wang J, Ma Z, et al. Load reduction potential of tea production energy system based on transcritical CO2 heat pump (Chinese). Electric Power 2022; 55(6): 154–160, 171.

Klöcker K, Schmidt EL, Steimle F. Carbon dioxide as a working fluid in drying heat pumps. International Journal of Refrigeration 2001; 24(1): 100–107. doi: 10.1016/s0140-7007(00)00067-0

Sian RA, Wang CC. Comparative study for CO2 and R-134a heat pump tumble dryer—A rational approach. International Journal of Refrigeration 2019; 106: 474–491. doi: 10.1016/j.ijrefrig.2019.05.027

Li M, Ma Y, Gong W, et al. Analysis of CO2 transcritical cycle heat pump dryers. Drying Technology 2009; 27(4): 548–554. doi: 10.1080/07373930802715674

Zhang P, Huang Z, Xu P, et al. A novel method of shrimp blanching by CO2 heat pump: Quality, energy, and economy analysis. Innovative Food Science & Emerging Technologies 2022; 82: 103207. doi: 10.1016/j.ifset.2022.103207

Xia F, Zhou G. Application of CO2 heat pump technology in drying and processing of Chinese medicinal materials (Chinese). Refrigeration Air Conditioning & Electric Power Machinery 2010; 31(6): 42–44.

Sarkar J, Bhattacharyya S, Gopal MR. Transcritical CO2 heat pump dryer: Part 2. Validation and simulation results. Drying Technology 2006; 24(12): 1593–1600. doi: 10.1080/07373930601030945

Erdem S, Heperkan H. Numerical investigation of the effect of using CO2 as the refrigerant in a heat pump tumble dryer system. Drying Technology 2014; 32(16): 1923–1930. doi: 10.1080/07373937.2014.924524

Jokiel M, Bantle M, Kopp C, et al. Modelica-based modelling of heat pump-assisted apple drying for varied drying temperatures and bypass ratios. Thermal Science and Engineering Progress 2020; 19: 100575. doi: 10.1016/j.tsep.2020.100575

Schematic representation of RCD and HGBD methods in transcritical CO2 systems.

Downloads

Published

2023-12-31

How to Cite

Mei, S., Liu, Z., & Liu, X. (2023). Research progress and applications of transcritical carbon dioxide heat pumps: A review. Clean Energy Science and Technology, 1(2), 118. https://doi.org/10.18686/cest.v1i2.118

Issue

Section

Review