Catalyzed hydrothermal treatment of oily sludge: A review

Authors

  • Jie Zhang Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, Chang’an University, Xi’an 710064, Shaanxi Province, China
  • Lingling Zhang State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi Province, China
  • Hulin Li State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi Province, China
  • Xinyue Tian State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi Province, China
  • Rongpu Huang State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi Province, China
  • Jinling Lu State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi Province, China
Ariticle ID: 107
151 Views, 95 PDF Downloads

DOI:

https://doi.org/10.18686/cest.v2i1.107

Keywords:

oily sludge; hydrothermal; sub/supercritical water; catalyst

Abstract

Oily sludge is a common by-product of the petroleum exploration industry, which is rich in resources and has strong toxicity. It is categorized as hazardous waste in many nations worldwide. Owing to the distinct physical and chemical characteristics of sub/supercritical water, the application of hydrothermal conversion technology, which uses sub/supercritical water as a medium, has been growing in the utilization of resources and the safe disposal of oily sludge. In this article, the research on the oxygen-free hydrothermal transformation of oil sludge, including hydrothermal carbonization, hydrothermal liquefaction, hydrothermal upgrading, and supercritical water gasification, is reviewed. Due to the significant impact of nitrogenous and sulfurous compounds in sludge on hydrothermal conversion products, the hydrogenation conversion, reaction path, and kinetics for these two compounds were discussed. Finally, a summary and comparison of the studies conducted on carriers and catalysts in hydrothermal processes are provided. This review can offer recommendations for future studies, as well as guidance for the hydrothermal catalytic treatment of oily sludge.

References

Hochberg SY, Tansel B, Laha S. Materials and energy recovery from oily sludges removed from crude oil storage tanks (tank bottoms): A review of technologies. Journal of Environmental Management. 2022, 305: 114428. doi: 10.1016/j.jenvman.2022.114428 DOI: https://doi.org/10.1016/j.jenvman.2022.114428

Li J, Lin F, Li K, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. Journal of Hazardous Materials. 2021, 406: 124706. doi: 10.1016/j.jhazmat.2020.124706 DOI: https://doi.org/10.1016/j.jhazmat.2020.124706

Wang Y, Fan D, Li W. Analysis and prospect of domestic and foreign oil and gas resources in 2020. China Mining Magazine. 2021, 30(1): 18-23. doi:10.12075/j.issn.1004-4051.2021.01.035

Duan H, Huang Q, Wang Q, et al. Hazardous waste generation and management in China: A review. Journal of Hazardous Materials. 2008, 158(2-3): 221-227. doi: 10.1016/j.jhazmat.2008.01.106 DOI: https://doi.org/10.1016/j.jhazmat.2008.01.106

Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials. 2013, 261: 470-490. doi: 10.1016/j.jhazmat.2013.07.069 DOI: https://doi.org/10.1016/j.jhazmat.2013.07.069

Robertson SJ, McGill WB, Massicotte HB, et al. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biological Reviews. 2007, 82(2): 213-240. doi: 10.1111/j.1469-185x.2007.00012.x DOI: https://doi.org/10.1111/j.1469-185X.2007.00012.x

Naz A, Chowdhury A, Chandra R, et al. Potential human health hazard due to bioavailable heavy metal exposure via consumption of plants with ethnobotanical usage at the largest chromite mine of India. Environmental Geochemistry and Health. 2020, 42(12): 4213-4231. doi: 10.1007/s10653-020-00603-5 DOI: https://doi.org/10.1007/s10653-020-00603-5

Wake H. Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science. 2005, 62(1-2): 131-140. doi: 10.1016/j.ecss.2004.08.013 DOI: https://doi.org/10.1016/j.ecss.2004.08.013

Teng Q, Zhang D, Yang C. A review of the application of different treatment processes for oily sludge. Environmental Science and Pollution Research. 2020, 28(1): 121-132. doi: 10.1007/s11356-020-11176-2 DOI: https://doi.org/10.1007/s11356-020-11176-2

Ubani O, Atagana H I, Thantsha MS. Biological degradation of oil sludge: A review of the current state of development. African Journal of Biotechnology. 2013, 12(47): 6544-6567. doi: 10.5897/AJB11.1139 DOI: https://doi.org/10.5897/AJB11.1139

Qu Y, Li A, Wang D, et al. Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chemical Engineering Journal. 2019, 374: 338-346. doi: 10.1016/j.cej.2019.05.183 DOI: https://doi.org/10.1016/j.cej.2019.05.183

Gao N, Kamran K, Quan C, et al. Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science. 2020, 79: 100843. doi: 10.1016/j.pecs.2020.100843 DOI: https://doi.org/10.1016/j.pecs.2020.100843

Zhao Y, Yan X, Zhou J, et al. Treatment of oily sludge by two-stage wet air oxidation. Journal of the Energy Institute. 2019, 92(5): 1451-1457. doi: 10.1016/j.joei.2018.08.006 DOI: https://doi.org/10.1016/j.joei.2018.08.006

Al-Doury MMI. Treatment of oily sludge using solvent extraction. Petroleum Science and Technology. 2019, 37(2): 190-196. doi: 10.1080/10916466.2018.1533859 DOI: https://doi.org/10.1080/10916466.2018.1533859

Gao N, Duan Y, Li Z, et al. Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering. Journal of Hazardous Materials. 2021, 402: 124173. doi: 10.1016/j.jhazmat.2020.124173 DOI: https://doi.org/10.1016/j.jhazmat.2020.124173

Wei N, Xu D, Hao B, et al. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Research. 2021, 190: 116634. doi: 10.1016/j.watres.2020.116634 DOI: https://doi.org/10.1016/j.watres.2020.116634

Duan P, Zhang C, Wang F, et al. Activated carbons for the hydrothermal upgrading of crude duckweed bio-oil. Catalysis Today. 2016, 274: 73-81. doi: 10.1016/j.cattod.2016.01.046 DOI: https://doi.org/10.1016/j.cattod.2016.01.046

Liu X, Yang M, Deng Z, et al. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: Mechanism and kinetic modeling. Chemical Engineering Journal. 2021, 407: 126332. doi: 10.1016/j.cej.2020.126332 DOI: https://doi.org/10.1016/j.cej.2020.126332

Fomo G, Madzimbamuto TN, Ojumu TV. Applications of Nonconventional Green Extraction Technologies in Process Industries: Challenges, Limitations and Perspectives. Sustainability. 2020, 12(13): 5244. doi: 10.3390/su12135244 DOI: https://doi.org/10.3390/su12135244

Khan MK, Cahyadi HS, Kim SM, et al. Efficient oil recovery from highly stable toxic oily sludge using supercritical water. Fuel. 2019, 235: 460-472. doi: 10.1016/j.fuel.2018.08.003

Huang J, Wang Z, Qiao Y, et al. Transformation of nitrogen during hydrothermal carbonization of sewage sludge: Effects of temperature and Na/Ca acetates addition. Proceedings of the Combustion Institute. 2021, 38(3): 4335-4344. doi: 10.1016/j.proci.2020.06.075 DOI: https://doi.org/10.1016/j.proci.2020.06.075

Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews. 2018, 90: 223-247. doi: 10.1016/j.rser.2018.03.071 DOI: https://doi.org/10.1016/j.rser.2018.03.071

Demir M, Ashourirad B, Mugumya JH, et al. Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. International Journal of Hydrogen Energy. 2018, 43(40): 18549-18558. doi: 10.1016/j.ijhydene.2018.03.220 DOI: https://doi.org/10.1016/j.ijhydene.2018.03.220

Leng L, Yang L, Chen J, et al. A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresource Technology. 2020, 315: 123801. doi: 10.1016/j.biortech.2020.123801 DOI: https://doi.org/10.1016/j.biortech.2020.123801

Pauline AL, Joseph K. Hydrothermal carbonization of oily sludge for solid fuel recovery – Investigation of chemical characteristics and combustion behaviour. Journal of Analytical and Applied Pyrolysis. 2021, 157: 105235. doi: 10.1016/j.jaap.2021.105235 DOI: https://doi.org/10.1016/j.jaap.2021.105235

Ekpo U, Ross AB, Camargo-Valero MA, et al. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresource Technology. 2016, 200: 951-960. doi: 10.1016/j.biortech.2015.11.018 DOI: https://doi.org/10.1016/j.biortech.2015.11.018

Fang J, Tang Q, Li Y, et al. Morphology of phosphorus and metal extraction behavior in sewage sludge during hydrothermal carbonization treatment. CIESC Journal. 2020, 71: 3288-3295. doi: 10.11949/0438-1157.20200042

Valdez PJ, Tocco VJ, Savage PE. A general kinetic model for the hydrothermal liquefaction of microalgae. Bioresource Technology. 2014, 163: 123-127. doi: 10.1016/j.biortech.2014.04.013 DOI: https://doi.org/10.1016/j.biortech.2014.04.013

Lachos-Perez D, César Torres-Mayanga P, Abaide ER, et al. Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities. Bioresource Technology. 2022, 343: 126084. doi: 10.1016/j.biortech.2021.126084 DOI: https://doi.org/10.1016/j.biortech.2021.126084

Nazem MA, Tavakoli O. Bio-oil production from refinery oily sludge using hydrothermal liquefaction technology. The Journal of Supercritical Fluids. 2017, 127: 33-40. doi: 10.1016/j.supflu.2017.03.020 DOI: https://doi.org/10.1016/j.supflu.2017.03.020

Islam MN, Jung SK, Jung HY, et al. The feasibility of recovering oil from contaminated soil at petroleum oil spill site using a subcritical water extraction technology. Process Safety and Environmental Protection. 2017, 111: 52-59. doi: 10.1016/j.psep.2017.06.015 DOI: https://doi.org/10.1016/j.psep.2017.06.015

Zhang J, Zhang Y. Hydrothermal Liquefaction of Microalgae in an Ethanol–Water Co-Solvent To Produce Biocrude Oil. Energy & Fuels. 2014, 28(8): 5178-5183. doi: 10.1021/ef501040j DOI: https://doi.org/10.1021/ef501040j

Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology. 2011, 102(10): 6221-6229. doi: 10.1016/j.biortech.2011.02.057 DOI: https://doi.org/10.1016/j.biortech.2011.02.057

Al-Muntaser AA, Varfolomeev MA, Suwaid MA, et al. Hydrothermal upgrading of heavy oil in the presence of water at sub-critical, near-critical and supercritical conditions. Journal of Petroleum Science and Engineering. 2020, 184: 106592. doi: 10.1016/j.petrol.2019.106592 DOI: https://doi.org/10.1016/j.petrol.2019.106592

Güngören T, Saǧlam M, Yüksel M, et al. Near-Critical and Supercritical Fluid Extraction of Industrial Sewage Sludge. Industrial & Engineering Chemistry Research. 2007, 46(4): 1051-1057. doi: 10.1021/ie0614780 DOI: https://doi.org/10.1021/ie0614780

Khan MK, Cahyadi HS, Kim SM, et al. Efficient oil recovery from highly stable toxic oily sludge using supercritical water. Fuel. 2019, 235: 460-472. doi: 10.1016/j.fuel.2018.08.003 DOI: https://doi.org/10.1016/j.fuel.2018.08.003

Radfarnia HR, Khulbe C, Little EC. Supercritical water treatment of oil sludge, a viable route to valorize waste oil materials. Fuel. 2015, 159: 653-658. doi: 10.1016/j.fuel.2015.06.094 DOI: https://doi.org/10.1016/j.fuel.2015.06.094

Yeletsky PM, Zaikina OO, Sosnin GA, et al. Heavy oil cracking in the presence of steam and nanodispersed catalysts based on different metals. Fuel Processing Technology. 2020, 199: 106239. doi: 10.1016/j.fuproc.2019.106239 DOI: https://doi.org/10.1016/j.fuproc.2019.106239

Jocz JN, Thompson LT, Savage PE. Catalyst Oxidation and Dissolution in Supercritical Water. Chemistry of Materials. 2018, 30(4): 1218-1229. doi: 10.1021/acs.chemmater.7b03713 DOI: https://doi.org/10.1021/acs.chemmater.7b03713

Abdpour S, Santos RM. Recent advances in heterogeneous catalysis for supercritical water oxidation/gasification processes: Insight into catalyst development. Process Safety and Environmental Protection. 2021, 149: 169-184. doi: 10.1016/j.psep.2020.10.047 DOI: https://doi.org/10.1016/j.psep.2020.10.047

Peng P, Guo S, Li L, et al. Supercritical water gasification mechanism of polymer-containing oily sludge. International Journal of Hydrogen Energy. 2021, 46(53): 26834-26847. doi: 10.1016/j.ijhydene.2021.05.161 DOI: https://doi.org/10.1016/j.ijhydene.2021.05.161

Wang C, Wu C, Zhang H, et al. Hydrothermal treatment of petrochemical sludge in subcritical and supercritical water: Oil phase degradation and syngas production. Chemosphere. 2021, 278: 130392. doi: 10.1016/j.chemosphere.2021.130392 DOI: https://doi.org/10.1016/j.chemosphere.2021.130392

Zhang J, Dasgupta A, Chen Z, et al. Supercritical water gasification of phenol over Ni-Ru bimetallic catalysts. Water Research. 2019, 152: 12-20. doi: 10.1016/j.watres.2018.12.030 DOI: https://doi.org/10.1016/j.watres.2018.12.030

Yuan PQ, Cheng ZM, Zhang XY, et al. Catalytic denitrogenation of hydrocarbons through partial oxidation in supercritical water. Fuel. 2006, 85(3): 367-373. doi: 10.1016/j.fuel.2005.07.006 DOI: https://doi.org/10.1016/j.fuel.2005.07.006

Patwardhan PR, Timko MT, Class CA, et al. Supercritical Water Desulfurization of Organic Sulfides Is Consistent with Free-Radical Kinetics. Energy & Fuels. 2013, 27(10): 6108-6117. doi: 10.1021/ef401150w DOI: https://doi.org/10.1021/ef401150w

Kriipsalu M, Marques M, Maastik A. Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. Journal of Material Cycles and Waste Management. 2008, 10(1): 79-86. doi: 10.1007/s10163-007-0188-7 DOI: https://doi.org/10.1007/s10163-007-0188-7

Ramaswamy B, Kar DD, De S. A study on recovery of oil from sludge containing oil using froth flotation. Journal of Environmental Management. 2007, 85(1): 150-154. doi: 10.1016/j.jenvman.2006.08.009 DOI: https://doi.org/10.1016/j.jenvman.2006.08.009

Liu W, Luo Y, Teng Y, et al. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environmental Geochemistry and Health. 2009, 32(1): 23-29. doi: 10.1007/s10653-009-9262-5 DOI: https://doi.org/10.1007/s10653-009-9262-5

Biswal BK, Tiwari SN, Mukherji S. Biodegradation of oil in oily sludges from steel mills. Bioresource Technology. 2009, 100(4): 1700-1703. doi: 10.1016/j.biortech.2008.09.037 DOI: https://doi.org/10.1016/j.biortech.2008.09.037

Van Hamme JD, Odumeru JA, Ward OP. Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Canadian Journal of Microbiology. 2000, 46(5): 441-450. doi: 10.1139/w00-013 DOI: https://doi.org/10.1139/w00-013

Shi Q, Zhao S, Zhou Y, et al. Development of heavy oil upgrading technologies in China. Reviews in Chemical Engineering. 2019, 36(1): 1-19. doi: 10.1515/revce-2017-0077 DOI: https://doi.org/10.1515/revce-2017-0077

Lin B, Huang Q, Ali M, et al. Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil. Proceedings of the Combustion Institute. 2019, 37(3): 3101-3108. doi: 10.1016/j.proci.2018.05.143 DOI: https://doi.org/10.1016/j.proci.2018.05.143

Brown TM, Duan P, Savage PE. Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. Energy & Fuels. 2010, 24(6): 3639-3646. doi: 10.1021/ef100203u DOI: https://doi.org/10.1021/ef100203u

Ho TC, Qiao L. Competitive adsorption of nitrogen species in HDS: Kinetic characterization of hydrogenation and hydrogenolysis sites. Journal of Catalysis. 2010, 269(2): 291-301. doi: 10.1016/j.jcat.2009.11.012 DOI: https://doi.org/10.1016/j.jcat.2009.11.012

Duan P, Savage PE. Catalytic hydrothermal hydrodenitrogenation of pyridine. Applied Catalysis B: Environmental. 2011, 108-109: 54-60. doi: 10.1016/j.apcatb.2011.08.007 DOI: https://doi.org/10.1016/j.apcatb.2011.08.007

Bi QY, Lin JD, Liu YM, et al. Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium. Journal of Power Sources. 2016, 328: 463-471. doi: 10.1016/j.jpowsour.2016.08.056 DOI: https://doi.org/10.1016/j.jpowsour.2016.08.056

Zhang M, Wu Y, Han X, et al. Upgrading pyrolysis oil by catalytic hydrodeoxygenation reaction in supercritical ethanol with different hydrogen sources. Chemical Engineering Journal. 2022, 446: 136952. doi: 10.1016/j.cej.2022.136952 DOI: https://doi.org/10.1016/j.cej.2022.136952

Nie R, Tao Y, Nie Y, et al. Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis. 2021, 11(3): 1071-1095. doi: 10.1021/acscatal.0c04939 DOI: https://doi.org/10.1021/acscatal.0c04939

Liu C, Kong L, Wang Y, et al. Catalytic hydrothermal liquefaction of spirulina to bio-oil in the presence of formic acid over palladium-based catalysts. Algal Research. 2018, 33: 156-164. doi: 10.1016/j.algal.2018.05.012 DOI: https://doi.org/10.1016/j.algal.2018.05.012

Li G, Yang H, Zhang H, et al. Encapsulation of nonprecious metal into ordered mesoporous n-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catalysis. 2018, 8(9): 8396-8405. doi: 10.1021/acscatal.8b01404 DOI: https://doi.org/10.1021/acscatal.8b01404

Guo Y, Liu X, Duan P, et al. Catalytic Hydrodenitrogenation of Pyridine under Hydrothermal Conditions: A Comprehensive Study. ACS Sustainable Chemistry & Engineering. 2020, 9(1): 362-374. doi: 10.1021/acssuschemeng.0c07389 DOI: https://doi.org/10.1021/acssuschemeng.0c07389

Wang H, Liang C, Prins R. Hydrodenitrogenation of 2-methylpyridine and its intermediates 2-methylpiperidine and tetrahydro-methylpyridine over sulfided NiMo/γ-Al2O3. Journal of Catalysis. 2007, 251(2): 295-306. doi: 10.1016/j.jcat.2007.08.005 DOI: https://doi.org/10.1016/j.jcat.2007.08.005

Katritzky AR, Shipkova PA, Allin SM, et al. Aqueous High-Temperature Chemistry. 24. Nitrogen-Containing Heterocycles in Supercritical Water at 460 ℃. Energy & Fuels. 1995, 9(4): 580-589. doi: 10.1021/ef00052a003 DOI: https://doi.org/10.1021/ef00052a003

Luo L, Liu S, Liu C, et al. High Yield of Hydrocarbons from Catalytic Hydrodenitrogenation of Indole under Hydrothermal Conditions. Energy & Fuels. 2017, 31(11): 12594-12602. doi: 10.1021/acs.energyfuels.7b02322 DOI: https://doi.org/10.1021/acs.energyfuels.7b02322

Guo Y, Wang S, Yeh T, et al. Catalytic gasification of indole in supercritical water. Applied Catalysis B: Environmental. 2015, 166-167: 202-210. doi: 10.1016/j.apcatb.2014.11.033 DOI: https://doi.org/10.1016/j.apcatb.2014.11.033

Guo Y, He H, Liu X, et al. Ring-opening and hydrodenitrogenation of indole under hydrothermal conditions over Ni, Pt, Ru, and Ni-Ru bimetallic catalysts. Chemical Engineering Journal. 2021, 406: 126853. doi: 10.1016/j.cej.2020.126853 DOI: https://doi.org/10.1016/j.cej.2020.126853

Nguyen MT, Tayakout-Fayolle M, Chainet F, et al. Use of kinetic modeling for investigating support acidity effects of NiMo sulfide catalysts on quinoline hydrodenitrogenation. Applied Catalysis A: General. 2017, 530: 132-144. doi: 10.1016/j.apcata.2016.11.015 DOI: https://doi.org/10.1016/j.apcata.2016.11.015

He F, Wang J, Li Y, et al. Quantum Chemistry Calculations on the Mechanism of Isoquinoline Ring-Opening and Denitrogenation in Supercritical Water. Industrial & Engineering Chemistry Research. 2017, 56(7): 1782-1790. doi: 10.1021/acs.iecr.7b00307 DOI: https://doi.org/10.1021/acs.iecr.7b00307

Tian S, Li X, Wang A, et al. Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase. Catalysis Letters. 2018, 148(6): 1579-1588. doi: 10.1007/s10562-018-2370-z DOI: https://doi.org/10.1007/s10562-018-2370-z

Xie D, Liu X, Lv H, et al. Products, pathways, and kinetics for catalytic hydrodenitrogenation of quinoline in hydrothermal condition. The Journal of Supercritical Fluids. 2022, 182: 105509. doi: 10.1016/j.supflu.2021.105509 DOI: https://doi.org/10.1016/j.supflu.2021.105509

Girgis MJ, Gates BC. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Industrial & Engineering Chemistry Research. 1991, 30(9): 2021-2058. doi: 10.1021/ie00057a001 DOI: https://doi.org/10.1021/ie00057a001

Adschiri T, Shibata R, Sato T, et al. Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water−Gas Shift Reaction in Supercritical Water. Industrial & Engineering Chemistry Research. 1998, 37(7): 2634-2638. doi: 10.1021/ie970751i DOI: https://doi.org/10.1021/ie970751i

Massoth FE, Kim SC. Kinetics of the HDN of Quinoline under Vapor-Phase Conditions. Industrial & Engineering Chemistry Research. 2003, 42(5): 1011-1022. doi: 10.1021/ie020390t DOI: https://doi.org/10.1021/ie020390t

Duan P, Savage PE. Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies. Energy & Environmental Science. 2011, 4(4): 1447. doi: 10.1039/c0ee00343c

Bowker RH, Ilic B, Carrillo BA, et al. Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts. Applied Catalysis A: General. 2014, 482: 221-230. doi: 10.1016/j.apcata.2014.05.026 DOI: https://doi.org/10.1016/j.apcata.2014.05.026

Li X, Bai J, Wang A, et al. Hydrodesulfurization of Dibenzothiophene and its Hydrogenated Intermediates Over Bulk Ni2P. Topics in Catalysis. 2011, 54(5-7): 290-298. doi: 10.1007/s11244-011-9663-4 DOI: https://doi.org/10.1007/s11244-011-9663-4

Shen Z, Ke M, Yu P, et al. Catalytic activities of Mo-modified Ni/Al2O3 catalysts for thioetherification of mercaptans and di-olefins in fluid catalytic cracking naphtha. Transition Metal Chemistry. 2012, 37(6): 587-593. doi: 10.1007/s11243-012-9625-0 DOI: https://doi.org/10.1007/s11243-012-9625-0

Kordouli E, Pawelec B, Kordulis C, et al. Hydrodeoxygenation of phenol on bifunctional Ni-based catalysts: Effects of Mo promotion and support. Applied Catalysis B: Environmental. 2018, 238: 147-160. doi: 10.1016/j.apcatb.2018.07.012 DOI: https://doi.org/10.1016/j.apcatb.2018.07.012

Liu Q, Wang S, Zhao G, et al. CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance. International Journal of Hydrogen Energy. 2018, 43(1): 239-250. doi: 10.1016/j.ijhydene.2017.11.052 DOI: https://doi.org/10.1016/j.ijhydene.2017.11.052

Duan P, Savage PE. Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research. 2010, 50(1): 52-61. doi: 10.1021/ie100758s DOI: https://doi.org/10.1021/ie100758s

Li H, Hu J, Zhang Z, et al. Insight into the effect of hydrogenation on efficiency of hydrothermal liquefaction and physico-chemical properties of biocrude oil. Bioresource Technology. 2014, 163: 143-151. doi: 10.1016/j.biortech.2014.04.015 DOI: https://doi.org/10.1016/j.biortech.2014.04.015

Rinaldi N, Usman, Al-Dalama K, et al. Preparation of Co–Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: Effect of citric acid addition. Applied Catalysis A: General. 2009, 360(2): 130-136. doi: 10.1016/j.apcata.2009.03.006 DOI: https://doi.org/10.1016/j.apcata.2009.03.006

Gong S, Shinozaki A, Qian EW. Role of Support in Hydrotreatment of Jatropha Oil over Sulfided NiMo Catalysts. Industrial & Engineering Chemistry Research. 2012, 51(43): 13953-13960. doi: 10.1021/ie301204u DOI: https://doi.org/10.1021/ie301204u

Han Y, Gholizadeh M, Tran CC, et al. Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology. 2019, 195: 106140. doi: 10.1016/j.fuproc.2019.106140 DOI: https://doi.org/10.1016/j.fuproc.2019.106140

Snåre M, Kubičková I, Mäki-Arvela P, et al. Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel. 2008, 87(6): 933-945. doi: 10.1016/j.fuel.2007.06.006 DOI: https://doi.org/10.1016/j.fuel.2007.06.006

Duan P, Savage PE. Catalytic treatment of crude algal bio-oil in supercritical water: Optimization studies. Energy & Environmental Science. 2011, 4: 1447-1456. doi: 10.1039/C0EE00343C DOI: https://doi.org/10.1039/c0ee00343c

Eijsbouts S. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni, and Ni-Mo catalysts. Journal of Catalysis. 1991, 131(2): 412-432. doi: 10.1016/0021-9517(91)90276-a DOI: https://doi.org/10.1016/0021-9517(91)90276-A

Rayo P, Ramírez J, Torres-Mancera P, et al. Hydrodesulfurization and hydrocracking of Maya crude with P-modified NiMo/Al2O3 catalysts. Fuel. 2012, 100: 34-42. doi: 10.1016/j.fuel.2011.12.004 DOI: https://doi.org/10.1016/j.fuel.2011.12.004

Furimsky E, Massoth FE. Hydrodenitrogenation of Petroleum. Catalysis Reviews. 2005, 47(3): 297-489. doi: 10.1081/cr-200057492 DOI: https://doi.org/10.1081/CR-200057492

Lee YK, Oyama ST. Sulfur resistant nature of Ni2P catalyst in deep hydrodesulfurization. Applied Catalysis A: General. 2017, 548: 103-113. doi: 10.1016/j.apcata.2017.06.035 DOI: https://doi.org/10.1016/j.apcata.2017.06.035

Peroni M, Lee I, Huang X, et al. Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides. ACS Catalysis. 2017, 7(9): 6331-6341. doi: 10.1021/acscatal.7b01294 DOI: https://doi.org/10.1021/acscatal.7b01294

Carenco S, Leyva-Pérez A, Concepción P, et al. Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today. 2012, 7(1): 21-28. doi: 10.1016/j.nantod.2011.12.003 DOI: https://doi.org/10.1016/j.nantod.2011.12.003

Popczun EJ, McKone JR, Read CG, et al. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society. 2013, 135(25): 9267-9270. doi: 10.1021/ja403440e DOI: https://doi.org/10.1021/ja403440e

Maity S, Flores G, Ancheyta J, et al. Effect of preparation methods and content of phosphorus on hydrotreating activity. Catalysis Today. 2008, 130(2-4): 374-381. doi: 10.1016/j.cattod.2007.10.100 DOI: https://doi.org/10.1016/j.cattod.2007.10.100

Zhao Y. Mechanisms of the hydrodenitrogenation of alkylamines with secondary and tertiary α-carbon atoms on sulfided NiMo/Al2O3. Journal of Catalysis. 2004, 222(2): 532-544. doi: 10.1016/j.jcat.2003.12.013 DOI: https://doi.org/10.1016/j.jcat.2003.12.013

Gutiérrez OY, Hrabar A, Hein J, et al. Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni–MoS2/γ-Al2O3. Journal of Catalysis. 2012, 295: 155-168. doi: 10.1016/j.jcat.2012.08.003 DOI: https://doi.org/10.1016/j.jcat.2012.08.003

Li Z, Savage PE. Feedstocks for fuels and chemicals from algae: Treatment of crude bio-oil over HZSM-5. Algal Research. 2013, 2(2): 154-163. doi: 10.1016/j.algal.2013.01.003 DOI: https://doi.org/10.1016/j.algal.2013.01.003

Ormsby R, Kastner JR, Miller J. Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catalysis Today. 2012, 190(1): 89-97. doi: 10.1016/j.cattod.2012.02.050 DOI: https://doi.org/10.1016/j.cattod.2012.02.050

Wang B, He Z, Zhang B, et al. Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil. Energy. 2021, 230: 120733. doi: 10.1016/j.energy.2021.120733 DOI: https://doi.org/10.1016/j.energy.2021.120733

Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews. 2015, 45: 359-378. doi: 10.1016/j.rser.2015.01.050 DOI: https://doi.org/10.1016/j.rser.2015.01.050

Azizi N, Ali SA, Alhooshani K, et al. Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Processing Technology. 2013, 109: 172-178. doi: 10.1016/j.fuproc.2012.11.001 DOI: https://doi.org/10.1016/j.fuproc.2012.11.001

Types of hydrothermal technologies, reaction temperatures, and products.

Downloads

Published

2024-02-29

How to Cite

Zhang, J., Zhang, L., Li, H., Tian, X., Huang, R., & Lu, J. (2024). Catalyzed hydrothermal treatment of oily sludge: A review. Clean Energy Science and Technology, 2(1), 107. https://doi.org/10.18686/cest.v2i1.107

Issue

Section

Review