Catalyzed hydrothermal treatment of oily sludge: A review
DOI:
https://doi.org/10.18686/cest.v2i1.107Keywords:
oily sludge; hydrothermal; sub/supercritical water; catalystAbstract
Oily sludge is a common by-product of the petroleum exploration industry, which is rich in resources and has strong toxicity. It is categorized as hazardous waste in many nations worldwide. Owing to the distinct physical and chemical characteristics of sub/supercritical water, the application of hydrothermal conversion technology, which uses sub/supercritical water as a medium, has been growing in the utilization of resources and the safe disposal of oily sludge. In this article, the research on the oxygen-free hydrothermal transformation of oil sludge, including hydrothermal carbonization, hydrothermal liquefaction, hydrothermal upgrading, and supercritical water gasification, is reviewed. Due to the significant impact of nitrogenous and sulfurous compounds in sludge on hydrothermal conversion products, the hydrogenation conversion, reaction path, and kinetics for these two compounds were discussed. Finally, a summary and comparison of the studies conducted on carriers and catalysts in hydrothermal processes are provided. This review can offer recommendations for future studies, as well as guidance for the hydrothermal catalytic treatment of oily sludge.
References
1. Hochberg SY, Tansel B, Laha S. Materials and energy recovery from oily sludges removed from crude oil storage tanks (tank bottoms): A review of technologies. Journal of Environmental Management. 2022, 305: 114428. doi: 10.1016/j.jenvman.2022.114428 DOI: https://doi.org/10.1016/j.jenvman.2022.114428
2. Li J, Lin F, Li K, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis. Journal of Hazardous Materials. 2021, 406: 124706. doi: 10.1016/j.jhazmat.2020.124706 DOI: https://doi.org/10.1016/j.jhazmat.2020.124706
3. Wang Y, Fan D, Li W. Analysis and prospect of domestic and foreign oil and gas resources in 2020. China Mining Magazine. 2021, 30(1): 18-23. doi:10.12075/j.issn.1004-4051.2021.01.035
4. Duan H, Huang Q, Wang Q, et al. Hazardous waste generation and management in China: A review. Journal of Hazardous Materials. 2008, 158(2-3): 221-227. doi: 10.1016/j.jhazmat.2008.01.106 DOI: https://doi.org/10.1016/j.jhazmat.2008.01.106
5. Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials. 2013, 261: 470-490. doi: 10.1016/j.jhazmat.2013.07.069 DOI: https://doi.org/10.1016/j.jhazmat.2013.07.069
6. Robertson SJ, McGill WB, Massicotte HB, et al. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biological Reviews. 2007, 82(2): 213-240. doi: 10.1111/j.1469-185x.2007.00012.x DOI: https://doi.org/10.1111/j.1469-185X.2007.00012.x
7. Naz A, Chowdhury A, Chandra R, et al. Potential human health hazard due to bioavailable heavy metal exposure via consumption of plants with ethnobotanical usage at the largest chromite mine of India. Environmental Geochemistry and Health. 2020, 42(12): 4213-4231. doi: 10.1007/s10653-020-00603-5 DOI: https://doi.org/10.1007/s10653-020-00603-5
8. Wake H. Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science. 2005, 62(1-2): 131-140. doi: 10.1016/j.ecss.2004.08.013 DOI: https://doi.org/10.1016/j.ecss.2004.08.013
9. Teng Q, Zhang D, Yang C. A review of the application of different treatment processes for oily sludge. Environmental Science and Pollution Research. 2020, 28(1): 121-132. doi: 10.1007/s11356-020-11176-2 DOI: https://doi.org/10.1007/s11356-020-11176-2
10. Ubani O, Atagana H I, Thantsha MS. Biological degradation of oil sludge: A review of the current state of development. African Journal of Biotechnology. 2013, 12(47): 6544-6567. doi: 10.5897/AJB11.1139 DOI: https://doi.org/10.5897/AJB11.1139
11. Qu Y, Li A, Wang D, et al. Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chemical Engineering Journal. 2019, 374: 338-346. doi: 10.1016/j.cej.2019.05.183 DOI: https://doi.org/10.1016/j.cej.2019.05.183
12. Gao N, Kamran K, Quan C, et al. Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science. 2020, 79: 100843. doi: 10.1016/j.pecs.2020.100843 DOI: https://doi.org/10.1016/j.pecs.2020.100843
13. Zhao Y, Yan X, Zhou J, et al. Treatment of oily sludge by two-stage wet air oxidation. Journal of the Energy Institute. 2019, 92(5): 1451-1457. doi: 10.1016/j.joei.2018.08.006 DOI: https://doi.org/10.1016/j.joei.2018.08.006
14. Al-Doury MMI. Treatment of oily sludge using solvent extraction. Petroleum Science and Technology. 2019, 37(2): 190-196. doi: 10.1080/10916466.2018.1533859 DOI: https://doi.org/10.1080/10916466.2018.1533859
15. Gao N, Duan Y, Li Z, et al. Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering. Journal of Hazardous Materials. 2021, 402: 124173. doi: 10.1016/j.jhazmat.2020.124173 DOI: https://doi.org/10.1016/j.jhazmat.2020.124173
16. Wei N, Xu D, Hao B, et al. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Research. 2021, 190: 116634. doi: 10.1016/j.watres.2020.116634 DOI: https://doi.org/10.1016/j.watres.2020.116634
17. Duan P, Zhang C, Wang F, et al. Activated carbons for the hydrothermal upgrading of crude duckweed bio-oil. Catalysis Today. 2016, 274: 73-81. doi: 10.1016/j.cattod.2016.01.046 DOI: https://doi.org/10.1016/j.cattod.2016.01.046
18. Liu X, Yang M, Deng Z, et al. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: Mechanism and kinetic modeling. Chemical Engineering Journal. 2021, 407: 126332. doi: 10.1016/j.cej.2020.126332 DOI: https://doi.org/10.1016/j.cej.2020.126332
19. Fomo G, Madzimbamuto TN, Ojumu TV. Applications of Nonconventional Green Extraction Technologies in Process Industries: Challenges, Limitations and Perspectives. Sustainability. 2020, 12(13): 5244. doi: 10.3390/su12135244 DOI: https://doi.org/10.3390/su12135244
20. Khan MK, Cahyadi HS, Kim SM, et al. Efficient oil recovery from highly stable toxic oily sludge using supercritical water. Fuel. 2019, 235: 460-472. doi: 10.1016/j.fuel.2018.08.003
21. Huang J, Wang Z, Qiao Y, et al. Transformation of nitrogen during hydrothermal carbonization of sewage sludge: Effects of temperature and Na/Ca acetates addition. Proceedings of the Combustion Institute. 2021, 38(3): 4335-4344. doi: 10.1016/j.proci.2020.06.075 DOI: https://doi.org/10.1016/j.proci.2020.06.075
22. Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews. 2018, 90: 223-247. doi: 10.1016/j.rser.2018.03.071 DOI: https://doi.org/10.1016/j.rser.2018.03.071
23. Demir M, Ashourirad B, Mugumya JH, et al. Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. International Journal of Hydrogen Energy. 2018, 43(40): 18549-18558. doi: 10.1016/j.ijhydene.2018.03.220 DOI: https://doi.org/10.1016/j.ijhydene.2018.03.220
24. Leng L, Yang L, Chen J, et al. A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresource Technology. 2020, 315: 123801. doi: 10.1016/j.biortech.2020.123801 DOI: https://doi.org/10.1016/j.biortech.2020.123801
25. Pauline AL, Joseph K. Hydrothermal carbonization of oily sludge for solid fuel recovery – Investigation of chemical characteristics and combustion behaviour. Journal of Analytical and Applied Pyrolysis. 2021, 157: 105235. doi: 10.1016/j.jaap.2021.105235 DOI: https://doi.org/10.1016/j.jaap.2021.105235
26. Ekpo U, Ross AB, Camargo-Valero MA, et al. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresource Technology. 2016, 200: 951-960. doi: 10.1016/j.biortech.2015.11.018 DOI: https://doi.org/10.1016/j.biortech.2015.11.018
27. Fang J, Tang Q, Li Y, et al. Morphology of phosphorus and metal extraction behavior in sewage sludge during hydrothermal carbonization treatment. CIESC Journal. 2020, 71: 3288-3295. doi: 10.11949/0438-1157.20200042
28. Valdez PJ, Tocco VJ, Savage PE. A general kinetic model for the hydrothermal liquefaction of microalgae. Bioresource Technology. 2014, 163: 123-127. doi: 10.1016/j.biortech.2014.04.013 DOI: https://doi.org/10.1016/j.biortech.2014.04.013
29. Lachos-Perez D, César Torres-Mayanga P, Abaide ER, et al. Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities. Bioresource Technology. 2022, 343: 126084. doi: 10.1016/j.biortech.2021.126084 DOI: https://doi.org/10.1016/j.biortech.2021.126084
30. Nazem MA, Tavakoli O. Bio-oil production from refinery oily sludge using hydrothermal liquefaction technology. The Journal of Supercritical Fluids. 2017, 127: 33-40. doi: 10.1016/j.supflu.2017.03.020 DOI: https://doi.org/10.1016/j.supflu.2017.03.020
31. Islam MN, Jung SK, Jung HY, et al. The feasibility of recovering oil from contaminated soil at petroleum oil spill site using a subcritical water extraction technology. Process Safety and Environmental Protection. 2017, 111: 52-59. doi: 10.1016/j.psep.2017.06.015 DOI: https://doi.org/10.1016/j.psep.2017.06.015
32. Zhang J, Zhang Y. Hydrothermal Liquefaction of Microalgae in an Ethanol–Water Co-Solvent To Produce Biocrude Oil. Energy & Fuels. 2014, 28(8): 5178-5183. doi: 10.1021/ef501040j DOI: https://doi.org/10.1021/ef501040j
33. Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology. 2011, 102(10): 6221-6229. doi: 10.1016/j.biortech.2011.02.057 DOI: https://doi.org/10.1016/j.biortech.2011.02.057
34. Al-Muntaser AA, Varfolomeev MA, Suwaid MA, et al. Hydrothermal upgrading of heavy oil in the presence of water at sub-critical, near-critical and supercritical conditions. Journal of Petroleum Science and Engineering. 2020, 184: 106592. doi: 10.1016/j.petrol.2019.106592 DOI: https://doi.org/10.1016/j.petrol.2019.106592
35. Güngören T, Saǧlam M, Yüksel M, et al. Near-Critical and Supercritical Fluid Extraction of Industrial Sewage Sludge. Industrial & Engineering Chemistry Research. 2007, 46(4): 1051-1057. doi: 10.1021/ie0614780 DOI: https://doi.org/10.1021/ie0614780
36. Khan MK, Cahyadi HS, Kim SM, et al. Efficient oil recovery from highly stable toxic oily sludge using supercritical water. Fuel. 2019, 235: 460-472. doi: 10.1016/j.fuel.2018.08.003 DOI: https://doi.org/10.1016/j.fuel.2018.08.003
37. Radfarnia HR, Khulbe C, Little EC. Supercritical water treatment of oil sludge, a viable route to valorize waste oil materials. Fuel. 2015, 159: 653-658. doi: 10.1016/j.fuel.2015.06.094 DOI: https://doi.org/10.1016/j.fuel.2015.06.094
38. Yeletsky PM, Zaikina OO, Sosnin GA, et al. Heavy oil cracking in the presence of steam and nanodispersed catalysts based on different metals. Fuel Processing Technology. 2020, 199: 106239. doi: 10.1016/j.fuproc.2019.106239 DOI: https://doi.org/10.1016/j.fuproc.2019.106239
39. Jocz JN, Thompson LT, Savage PE. Catalyst Oxidation and Dissolution in Supercritical Water. Chemistry of Materials. 2018, 30(4): 1218-1229. doi: 10.1021/acs.chemmater.7b03713 DOI: https://doi.org/10.1021/acs.chemmater.7b03713
40. Abdpour S, Santos RM. Recent advances in heterogeneous catalysis for supercritical water oxidation/gasification processes: Insight into catalyst development. Process Safety and Environmental Protection. 2021, 149: 169-184. doi: 10.1016/j.psep.2020.10.047 DOI: https://doi.org/10.1016/j.psep.2020.10.047
41. Peng P, Guo S, Li L, et al. Supercritical water gasification mechanism of polymer-containing oily sludge. International Journal of Hydrogen Energy. 2021, 46(53): 26834-26847. doi: 10.1016/j.ijhydene.2021.05.161 DOI: https://doi.org/10.1016/j.ijhydene.2021.05.161
42. Wang C, Wu C, Zhang H, et al. Hydrothermal treatment of petrochemical sludge in subcritical and supercritical water: Oil phase degradation and syngas production. Chemosphere. 2021, 278: 130392. doi: 10.1016/j.chemosphere.2021.130392 DOI: https://doi.org/10.1016/j.chemosphere.2021.130392
43. Zhang J, Dasgupta A, Chen Z, et al. Supercritical water gasification of phenol over Ni-Ru bimetallic catalysts. Water Research. 2019, 152: 12-20. doi: 10.1016/j.watres.2018.12.030 DOI: https://doi.org/10.1016/j.watres.2018.12.030
44. Yuan PQ, Cheng ZM, Zhang XY, et al. Catalytic denitrogenation of hydrocarbons through partial oxidation in supercritical water. Fuel. 2006, 85(3): 367-373. doi: 10.1016/j.fuel.2005.07.006 DOI: https://doi.org/10.1016/j.fuel.2005.07.006
45. Patwardhan PR, Timko MT, Class CA, et al. Supercritical Water Desulfurization of Organic Sulfides Is Consistent with Free-Radical Kinetics. Energy & Fuels. 2013, 27(10): 6108-6117. doi: 10.1021/ef401150w DOI: https://doi.org/10.1021/ef401150w
46. Kriipsalu M, Marques M, Maastik A. Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. Journal of Material Cycles and Waste Management. 2008, 10(1): 79-86. doi: 10.1007/s10163-007-0188-7 DOI: https://doi.org/10.1007/s10163-007-0188-7
47. Ramaswamy B, Kar DD, De S. A study on recovery of oil from sludge containing oil using froth flotation. Journal of Environmental Management. 2007, 85(1): 150-154. doi: 10.1016/j.jenvman.2006.08.009 DOI: https://doi.org/10.1016/j.jenvman.2006.08.009
48. Liu W, Luo Y, Teng Y, et al. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environmental Geochemistry and Health. 2009, 32(1): 23-29. doi: 10.1007/s10653-009-9262-5 DOI: https://doi.org/10.1007/s10653-009-9262-5
49. Biswal BK, Tiwari SN, Mukherji S. Biodegradation of oil in oily sludges from steel mills. Bioresource Technology. 2009, 100(4): 1700-1703. doi: 10.1016/j.biortech.2008.09.037 DOI: https://doi.org/10.1016/j.biortech.2008.09.037
50. Van Hamme JD, Odumeru JA, Ward OP. Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Canadian Journal of Microbiology. 2000, 46(5): 441-450. doi: 10.1139/w00-013 DOI: https://doi.org/10.1139/w00-013
51. Shi Q, Zhao S, Zhou Y, et al. Development of heavy oil upgrading technologies in China. Reviews in Chemical Engineering. 2019, 36(1): 1-19. doi: 10.1515/revce-2017-0077 DOI: https://doi.org/10.1515/revce-2017-0077
52. Lin B, Huang Q, Ali M, et al. Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil. Proceedings of the Combustion Institute. 2019, 37(3): 3101-3108. doi: 10.1016/j.proci.2018.05.143 DOI: https://doi.org/10.1016/j.proci.2018.05.143
53. Brown TM, Duan P, Savage PE. Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. Energy & Fuels. 2010, 24(6): 3639-3646. doi: 10.1021/ef100203u DOI: https://doi.org/10.1021/ef100203u
54. Ho TC, Qiao L. Competitive adsorption of nitrogen species in HDS: Kinetic characterization of hydrogenation and hydrogenolysis sites. Journal of Catalysis. 2010, 269(2): 291-301. doi: 10.1016/j.jcat.2009.11.012 DOI: https://doi.org/10.1016/j.jcat.2009.11.012
55. Duan P, Savage PE. Catalytic hydrothermal hydrodenitrogenation of pyridine. Applied Catalysis B: Environmental. 2011, 108-109: 54-60. doi: 10.1016/j.apcatb.2011.08.007 DOI: https://doi.org/10.1016/j.apcatb.2011.08.007
56. Bi QY, Lin JD, Liu YM, et al. Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium. Journal of Power Sources. 2016, 328: 463-471. doi: 10.1016/j.jpowsour.2016.08.056 DOI: https://doi.org/10.1016/j.jpowsour.2016.08.056
57. Zhang M, Wu Y, Han X, et al. Upgrading pyrolysis oil by catalytic hydrodeoxygenation reaction in supercritical ethanol with different hydrogen sources. Chemical Engineering Journal. 2022, 446: 136952. doi: 10.1016/j.cej.2022.136952 DOI: https://doi.org/10.1016/j.cej.2022.136952
58. Nie R, Tao Y, Nie Y, et al. Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis. 2021, 11(3): 1071-1095. doi: 10.1021/acscatal.0c04939 DOI: https://doi.org/10.1021/acscatal.0c04939
59. Liu C, Kong L, Wang Y, et al. Catalytic hydrothermal liquefaction of spirulina to bio-oil in the presence of formic acid over palladium-based catalysts. Algal Research. 2018, 33: 156-164. doi: 10.1016/j.algal.2018.05.012 DOI: https://doi.org/10.1016/j.algal.2018.05.012
60. Li G, Yang H, Zhang H, et al. Encapsulation of nonprecious metal into ordered mesoporous n-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catalysis. 2018, 8(9): 8396-8405. doi: 10.1021/acscatal.8b01404 DOI: https://doi.org/10.1021/acscatal.8b01404
61. Guo Y, Liu X, Duan P, et al. Catalytic Hydrodenitrogenation of Pyridine under Hydrothermal Conditions: A Comprehensive Study. ACS Sustainable Chemistry & Engineering. 2020, 9(1): 362-374. doi: 10.1021/acssuschemeng.0c07389 DOI: https://doi.org/10.1021/acssuschemeng.0c07389
62. Wang H, Liang C, Prins R. Hydrodenitrogenation of 2-methylpyridine and its intermediates 2-methylpiperidine and tetrahydro-methylpyridine over sulfided NiMo/γ-Al2O3. Journal of Catalysis. 2007, 251(2): 295-306. doi: 10.1016/j.jcat.2007.08.005 DOI: https://doi.org/10.1016/j.jcat.2007.08.005
63. Katritzky AR, Shipkova PA, Allin SM, et al. Aqueous High-Temperature Chemistry. 24. Nitrogen-Containing Heterocycles in Supercritical Water at 460 ℃. Energy & Fuels. 1995, 9(4): 580-589. doi: 10.1021/ef00052a003 DOI: https://doi.org/10.1021/ef00052a003
64. Luo L, Liu S, Liu C, et al. High Yield of Hydrocarbons from Catalytic Hydrodenitrogenation of Indole under Hydrothermal Conditions. Energy & Fuels. 2017, 31(11): 12594-12602. doi: 10.1021/acs.energyfuels.7b02322 DOI: https://doi.org/10.1021/acs.energyfuels.7b02322
65. Guo Y, Wang S, Yeh T, et al. Catalytic gasification of indole in supercritical water. Applied Catalysis B: Environmental. 2015, 166-167: 202-210. doi: 10.1016/j.apcatb.2014.11.033 DOI: https://doi.org/10.1016/j.apcatb.2014.11.033
66. Guo Y, He H, Liu X, et al. Ring-opening and hydrodenitrogenation of indole under hydrothermal conditions over Ni, Pt, Ru, and Ni-Ru bimetallic catalysts. Chemical Engineering Journal. 2021, 406: 126853. doi: 10.1016/j.cej.2020.126853 DOI: https://doi.org/10.1016/j.cej.2020.126853
67. Nguyen MT, Tayakout-Fayolle M, Chainet F, et al. Use of kinetic modeling for investigating support acidity effects of NiMo sulfide catalysts on quinoline hydrodenitrogenation. Applied Catalysis A: General. 2017, 530: 132-144. doi: 10.1016/j.apcata.2016.11.015 DOI: https://doi.org/10.1016/j.apcata.2016.11.015
68. He F, Wang J, Li Y, et al. Quantum Chemistry Calculations on the Mechanism of Isoquinoline Ring-Opening and Denitrogenation in Supercritical Water. Industrial & Engineering Chemistry Research. 2017, 56(7): 1782-1790. doi: 10.1021/acs.iecr.7b00307 DOI: https://doi.org/10.1021/acs.iecr.7b00307
69. Tian S, Li X, Wang A, et al. Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase. Catalysis Letters. 2018, 148(6): 1579-1588. doi: 10.1007/s10562-018-2370-z DOI: https://doi.org/10.1007/s10562-018-2370-z
70. Xie D, Liu X, Lv H, et al. Products, pathways, and kinetics for catalytic hydrodenitrogenation of quinoline in hydrothermal condition. The Journal of Supercritical Fluids. 2022, 182: 105509. doi: 10.1016/j.supflu.2021.105509 DOI: https://doi.org/10.1016/j.supflu.2021.105509
71. Girgis MJ, Gates BC. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Industrial & Engineering Chemistry Research. 1991, 30(9): 2021-2058. doi: 10.1021/ie00057a001 DOI: https://doi.org/10.1021/ie00057a001
72. Adschiri T, Shibata R, Sato T, et al. Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water−Gas Shift Reaction in Supercritical Water. Industrial & Engineering Chemistry Research. 1998, 37(7): 2634-2638. doi: 10.1021/ie970751i DOI: https://doi.org/10.1021/ie970751i
73. Massoth FE, Kim SC. Kinetics of the HDN of Quinoline under Vapor-Phase Conditions. Industrial & Engineering Chemistry Research. 2003, 42(5): 1011-1022. doi: 10.1021/ie020390t DOI: https://doi.org/10.1021/ie020390t
74. Duan P, Savage PE. Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies. Energy & Environmental Science. 2011, 4(4): 1447. doi: 10.1039/c0ee00343c
75. Bowker RH, Ilic B, Carrillo BA, et al. Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts. Applied Catalysis A: General. 2014, 482: 221-230. doi: 10.1016/j.apcata.2014.05.026 DOI: https://doi.org/10.1016/j.apcata.2014.05.026
76. Li X, Bai J, Wang A, et al. Hydrodesulfurization of Dibenzothiophene and its Hydrogenated Intermediates Over Bulk Ni2P. Topics in Catalysis. 2011, 54(5-7): 290-298. doi: 10.1007/s11244-011-9663-4 DOI: https://doi.org/10.1007/s11244-011-9663-4
77. Shen Z, Ke M, Yu P, et al. Catalytic activities of Mo-modified Ni/Al2O3 catalysts for thioetherification of mercaptans and di-olefins in fluid catalytic cracking naphtha. Transition Metal Chemistry. 2012, 37(6): 587-593. doi: 10.1007/s11243-012-9625-0 DOI: https://doi.org/10.1007/s11243-012-9625-0
78. Kordouli E, Pawelec B, Kordulis C, et al. Hydrodeoxygenation of phenol on bifunctional Ni-based catalysts: Effects of Mo promotion and support. Applied Catalysis B: Environmental. 2018, 238: 147-160. doi: 10.1016/j.apcatb.2018.07.012 DOI: https://doi.org/10.1016/j.apcatb.2018.07.012
79. Liu Q, Wang S, Zhao G, et al. CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance. International Journal of Hydrogen Energy. 2018, 43(1): 239-250. doi: 10.1016/j.ijhydene.2017.11.052 DOI: https://doi.org/10.1016/j.ijhydene.2017.11.052
80. Duan P, Savage PE. Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research. 2010, 50(1): 52-61. doi: 10.1021/ie100758s DOI: https://doi.org/10.1021/ie100758s
81. Li H, Hu J, Zhang Z, et al. Insight into the effect of hydrogenation on efficiency of hydrothermal liquefaction and physico-chemical properties of biocrude oil. Bioresource Technology. 2014, 163: 143-151. doi: 10.1016/j.biortech.2014.04.015 DOI: https://doi.org/10.1016/j.biortech.2014.04.015
82. Rinaldi N, Usman, Al-Dalama K, et al. Preparation of Co–Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: Effect of citric acid addition. Applied Catalysis A: General. 2009, 360(2): 130-136. doi: 10.1016/j.apcata.2009.03.006 DOI: https://doi.org/10.1016/j.apcata.2009.03.006
83. Gong S, Shinozaki A, Qian EW. Role of Support in Hydrotreatment of Jatropha Oil over Sulfided NiMo Catalysts. Industrial & Engineering Chemistry Research. 2012, 51(43): 13953-13960. doi: 10.1021/ie301204u DOI: https://doi.org/10.1021/ie301204u
84. Han Y, Gholizadeh M, Tran CC, et al. Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology. 2019, 195: 106140. doi: 10.1016/j.fuproc.2019.106140 DOI: https://doi.org/10.1016/j.fuproc.2019.106140
85. Snåre M, Kubičková I, Mäki-Arvela P, et al. Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel. 2008, 87(6): 933-945. doi: 10.1016/j.fuel.2007.06.006 DOI: https://doi.org/10.1016/j.fuel.2007.06.006
86. Duan P, Savage PE. Catalytic treatment of crude algal bio-oil in supercritical water: Optimization studies. Energy & Environmental Science. 2011, 4: 1447-1456. doi: 10.1039/C0EE00343C DOI: https://doi.org/10.1039/c0ee00343c
87. Eijsbouts S. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni, and Ni-Mo catalysts. Journal of Catalysis. 1991, 131(2): 412-432. doi: 10.1016/0021-9517(91)90276-a DOI: https://doi.org/10.1016/0021-9517(91)90276-A
88. Rayo P, Ramírez J, Torres-Mancera P, et al. Hydrodesulfurization and hydrocracking of Maya crude with P-modified NiMo/Al2O3 catalysts. Fuel. 2012, 100: 34-42. doi: 10.1016/j.fuel.2011.12.004 DOI: https://doi.org/10.1016/j.fuel.2011.12.004
89. Furimsky E, Massoth FE. Hydrodenitrogenation of Petroleum. Catalysis Reviews. 2005, 47(3): 297-489. doi: 10.1081/cr-200057492 DOI: https://doi.org/10.1081/CR-200057492
90. Lee YK, Oyama ST. Sulfur resistant nature of Ni2P catalyst in deep hydrodesulfurization. Applied Catalysis A: General. 2017, 548: 103-113. doi: 10.1016/j.apcata.2017.06.035 DOI: https://doi.org/10.1016/j.apcata.2017.06.035
91. Peroni M, Lee I, Huang X, et al. Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides. ACS Catalysis. 2017, 7(9): 6331-6341. doi: 10.1021/acscatal.7b01294 DOI: https://doi.org/10.1021/acscatal.7b01294
92. Carenco S, Leyva-Pérez A, Concepción P, et al. Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today. 2012, 7(1): 21-28. doi: 10.1016/j.nantod.2011.12.003 DOI: https://doi.org/10.1016/j.nantod.2011.12.003
93. Popczun EJ, McKone JR, Read CG, et al. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society. 2013, 135(25): 9267-9270. doi: 10.1021/ja403440e DOI: https://doi.org/10.1021/ja403440e
94. Maity S, Flores G, Ancheyta J, et al. Effect of preparation methods and content of phosphorus on hydrotreating activity. Catalysis Today. 2008, 130(2-4): 374-381. doi: 10.1016/j.cattod.2007.10.100 DOI: https://doi.org/10.1016/j.cattod.2007.10.100
95. Zhao Y. Mechanisms of the hydrodenitrogenation of alkylamines with secondary and tertiary α-carbon atoms on sulfided NiMo/Al2O3. Journal of Catalysis. 2004, 222(2): 532-544. doi: 10.1016/j.jcat.2003.12.013 DOI: https://doi.org/10.1016/j.jcat.2003.12.013
96. Gutiérrez OY, Hrabar A, Hein J, et al. Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni–MoS2/γ-Al2O3. Journal of Catalysis. 2012, 295: 155-168. doi: 10.1016/j.jcat.2012.08.003 DOI: https://doi.org/10.1016/j.jcat.2012.08.003
97. Li Z, Savage PE. Feedstocks for fuels and chemicals from algae: Treatment of crude bio-oil over HZSM-5. Algal Research. 2013, 2(2): 154-163. doi: 10.1016/j.algal.2013.01.003 DOI: https://doi.org/10.1016/j.algal.2013.01.003
98. Ormsby R, Kastner JR, Miller J. Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catalysis Today. 2012, 190(1): 89-97. doi: 10.1016/j.cattod.2012.02.050 DOI: https://doi.org/10.1016/j.cattod.2012.02.050
99. Wang B, He Z, Zhang B, et al. Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil. Energy. 2021, 230: 120733. doi: 10.1016/j.energy.2021.120733 DOI: https://doi.org/10.1016/j.energy.2021.120733
100. Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews. 2015, 45: 359-378. doi: 10.1016/j.rser.2015.01.050 DOI: https://doi.org/10.1016/j.rser.2015.01.050
101. Azizi N, Ali SA, Alhooshani K, et al. Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Processing Technology. 2013, 109: 172-178. doi: 10.1016/j.fuproc.2012.11.001 DOI: https://doi.org/10.1016/j.fuproc.2012.11.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jie Zhang, Lingling Zhang, Hulin Li, Xinyue Tian, Rongpu Huang, Jinling Lu
This work is licensed under a Creative Commons Attribution 4.0 International License.