Assessment of dietary health risk factors and their pathophysiological mechanisms in the etiology of cardiovascular diseases

Authors

  • Ibrahim Abdulwaliyu Scientific and Industrial Research Department, National Research Institute for Chemical Technology, Zaria 810282, Nigeria
  • Razaq A. Mustapha Department of Nutrition and Dietetics, Rufus Giwa Polytechnic, Owo 352101, Nigeria
  • Shefiat O. Arekemase Petrochemical and Allied Department, National Research Institute for Chemical Technology, Zaria 810282, Nigeria
  • Musa L. Batari Scientific and Industrial Research Department, National Research Institute for Chemical Technology, Zaria 810282, Nigeria
  • Shirley O. Yakubu Department of Science Laboratory Technology, Federal Polytechnic, Kaltungo 770101, Nigeria
  • Simisola H. Oluwasanmi Department of Nutrition and Dietetics, Federal Medical Centre, Abeokuta 110221, Nigeria
  • Amina I. Baba Department of Food Science and Technology Federal University of Technology, Minna 920211, Nigeria
  • Owolabi S. Olusina Food Technology Department, Federal Institute of Industrial Research, Oshodi 100261, Nigeria
  • Munirah L. Kera Department of Biochemistry, Ahmadu Bello University, Zaria 810282, Nigeria
  • Francis Iyeh Scientific and Industrial Research Department, National Research Institute for Chemical Technology, Zaria 810282, Nigeria
Article ID: 380
136 Views

DOI:

https://doi.org/10.18686/fnc380

Keywords:

cardiovascular disease; dietary factors; hyperlipidemia; hypertension; endothelial dysfunction

Abstract

Cardiovascular disease (CVD) remains a global health challenge. Unfortunately, a better preventive approach, treatment and /or therapeutic management of the disease still remain a subject of concern. Factors such as environmental, dietary, underlying health conditions, genetic interplay etc. are responsible for the etiology of the disease. Regardless of the cause of CVD, consumption of unhealthy foods could worsen the disease. Therefore, this study highlights some of the dietary risk factors that may contribute to CVD. Pathophysiological mechanisms by which the dietary risk factors elicit important risk factors (hypertension, hyperlipidemia, endothelial dysfunction etc.) and consequently CVD are also unveiled in this study. Consumption of high-fat and high-carbohydrate diets, energy drinks, fried foods, saturated and trans-fats, salt intakes beyond the threshold level, red meat, among other dietary factors, could affect the heart and arterial blood vessels via different mechanisms. Depending on the genetic interplay and makeup of some individuals, these factors are more likely to elicit CVD if consumed beyond physiological need. Among the pathophysiological mechanisms, endothelial dysfunction is associated and central to almost all the dietary risk factors and therefore could be an important and possible therapeutic target for the management and/or treatment of CVD.

Downloads

Published

2025-09-30

How to Cite

Abdulwaliyu, I., A. Mustapha, R., O. Arekemase, S., L. Batari, M., O. Yakubu, S., H. Oluwasanmi, S., I. Baba, A., S. Olusina, O., L. Kera, M., & Iyeh, F. (2025). Assessment of dietary health risk factors and their pathophysiological mechanisms in the etiology of cardiovascular diseases. Food Nutrition Chemistry, 3(3), 380. https://doi.org/10.18686/fnc380

Issue

Section

Review

References

1. Abdulwaliyu I, Arekemase SO, Adudu JA, et al. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clinical Nutrition Experimental, 2019, 28: 42-61. doi: 10.1016/j.yclnex.2019.10.002. DOI: https://doi.org/10.1016/j.yclnex.2019.10.002

2. Abdulwaliyu I, Okoduwa SIR, Sangodare R, et al. Review of studies on palm-oil consumption in relation to risk of cardiovascular diseases. Journal of Nutrition and Food Security. 2023, 8(1): 137-151. DOI: https://doi.org/10.18502/jnfs.v8i1.11779

3. Jana A, Chattopadhyay A. Prevalence and potential determinants of chronic disease among elderly in India: rural-urban perspectives. PLOS ONE. 2022, 17(3): e0264937. doi: 10.1371/journal.pone.0264937. DOI: https://doi.org/10.1371/journal.pone.0264937

4. Ngaruiya C, Bernstein R, Leff R, et al. Systematic review on chronic non-communicable diseases in disaster settings. BMC Public Health. 2022, 22: 1234. doi: 10.1186/s12889-022-13399-z. DOI: https://doi.org/10.1186/s12889-022-13399-z

5. Abdulkadri A, Cunningham-Myrie C, Floyd S, et al. Addressing the adverse impacts of non-communicable diseases on the sustainable development of Caribbean countries. Studies and Perspectives – ECLAC Subregional Headquarters for The Caribbean. 2021. 46642.

6. Idris IO, Oguntade AS, Mensah EA, et al. Prevalence of non-communicable diseases among Ijegun-Isheri Osun residents in Lagos State, Nigeria: a community based cross-sectional study. BMC Public Health. 2020, 20: 1258. doi: 10.1186/s12889-020-09349-2. DOI: https://doi.org/10.1186/s12889-020-09349-2

7. Boakye H, Atabila A, Hinneh T, et al. The prevalence and determinants of non-communicable diseases among adults Ghanaian adults: a survey at a secondary healthcare level. PLoS ONE. 2023, 18(2): e0281310. doi: 10.1371/journal.pone.0281310 DOI: https://doi.org/10.1371/journal.pone.0281310

8. WHO – World health organization. Political declaration of the third high level meeting of the general assembly on the prevention and control of non-communicable diseases, and mental health. Draft updated menu of policy options and cost-effective interventions for the prevention and control of non-communicable diseases. Executive Board 152nd Session Provisional Agenda Item 6. EB152/6. 2023 (accessed on 10 January 2023).

9. Malta DC, Duncan BB, Schmidt MI, et al. Trends in mortality due to non-communicable diseases in the Brazilian adult population: national and subnational estimates and projections for 2030. Population health metrics. 2020, 18(1): 16. doi: 10.1186/s12963-020-00216-1. DOI: https://doi.org/10.1186/s12963-020-00216-1

10. Bigna JJ, Noubiap JJ. The rising burden of non-communicable diseases in sub-Saharan Africa. The Lancet Global Health. 2019, 7(10): E1295-E1296. doi: 10.1016/s2214-109x(19)30370-5. DOI: https://doi.org/10.1016/S2214-109X(19)30370-5

11. Bauer UE, Briss PA, Goodman RA, et al. Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. The Lancet,. 2014, 384(9937): 45-52. doi: 10.1016/S0140-6736(14)60648-6. DOI: https://doi.org/10.1016/S0140-6736(14)60648-6

12. Al-Mawali A. Non-communicable diseases: shining a light on cardiovascular disease, Oman’s biggest killer. Oman medical journal. 2015, 30(4): 227-228. doi: 10.5001/omj.2015.47. DOI: https://doi.org/10.5001/omj.2015.47

13. Roth GA, Mensah GA, Johnson CO, et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. Journal of the American college of cardiology. 2020, 76(25): 2982-3021. doi: 10.1016/j.jacc.2020.11.010. DOI: https://doi.org/10.1016/j.jacc.2020.11.021

14. Maharani A, Sujarwoto, Praveen D, et al. Cardiovascular disease risk factor prevalence and estimated 10-year cardiovascular risk scores in Indonesia: The SMART health extend study. PLOS ONE. 2019, 14(4): e0215219. doi: 10.1371/journal.pone.0215219. DOI: https://doi.org/10.1371/journal.pone.0215219

15. Sibai MA, Nasreddine L, Mokdad AH, et al. Nutrition transition and cardiovascular disease risk factors in Middle East and North Africa countries: reviewing the evidence. Annals of Nutrition and Metabolism. 2010, 57(3-4): 193-203. doi: 10.1159/000321527. DOI: https://doi.org/10.1159/000321527

16. Popkin BM, Ng SW. The nutrition transition to a stage of high obesity and non-communicable disease prevalence dominated by ultra-processed foods is not inevitable. Obesity reviews. 2021, 23(1): e13366. doi: 10.1111/obr.13366. DOI: https://doi.org/10.1111/obr.13366

17. Heath AK, Tong TYN, Riboli E. Promotion of healthy nutrition for cardiovascular disease prevention: a multimodal approach is needed. European Journal of Preventive Cardiology. 2023, zwad078. doi: 10.1093/eurjpc/zwad078. DOI: https://doi.org/10.1093/eurjpc/zwad078

18. Kjeldsen EW, Thomassen JQ, Rasmussen KL, et al. Impact of diet on ten year absolute cardiovascular risk in a prospective cohort of 94321 individuals: a tool for implementation of unhealthy diets. The Lancet Regional Health–Europe. 2022, 19, 100419. doi: 10.1016/j.lanepe.2022.100419.

19. Lichtenstein AH, Appel LJ, Vadiveloo M, et al. Dietary guidance to improve cardiovascular health: a scientific statement from the american heart association. Circulation. 2021, 144: e472–e487. doi: 10.1161/CIR.0000000000001031. DOI: https://doi.org/10.1161/CIR.0000000000001031

20. Kelman J, Pool LR, Gordon-Larsen P, et al.. Associations of unhealthy food environment with the development of coronary artery calcification: the CARDIA study. Journal of the American Heart Association. 2019, 8: e010586. doi: 10.1161/JAHA. 118.010586. DOI: https://doi.org/10.1161/JAHA.118.010586

21. Anand SS, Hawkes C, de Souza RJ, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the world heart federation. Journal of the American College of Cardiology. 2015, 66(14): 1590-1614. doi: 10.1016/j.jacc.2015.07.050. DOI: https://doi.org/10.1016/j.jacc.2015.07.050

22. Kazemi A, Sasani N, Mokhtari Z, et al. Comparing the risk of cardiovascular diseases and all-cause mortality in four lifestyles with a combination of high/low physical activity and healthy/unhealthy diet: a prospective cohort study. International Journal of Behavioral Nutrition and Physical Activity. 2022, 19:138. doi: 10.1186/s12966-022-01374-1. DOI: https://doi.org/10.1186/s12966-022-01374-1

23. Lopes T, Zemlin AE, Hill J, et al. Consumption of plant foods and its association with cardiovascular disease risk profile in South Africans at high risk of type 2 diabetes mellitus. International Journal of Environmental Research and Public Health. 2022, 19: 13264. doi: 10.3390/ijerph192013264. DOI: https://doi.org/10.3390/ijerph192013264

24. Bowry ADK, Lewey J, Dugani SB, et al. The Burden of cardiovascular disease in low and middle income countries: epidemiology and management. Canadian Journal of Cardiology. 2015, 31: 1151-1159. doi: 10.1016/j.cjca.2015.06.028. DOI: https://doi.org/10.1016/j.cjca.2015.06.028

25. Lotfi M, Jalali SM, Leilami K et al. The association between dietary patterns and cardiovascular disease risk factors in Iranian adults: a cross-sectional study. BMC Research Notes. 2024. 17, 322. doi: 10.1186/s13104-024-06976-5.

26. Kjeldsen EW, JThomassen JQ, Rasmussen KL et al. Impact of diet on ten-year absolute cardiovascular risk in a prospective cohort of 94 321 individuals: A tool for implementation of healthy diets. The Lancet Regional Health–Europe. 2022, 19: 100419.

27. Rikhtehgaran R, Shamsi K, Renani EM, et alPopulation food intake clusters and cardiovascular disease incidence: a Bayesian quantifying of a prospective population-based cohort study in a low and middle-income country. Frontiers in Nutritio. 2023, 10:1150481. doi: 10.3389/fnut.2023.1150481

28. Shan Z, Li Y, Baden MY et al. Association Between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA internal medicine. 2020, 180(8):1090–1100. doi: 10.1001/jamainternmed.2020.2176.

29. Mertens E, Markey O, Geleijnse JM et al. Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: evidence from the Caerphilly Prospective Study. European journal of nutrition. 2018, 57, 1245–1258. doi: 10.1007/s00394-017-1408-0.

30. Heidarzadeh-Esfahani N, Hajahmadi S, Pasdar Y et al. Diet-related inflammation is positively associated with atherogenic indices. Scientific Reports. 2024, 14, 13190. doi: 10.1038/s41598-024-63153-1.

31. Getz GS, Reardon CA. Nutrition and cardiovascular disease. Arteriosclerosis, thrombosis, and vascular biology. 2007, 27: 2499-2506. doi: 10.1161/ATVBAHA.107.155853. DOI: https://doi.org/10.1161/ATVBAHA.107.155853

32. Lee H. Ultra-processed foods as a lesser known risk factors in cardiovascular diseases. Korean circulation journal. 2022, 52(1): 71-73. doi: 10.4070/kcj.2021.0362. DOI: https://doi.org/10.4070/kcj.2021.0362

33. Yang Q, Zhang Z, Steele EM, et al. Ultra-processed foods and excess heart age among US adults. American journal of preventive medicine. 2020, 000(000): 1-10. doi: 10.1016/j.amepre.2020.06.013. DOI: https://doi.org/10.1016/j.amepre.2020.06.013

34. Li H, Li S, Yang H, et al.. Association of ultra-processed food intake with cardiovascular and respiratory disease multimorbidity: a prospective cohort study. Molecular Nutrition & Food Research. 2023, 2200628. doi: 10.1002/mnfr.202200628. DOI: https://doi.org/10.1002/mnfr.202200628

35. Madalosso MM, Martins NF, Medeiros BM. et al.. Consumption of ultra-processed foods and cardio-metabolic risk factors in Brazilian adolescents: results from ERICA. European Journal of Clinical Nutrition. 2022, doi: 10.21203/rs.3.rs-2143239/v1. DOI: https://doi.org/10.21203/rs.3.rs-2143239/v1

36. Zhang Z, Jackson SL, Steele EM, et al. Relationship between ultra-processed food intake and cardiovascular health among US adolescents: Results from the national health and nutrition examination survey 2007-2018. Journal of Adolescent Health. 2022, 70(2): 249-257. doi: 10.1016/j.jadohealth.2021.09.031. DOI: https://doi.org/10.1016/j.jadohealth.2021.09.031

37. Zhong G, Gu H, Peng Y, Wang K, et al. Association of ultra-processed food consumption with cardiovascular mortality in the US population: long term results from a large prospective multicenter study. International Journal of Behavioral Nutrition and Physical Activity. 2021, 18:21. doi: 10.1186/s12966-021-01081-3. DOI: https://doi.org/10.1186/s12966-021-01081-3

38. Jiang X, Sun R, Xin Z, et al. The impact of ultra-processed foods on dietary patterns in developed countries and the development of obesity and cardiovascular disease. International Conference on Green Environmental Materials and Food Engineering (GEMFE 2022). Fr Acad Press. 2022. 163-171. doi: 10.25236/gemfe.2022.021.

39. Lane MM, Loughman A, Page R, et al. Ultra processed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obesity Review. 2020. 1-9. doi:10.1111/obr.13146. DOI: https://doi.org/10.1111/obr.13146

40. Monteiro CA, Cannon G, Levy RB, et al. Ultra-processed foods: what they are and how to identify them. Public health nutrition. 2019, 22(5): 936-941. doi: 10.1017/S1368980018003762. DOI: https://doi.org/10.1017/S1368980018003762

41. Mendonca RD, Lopez ACS, Pimenta AM, et al.. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: the Seguimiento Universidad de Navarra project. American Journal of Hypertension. 2017, 30(4): 358-366. doi: 10.1093/ajh/hpw137. DOI: https://doi.org/10.1093/ajh/hpw137

42. Li M, Shi Z. Ultra-processed food consumption associated with incident hypertension among Chinese adults- results from china health and nutrition survey 1997-2015. Nutrients. 2022, 4: 4783. doi: 10.3390/nu14224783. DOI: https://doi.org/10.3390/nu14224783

43. Juul F, Vaidean G, Lin Y, et al. Ultra-processed foods and incident cardiovascular disease in the Framingham offspring study. Journal of the American College of Cardiology. 2021, 77(12): 1520-1531. doi: 10.1016/j.jacc.2021.01.047. DOI: https://doi.org/10.1016/j.jacc.2021.01.047

44. Srour B, Fezeu LK, Kesse-Guyot E, et al. Ultra-processed food and risk of cardiovascular disease: prospective cohort study (NutriNet-Sante). BMJ. 2019, 365:11451, doi: 10.1136/bmj.11451. DOI: https://doi.org/10.1136/bmj.l1451

45. Victor A, Silva RCR, Silva NJ, et al. Influence of unhealthy food environment on premature cardiovascular disease mortality in Brazil: an etiologic approach. American Journal of Preventive Medicine. 2023, 64(2): 285-292. doi: 10.1016/j.amepre.2022.09.018. DOI: https://doi.org/10.1016/j.amepre.2022.09.018

46. Chen X, Chu J, Hu W, et al. Associations of ultra-processed food consumption with cardiovascular disease and all-cause mortality: UK Biobank. European Journal of Public Health. 2022, 32 (5): 779–785. doi: 10.1093/eurpub/ckac104. DOI: https://doi.org/10.1093/eurpub/ckac104

47. Honicky M, Cardoso SM, Vieira KFG, et al. Ultra-processed food intake is associated with children and adolescents with congenital heart disease clustered by high cardiovascular risk factors. British Journal of Nutrition. 2022, 129(7): 1163-1171. doi: 10.1017/S0007114522002240. DOI: https://doi.org/10.1017/S0007114522002240

48. Hosseininasab D, Shiraseb F, Noori S, et al. The relationship between ultra-processed food intake and cardio-metabolic risk factors in overweight and obese women: a cross-sectional study. Frontiers in Nutrition. 2022, 9. doi: 10.3389/fnut.2022.945591. DOI: https://doi.org/10.3389/fnut.2022.945591

49. Handakas E, Chang K, Khandpur N, et al. Metabolic profiles of ultra-processed food consumption and their role in obesity risk in British children. Clinical Nutrition. 2022, 41(11): 2537-2548. doi: 10.1016/j.clnu.2022.09.002. DOI: https://doi.org/10.1016/j.clnu.2022.09.002

50. Louzada ML, Steele EM, Rezende LFM, et al. Changes in obesity prevalence attributable to ultra-processed food consumption in Brazil between 2002 and 2009. International Journal of Public Health. 2022. doi: 10.3389/ijph.2022.1604103. DOI: https://doi.org/10.3389/ijph.2022.1604103

51. Wang Y, Wang K, Du M, et al. Maternal consumption of ultra-processed foods and subsequent risk of offspring overweight or obesity: results from three prospective cohort studies. BMJ. 2022, 379: e071767. doi: 10.1136/bmj-2022-071767. DOI: https://doi.org/10.1136/bmj-2022-071767

52. Livingston AS, Cudhea F, Wang L, et al. Effect of reducing ultraprocessed food consumption on obesity among US children and adolescents aged 7–18 years: evidence from a simulation model. BMJ nutrition, prevention & health. 2021, 4(2): 397. doi: 10.1136/bmjnph-2021-000303. DOI: https://doi.org/10.1136/bmjnph-2021-000303

53. Beslay M, Srour B, Me´jean C, et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Sante´ cohort. PLoS medicine. 2020, 17(8): e1003256. doi: 10.1371/journal.pmed.1003256. DOI: https://doi.org/10.1371/journal.pmed.1003256

54. Deus MR, Marcal PA, Alfredo G, et al. Ultra processed food consumption and risk of overweight and obesity: the University of Navarra follow-up (SUN) cohort study. The American journal of clinical nutrition. 2016, 104(5): 1433-1440. doi: 10.3945/ajcn.116.135004. DOI: https://doi.org/10.3945/ajcn.116.135004

55. Canella DS, Levy RB, Martins APB, et al. Ultra-processed food products and obesity in Brazilian Households (2008-2009). PLOS ONE. 2014, 9(3): e92752. doi: 10.1371/journal.pone.0092752. DOI: https://doi.org/10.1371/journal.pone.0092752

56. Hall KD, Ayuketah A, Brychta R, et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell metabolism. 2019, 30(1):67-77.e3. doi: 10.1016/j.cmet.2019.05.008. DOI: https://doi.org/10.1016/j.cmet.2019.05.008

57. Marseglia L, Manti S, D’Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. International journal of molecular sciences. 2015, 16(1): 378-400. doi: 10.3390/ijms16010378. DOI: https://doi.org/10.3390/ijms16010378

58. Zorena K, Jachimowicz-Duda O, Slezak D, et al. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. International journal of molecular sciences. 2020, 21(10): 3570. doi: 10.3390/ijms21103570. DOI: https://doi.org/10.3390/ijms21103570

59. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction, a marker of atherosclerotic risk. Arteriosclerosis, Thrombosis and Vascular Biology. 2003, 23: 168-175. doi: 10.1161/01.ATV.0000051384.43104.FC. DOI: https://doi.org/10.1161/01.ATV.0000051384.43104.FC

60. Kong Y, Zhang S, Wu R, et al. New insights into different adipokines in linking the pathophysiology of obesity and psoriasis. Lipids in health and disease. 2019, 18: 171. doi: 10.1186/s12944-019-1115-3. DOI: https://doi.org/10.1186/s12944-019-1115-3

61. Drożdż D, Drożdż M, Wojcik M. Endothelial dysfunction as a factor leading to arterial hypertension. Pediatric Nephrology. 2022, 38(9): 2973-2985. doi: 10.1007/s00467-022-05802-z. DOI: https://doi.org/10.1007/s00467-022-05802-z

62. da Silva GM, da Silva MC, Nascimento DVG, et al. Nitric oxide as a central molecule in hypertension: focus on the vasorelaxant activity of new nitric oxide donors. Biology. 2021, 10(10): 1041. doi: 10.3390/biology10101041. DOI: https://doi.org/10.3390/biology10101041

63. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2004, 24: 998-1005. doi: 10.1161/01.ATV.0000125114.88079.96. DOI: https://doi.org/10.1161/01.ATV.0000125114.88079.96

64. Fernandes AE, Rosa PWL, Melo ME, et al. Differences in the gut microbiota of women according to ultra-processed food consumption. Nutrition, Metabolism and Cardiovascular Diseases. 2023, 33(1): 84-89. doi: 10.1016/j.numecd.2022.09.025. DOI: https://doi.org/10.1016/j.numecd.2022.09.025

65. Cuevas-Sierra A, Milagro F, Aranaz P, et al. Gut mirobiota differences according to ultra-processed food consumption in a Spanish population. Nutrients. 2021, 13(8): 2710. doi: 10.3390/nu13082710. DOI: https://doi.org/10.3390/nu13082710

66. Atzeni A, Martinez MA, Babio N, et al. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Frontiers in nutrition. 2022, 9: 976547. doi: 10.3389/fnut.2022.97657. DOI: https://doi.org/10.3389/fnut.2022.976547

67. Novakovic M, Rout A, Kingsley T, et al. Role of gut microbiota in cardiovascular diseases. World journal of cardiology. 2020, 12(4): 110-122. doi: 10.4330/wjc.v12.i4.110. DOI: https://doi.org/10.4330/wjc.v12.i4.110

68. Witkowski M, Weeks TL, Hazen S. Gut microbiota and cardiovascular diseases. Circulation research. 2020, 127: 553-570. doi: 10.1161/CIRCRESAHA.120316242. DOI: https://doi.org/10.1161/CIRCRESAHA.120.316242

69. Liu B, Liu X, Liang Z, et al. Gut microbiota in obesity. World journal of gastroenterology. 2021, 27(25): 3837-3850. doi: 10.3748/wjg.v27.i25.3837. DOI: https://doi.org/10.3748/wjg.v27.i25.3837

70. Feleke DG, Gebeyehu GM, Adamsu TD. Effect of deep fried oil consumption on lipid profile in rats. Scientific African. 2022, e01294. doi: 10.1016/j.sciaf.2022.e01294. DOI: https://doi.org/10.1016/j.sciaf.2022.e01294

71. Chacko C, Thankappan R. Comparative effects of repeatedly heated cooking oils on tissue lipid peroxidation and antioxidant status in cholesterol fed Sprague Dawley rats. Nutrition & Food Scienc. 2021, 51(2); 412-425. doi: 10.1108/NFS-11-2012-0338. DOI: https://doi.org/10.1108/NFS-11-2019-0338

72. Morshed MH, Ahmad MR, Rahim MA. Effects of long time heated palm oil on physico-chemical properties and pharmacology of rabbit. Journal of Engineering. 2018, 09(1); 85-96.

73. Famurewa AC, Nwankwo OE, Folawiyo AM, et al. Repeatedly heated palm kernel oil induces hyperlipidemia, atherogenic indices and hepatorenal toxicity in rats: the beneficial role of virgin coconut oil supplementation. Acta Scientiarum Polonorum Technologia Alimentaria. 2017, 16(4); 451-460. doi: 10.17306/j.AFS.0513. DOI: https://doi.org/10.17306/J.AFS.2017.0513

74. Leong XF, Mustafa MR, Das S, et al. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague Dawley rats fed with heated vegetable oil. Lipids in Health and Diseas. 2010, 9; 66. doi: 10.1186/1476-511x9-66. DOI: https://doi.org/10.1186/1476-511X-9-66

75. Hamsi MA, Othman F, Das S, et al. Effects of consumption of fresh and heated virgin coconut oil on the blood pressure and inflammatory biomarkers: an experimental study in Sprague-Dawley rats. Alexandria Journal of Medicine. 2015, 51(1); 53-63. doi: 10.1016/j.ajme.2014.02.002. DOI: https://doi.org/10.1016/j.ajme.2014.02.002

76. Sukalingam K, Jaarin K, Saad QHM, et al. Consumption of ADD-X and repeatedly heated palm oil on the blood pressure and oxidative stress markers in overectomized rats. International Journal of Pharmacology. 2016, 12(5): 514-522. doi: 10.3923/IJP.2016.514.522. DOI: https://doi.org/10.3923/ijp.2016.514.522

77. Siddiq A, Ambreen G, Hussain K, et al. Oxidative stress and lipid peroxidation with repeatedly heated mixed vegetable oils in different doses in comparison with single time heated vegetable oils. Pakistan journal of pharmaceutical sciences. 2019, 32(5); 2099-2105.

78. Choe E, Min DB. Chemistry of deep frying oils. Journal of food scienc. 2007, 72(5): 77-86. doi: 10.1111/j.1750-3841.2007.00352.x. DOI: https://doi.org/10.1111/j.1750-3841.2007.00352.x

79. Ghosh A, Thakur A, Siu PM, et al. Role of free fatty acids in endothelial dysfunction. Journal of Biomedical Science. 2017, 24:50. doi: 10.1186/s12929-017-0357-5. DOI: https://doi.org/10.1186/s12929-017-0357-5

80. Giles TD, Sander GE, Nossaman BD, et al. Impaired vasodilation in the pathogenesis of hypertension : Focus on nitric oxide, endothelial derived hyperpolarizing factors, and prostaglandins. The Journal of Clinical Hypertension. 2012, 14(4): 198-205. doi: 10. 1111/j.1751-7176.2012.00606.x. DOI: https://doi.org/10.1111/j.1751-7176.2012.00606.x

81. Dedkova EN, Blatter LA. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physio. 2002, 15: 539 (Pt 1): 77-91. doi: 10.1113/jphysiol.2001.013258. DOI: https://doi.org/10.1113/jphysiol.2001.013258

82. Sun J, Luo J, Ruan Y, et al. Free fatty acids activate renin- angiotensin system in 3T3-L1 adipocytes through nuclear factor-kappa B pathway. Journal of diabetes research. 2016. 1587594. doi: 10:1155/2016/1587594. DOI: https://doi.org/10.1155/2016/1587594

83. McKeown NM, Meigs JB, Liu S, et al. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham offspring cohort. Journal of the American College of Nutrition. 2009, 28(2): 150-158. doi: 10.1080/07315724.2009.10719766. DOI: https://doi.org/10.1080/07315724.2009.10719766

84. Yang EJ, Chung HK, Kim WY, et al. Carbohydrate intake is associated with diet quality and risk factors for cardiovascular disease in U.S. adults: NHANES III. Journal of the American College of Nutrition. 2003, 22(1): 71-79. doi: 10.1080/07315724.2003.10719278. DOI: https://doi.org/10.1080/07315724.2003.10719278

85. Darjoko ST, Wahyuningsih T, Sudikno S. High carbohydrate intake increases risk of coronary heart disease in adults: a prospective cohort study. Universa Medicina. 2019, 38(2). doi: 10.18051/UnivMed.2019.v38.90-99. DOI: https://doi.org/10.18051/UnivMed.2019.v38.90-99

86. Jo U, Park K. Carbohydrate Intake and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients. 2023, 15: 1740. doi: 10.3390/nu15071740. DOI: https://doi.org/10.3390/nu15071740

87. Sievenpiper JL. Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity. Nutrition reviews. 2020, 78(S1):69–77. doi: 10.1093/nutrit/nuz082. DOI: https://doi.org/10.1093/nutrit/nuz082

88. Kelly RK, Tong TYN, Watling CZ, et al. Associations between types and sources of dietary carbohydrates and cardiovascular disease risk: a prospective cohort study of UK Biobank participants. BMC medicine. 2023, 21:34. doi: 10.1186/s12916-022-02712-7. DOI: https://doi.org/10.1186/s12916-022-02712-7

89. Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circulation research, 2016. 119: 1173-1176. doi: 10.1161/CIRCRESAHA.116.310078. DOI: https://doi.org/10.1161/CIRCRESAHA.116.310078

90. Schulze PC, Drosatos K, Goldberg IJ.. Lipid use and misuse by the heart. Circulation research. 2016, 118: 1736 – 1751. doi: 10.1161/CIRCRESAHA.116.306842. DOI: https://doi.org/10.1161/CIRCRESAHA.116.306842

91. Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: a tale of two substrates. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2016, 1860(10): 1425-1433. doi: 10.1016/j.bbalip.2016.03.014. DOI: https://doi.org/10.1016/j.bbalip.2016.03.014

92. Poˆrto LCJ, Savergnini SSQ, de Castro CH, et al. Carbohydrate-enriched diet impairs cardiac performance by decreasing the utilization of fatty acid and glucose. Therapeutic Advances in Cardiovascular Disease. 2011, 5(1): 11-22. doi: 10.1177/1753944710386282. DOI: https://doi.org/10.1177/1753944710386282

93. Siri-Tarino PW, Sun Q, Hu FB, et al.. Saturated fat, carbohydrate, and cardiovascular disease. The American journal of clinical nutrition. 2010, 91: 502–9. doi: 10.3945/ajcn.2008.26285. DOI: https://doi.org/10.3945/ajcn.2008.26285

94. Ludwig DS, Ebbeling CB. The carbohydrate-insulin model of obesity beyond calories in, calories out. JAMA internal medicine. 2018, 178(8): 1098-1103. doi:10.1001/jamainternmed.2018.2933. DOI: https://doi.org/10.1001/jamainternmed.2018.2933

95. Griel AE, Ruder EH, Kris-Etherton PM. The changing roles of dietary carbohydrates: from simple to complex. Arteriosclerosis, thrombosis, and vascular biology. 2006, 26: 1958-1965. DOI: https://doi.org/10.1161/01.ATV.0000233384.97125.bd

96. Bertolio R, Napoletano F, Mano M, et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nature communications. 2019, 10: 1326. doi: 10.1038/s41467-019-09152-7. DOI: https://doi.org/10.1038/s41467-019-09152-7

97. Pan L, Chen L, Lv J, et al. Pang Y, et al. Association of red meat consumption, metabolic markers, and risk of cardiovascular diseases. Frontiers in Nutrition. 2022, 9: 833271. doi: 10.3389/fnut.2022.833271. DOI: https://doi.org/10.3389/fnut.2022.833271

98. Al-Shaar L, Satija A, Wang DD, et al. Red meat intake and risk of coronary heart disease among US men: prospective cohort study. BMJ. 2020, 371:M4141. doi: 10.1136/bmj.m4141. DOI: https://doi.org/10.1136/bmj.m4141

99. Arshad MS, Zulfiqar A, Anjum FM, et al. Red meat consumption: a threat towards cardiovascular diseases. Pak J Fd Sci. 2015, 25(2): 86-91.

100. Wang M, Ma H, Song Q, et al. Red meat consumption and all caused and cardiovascular mortality: results from the UK Biobank study. European journal of nutrition. 2022, 61(5): 2543-2553. doi:10.1007/s00394-022-02807-0. DOI: https://doi.org/10.1007/s00394-022-02807-0

101. Kaluza J, Akesson A, Wolk A. Processed and unprocessed red meat consumption and risk of heart failure. Circulation: Heart Failure. 2014, 7: 552-557. doi: 1161/CIRCHEARTFAILURE.113.000921. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.113.000921

102. Lajous M, Bijon A, Fagherazzi G, et al. Processed and unprocessed red meat consumption and hypertension in women. The American journal of clinical nutrition. 2014, 100: 948-952. doi: 10.3945/ajcn.113.080598 DOI: https://doi.org/10.3945/ajcn.113.080598

103. Papier K, Knuppel A, Syam N, et al. Meat consumption and risk of ischemic heart disease: a systematic review and meta-analysis. Critical reviews in food science and nutrition. 2023, 63(3): 426-437. doi: 10.1080/10408398.2021.1949575. DOI: https://doi.org/10.1080/10408398.2021.1949575

104. Liu Y, Dai M. Trimethylamine N-Oxide generated by the gut microbiota is associated with vascular inflammation: new insights into atherosclerosis. Mediators of inflammation. 2020, 1: 4634172. doi: 10.1155/2020/4634172. DOI: https://doi.org/10.1155/2020/4634172

105. Lee Y, Nemet I, Wang Z, et al. Longitudinal plasma measures of trimethylamine N-Oxide and risk of atherosclerotic cardiovascular disease events in community based older adults. Journal of the American Heart Association. 2021, 10: e020646. doi: 10.1161/JAHA.120.020646. DOI: https://doi.org/10.1161/JAHA.120.020646

106. Naghipour S, Cox AJ, Peart JN, et al. Trimethylamine N-Oxide: heart of the microbiota CVD nexus? Nutrition research reviews. 2021, 34(1): 125-146. doi: 10.1017/S09544220000177. DOI: https://doi.org/10.1017/S0954422420000177

107. Yang G, Zhang X. Trimethylamine N-oxide promotes hyperlipidemia acute pancreatitis via inflammatory response. Canadian journal of physiology and pharmacology. 2021, 100(1): 61-67. doi: 10.1139/cjpp-2021-0421. DOI: https://doi.org/10.1139/cjpp-2021-0421

108. Yang RL, Shi YH, Hao G, et al.. Increasing Oxidative Stress with Progressive Hyperlipidemia in Human: Relation between Malondialdehyde and Atherogenic Index. Journal of clinical biochemistry and nutrition. 2008, 43(3):154-8. doi: 10.3164/jcbn.2008044. DOI: https://doi.org/10.3164/jcbn.2008044

109. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020, 75: 285-292. doi: 10.1161/HYPERTENSIONAHA.119.14240. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.119.14240

110. Jiang S, Shui Y, Cui Y, et al. Gut-microbiota dependent trimethylamine N-Oxide aggravates angiotensin II Induced hypertension. Redox biology. 2021, 46:102115. doi: 10.1016/j.redox.2021.102115. DOI: https://doi.org/10.1016/j.redox.2021.102115

111. Olek RA, Samulak JJ, Sawicka AK, et al. Increased Trimethylamine N-Oxide is not associated with oxidative stress markers in healthy aged women. Oxidative Medicine and Cellular Longevity. 2019, 1: 6247169. doi: 10.1155/2019/6247169. DOI: https://doi.org/10.1155/2019/6247169

112. Ufnal M, Jazwiec R, Dadlez M, et al. Trimethylamine N-Oxide: a carnitine derived metabolite that prolongs the hypertensive effects of angiotensin II in rats. Canadian Journal of Cardiology. 2014, 30(12): 1700-5. doi: 10.1016/j.cjca.2014.09.010. DOI: https://doi.org/10.1016/j.cjca.2014.09.010

113. Zhao Z, Xin F, Zhaou D, et al. Trimethylamine N-Oxide attenuates high-fat high-cholesterol diet induced steatohepatitis by reducing hepatic cholesterol overload in rats. World journal of gastroenterology. 2019, 25(20): 2450-2462. doi: 10.3748/wjg.v25.i20.2450. DOI: https://doi.org/10.3748/wjg.v25.i20.2450

114. Ge X, Zheng L, Zhuang R, et al. The gut microbial metabolite trimethylamine N-Oxide and hypertension risk: a systematic review and dose response meta-analysis. Advances in Nutrition. 2020, 11(1): 66-76. doi: 10.1093/advances/nmz064. DOI: https://doi.org/10.1093/advances/nmz064

115. Firdaus MA, Sunita M.. Industrial trans fatty acid intake associated with coronary heart disease risk – a review. Journal of Nutrition & Food Science. 2021, 11(5): 806.

116. Clarke R. Trans fatty acids and coronary heart disease. BMJ. 2006, 333 (7561): 214. doi: 10.1136/bmj.333.7561.214. DOI: https://doi.org/10.1136/bmj.333.7561.214

117. Brown JC, Gerhardt TE, Kwon E. Risk factors for coronary artery disease. In: Stat Pearls (Internet). Stat Pearls Publishing. 2023.

118. Sun Q, Ma J, Campose H, et al. A prospective study of trans fatty acids in erythrocytes and risk of coronary heart disease. Circulation. 2007, 115: 1858-1865. doi: 10.1161/CIRCULATIONAHA.106.679985. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.679985

119. Ahmed SH, Kharroubi W, Kaoubaa N, et al. Correlation of trans fatty acids with the severity of coronary artery disease lesions. Lipids in health and disease. 2018, 17: 52. doi: 10.1186/s12944-018-0699-3. DOI: https://doi.org/10.1186/s12944-018-0699-3

120. Islam A, Amin MN, Siddiqui SA, et al. Trans fatty acids and lipid profile: a serious risk factor for cardiovascular disease, cancer and diabetes. Diabetes and Metabolic Syndrome: Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019, 13:1643-1647. doi: 10.1016/j.dsx.2019.03.033. DOI: https://doi.org/10.1016/j.dsx.2019.03.033

121. WHO – World Health Organization. Five billion people unprotected from trans fat leading to heart disease. Available online: https://www.who.int/news/item/23-01-2023-five-billion-people-unprotected-from-trans-fat-leading-to-heart-disease (accessed on 24 January 2024).

122. Li C, Cobb LK, Vesper HW, et al. Global surveillance of trans fatty acids. Preventing Chronic Disease. 2019, 16: 190121. doi: 10.5888/pcd16.190121. DOI: https://doi.org/10.5888/pcd16.190121

123. Chardigny J, Destaillats F, Malpuech-Brugere C, et al. Do trans fatty acids from industrially produced and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans fatty acids collaboration (TRANSFACT) study. The American journal of clinical nutrition. 2008, 87(3): 558-566. doi: 10.1093/ajcn/87.3.558. DOI: https://doi.org/10.1093/ajcn/87.3.558

124. Bendsen NT, Christensen R, Bartels EM, et al. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and mmeta-analysis of cohort studies. European journal of clinical nutrition. 2011, 65:773-783 doi: 10.1038/ejcn.2011.34. DOI: https://doi.org/10.1038/ejcn.2011.34

125. Zapolska DD, Bryk D, Olejarz W. Trans Fatty Acids and Atherosclerosis-effects on Inflammation and Endothelial Function. Journal of Nutrition and Food Sciences. 2015, 5: 426. doi: 10.4172/2155-9600.1000426. DOI: https://doi.org/10.4172/2155-9600.1000426

126. Oteng A, Kersten S. Mechanisms of action of trans fatty acids. Advances in Nutrition. 2020, 11(3): 697-708. doi: 10.1093/advances/nmz125. DOI: https://doi.org/10.1093/advances/nmz125

127. Mazidi M, Gao H, Kengne AP. Inflammatory markers are positively associated with serum trans-fatty acids in an adult American population. Journal of nutrition and metabolism. 2017, 2017(1): 3848201. doi: 10.1155/2017/3848201. DOI: https://doi.org/10.1155/2017/3848201

128. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002, 105: 1135-1143. doi: 10.1161/hc0902.104353. DOI: https://doi.org/10.1161/hc0902.104353

129. Iwata NG, Pham M, Rizzo NO, et al. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLOS ONE. 2011, 6(12): e29600. doi: 10.1371/journal.pone.0029600.PMCID:2216328. DOI: https://doi.org/10.1371/journal.pone.0029600

130. Givens DI. Saturated fats, dairy foods and cardiovascular health: no longer a curious paradox? Nutrition Bulletin. 2022, 47(4): 407-422. doi: 10.1111/nbu.12585. DOI: https://doi.org/10.1111/nbu.12585

131. Ozen E, Mihaylova R, Weech M, et al. Association between dietary saturated fat with cardiovascular disease risk markers and body composition in healthy adults: findings from the cross-sectional BODYCON study. Nutrition & metabolism. 2022, 19(15). doi: 10.1186/s12986-022-00650-y. DOI: https://doi.org/10.1186/s12986-022-00650-y

132. Bell AE, Culp PA. Reduction in saturated fat intake for cardiovascular disease. American Family Physician. 2022, 1; 105(1).

133. Hooper L, Martin N, Jimoh OF, et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane database of systematic reviews. 2020. doi: 10.1002/14651858. DOI: https://doi.org/10.1002/14651858.CD011737.pub2

134. Praagman J, de Jonge EAL, Jong JCK, et al. Dietary saturated fatty acids and coronary heart disease risk in a Dutch middle-aged and elderly population. Arteriosclerosis, thrombosis, and vascular biology. 2016, 36: 2011-2018. doi: 10.1161/ATVBAHA.116.307578. DOI: https://doi.org/10.1161/ATVBAHA.116.307578

135. Zhong G, Li Y, Wanders AJ, et al. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: two prospective longitudinal cohort studies. BMJ. 2016, 23; 355. doi: 10.1136/bmj.i5796 DOI: https://doi.org/10.1136/bmj.i5796

136. Visioli F, Poli A. Fatty acids and cardiovascular risk, evidence, lack of evidence and diligence. Nutrients. 2020, 12; 3782. doi: 10.3390/nu12123782. DOI: https://doi.org/10.3390/nu12123782

137. Mirman P, Houshialsadat Z, Rahadoran Z, et al. Association of dietary fatty acids and the incidence risk of cardiovascular disease in adults: the Tehran lipid and glucose prospective study. BMC Public Health. 2020, 20(1): 1743. doi: 10.1186/s12889-020-09824-W. DOI: https://doi.org/10.1186/s12889-020-09824-w

138. Zhu Y, Bo Y, Liu Y. Dietary total fat, fatty acids intake, and risk of cardiovascular disease: a dose response meta-analysis of cohort studies. Lipids in health and disease. 2019, 18(1): 91. doi: 10.1186/s12944-019-1035-2. DOI: https://doi.org/10.1186/s12944-019-1035-2

139. Bataï NF, Bitty MLA, Fossou AF, et al. Lipid profile of a population of jacqueville, consumer of palm oil in southern Côte d’Ivoire. European journal of nutrition & food safety. 2020, 12(2): 1–10. doi: 10.9734/ejnfs/2020/v12i230188. DOI: https://doi.org/10.9734/ejnfs/2020/v12i230188

140. Wang F, Zhao D, Yang Y, et al. Effect of palm oil consumption on plasma lipid concentrations related to cardiovascular disease: A systematic review and meta-analysis. Asia Pacific journal of clinical nutrition. 2019, 28(3): 495-506.

141. Lv C, Wang Y, Zhou C, et al. Effects of dietary palm olein on the cardiovascular risk factors in healthy young adults. Food & nutrition research. 2018, 16: 62. doi: 10.29219/fnr.v62.1353. DOI: https://doi.org/10.29219/fnr.v62.1353

142. Absalome MA, Massara C, Gervais K, et al. Effects of palm oil consumption on lipidic and lipidoproteinic profiles in patients suffering from ischemic heart pathologies. Group. 2017, 20(62): 18-100.

143. Katayama IA, Huang Y, Garza AE, et al. Longitudinal changes in blood pressure are preceded by changes in albuminuria by increasing dietary sodium intake. Experimental Gerontology. 2023, 173: 112114. doi: 10.1016/j.exger.2023.112114. DOI: https://doi.org/10.1016/j.exger.2023.112114

144. O’Donnell M, Mante A, Yusuf S. Sodium intake and cardiovascular health. Circulation research. 2015, 116: 1046-1057. doi: 10.1161/CIRCRESAHA.116.303771. DOI: https://doi.org/10.1161/CIRCRESAHA.116.303771

145. Jaques DA, Wuerzner G, Ponte B. Sodium intake as a cardiovascular risk factor: a narrative review. Nutrients. 2021, 13(9): 3177. doi: 10.3390/nu13093177. DOI: https://doi.org/10.3390/nu13093177

146. Mente A, O’Donnell M, Rangarajan S, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community level prospective epidemiological cohort study. The Lancet. 2018, 392 (10146): 496-506. doi: 10.1016/s0140-6736(18)31376-x. DOI: https://doi.org/10.1016/S0140-6736(18)31376-X

147. Emmerik NE, de Jong F, van Elburg RM. Dietary intake of sodium during infancy and the cardiovascular consequences later in life: a scoping review. Annals of Nutrition and Metabolism. 2020, 76(2): 114-121. doi: 10.1159/000507354. DOI: https://doi.org/10.1159/000507354

148. Li F, Chen L, Liu B, et al. Frequency of adding salt at the table and risk of incident cardiovascular disease and all-cause mortality: a prospective cohort study. BMC medicine. 2022. doi: 10.1186/s12916-022-02691-9. DOI: https://doi.org/10.1186/s12916-022-02691-9

149. Ma H, Wang X, Li X, et al. Adding salt to foods and risk of cardiovascular disease. American College of Cardiology. 2022, 6; 80(23): 2157-2167. doi: 10.1016/j.jacc.2022.09.039. DOI: https://doi.org/10.1016/j.jacc.2022.09.039

150. Mirmiran P, Bahadoran Z, Nazeri P, et al. Dietary sodium to potassium ratio and the incidence of hypertension and cardiovascular disease: a population based longitudinal study. Clinical and Experimental Hypertension. 2018, 40(8): 772-779. doi: 10.1080/10641963.2018.1431261. DOI: https://doi.org/10.1080/10641963.2018.1431261

151. Mosallanezhad Z, Jalali M, Bahadoran Z, et al. Dietary sodium to potassium ratio is an independent predator of cardiovascular events: a longitudinal follow up study. BMC Public Health. 2023, 23(1): 705. doi: 10.1186/s12889-023-15618-7. DOI: https://doi.org/10.1186/s12889-023-15618-7

152. Abe T, Endo T, Hamano T, et al. Changes in the urinary sodium-to-potassium ratio are associated with blood pressure change in older Japanese adults: a 7-year longitudinal study. Journal of Clinical Medicine. 2022, 17(11). doi: 10.3390/JCM11175093. DOI: https://doi.org/10.3390/jcm11175093

153. Kwon Y, Lee H, Park G, et al. Association between dietary sodium, potassium, and the sodium-to potassium ratio and mortality: a 10 year analysis. Frontiers in nutrition. 2022, 9: 1053585. doi: 10.3389/fnut.2022.1053585. DOI: https://doi.org/10.3389/fnut.2022.1053585

154. Clarkson MR. Hypertension, salt, and genetics. Nutrition reviews. 1964, 22: 152-5. doi: 10.1111/j.1753-4887.1964.tb04873. DOI: https://doi.org/10.1111/j.1753-4887.1964.tb04873.x

155. Bashyam H. Lewis Dahl and the genetics of salt induced hypertension. The Journal of experimental medicine. 2007, 9: 204(7): 1507. doi: 10.1084/jem.2047fta. DOI: https://doi.org/10.1084/jem.2047fta

156. Rassler B. The renin-angiotensin system in the development of salt sensitive hypertension in animal models and human. Pharmaceuticals. 2010, 3(4): 940-960. doi: 10.3390/ph3040940. DOI: https://doi.org/10.3390/ph3040940

157. Koga Y, Hirooka Y, Araki S, et al. High salt intake enhances blood pressure increase during development of hypertension via oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertension Research. 2008, 31(11): 2075-8. doi: 10.1291/hyperes.31.2075 DOI: https://doi.org/10.1291/hypres.31.2075

158. Lerman LO, Kurtz TW, Touyz RM, et al, on behalf of the American Heart Association council on hypertension and council on clinical cardiology. Hypertension. 2019, 73: e87-e120. doi: 10.1161/HYP.0000000000000090. DOI: https://doi.org/10.1161/HYP.0000000000000090

159. Swiderski J, Gadanec LK, Apostolopoulos V, et al. Role of angiotensin II in cardiovascular diseases: Introducing Bisartans as a novel therapy for coronavirus 2019. Biomolecules. 2023, 13; 787. doi: 10.3390/biom13050787. DOI: https://doi.org/10.3390/biom13050787

160. Wang J, Deng Y, Zou X, et al. Long term low salt diet increases blood pressure by activation of the renin-angiotensin and sympathetic nervous systems. Clinical and Experimental Hypertension. 2019, 41(8). doi: 10.1080/10641963.2018.1545850. DOI: https://doi.org/10.1080/10641963.2018.1545850

161. Tikellis C, Pickering RJ, Tsorotes D, et al. Activation of the renin-angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse. Hypertension. 2012, 60: 98-105. doi: 10.1161/HYPERTENSIONAHA.112.191767. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.112.191767

162. Judge C, O’Donnell M. Low sodium intake increases plasma renin activity. EClinicalMedicine. 2021, 33: 100803. doi: 10.1016/j.eclinm.2021.100803. DOI: https://doi.org/10.1016/j.eclinm.2021.100803

163. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamine, cholesterol, and triglyceride. Cochrane Database of Systematic Reviews. 2017. doi: 10.1002/14651858.CD004022. DOI: https://doi.org/10.1002/14651858.CD004022.pub4

164. Graudal N, Hubeck-Graudal T, Jurgens G. Influence of sodium intake and change in sodium intake on plasma-renin in man. EClinicalMedicine. 2021, 33100750. DOI: https://doi.org/10.1016/j.eclinm.2021.100750

165. Okamoto C, Hayakawa Y, Aoyama T, et al. Excessively low salt diet damages the heart through activation of cardiac renin receptor, renin-angiotensin-aldosterone, and sympatho-adrenal systems in spontaneously hypertensive rats. PLOS ONE. 2017, 12(12): e0189099. doi: 10.1371/journal.pone.0189099. DOI: https://doi.org/10.1371/journal.pone.0189099

166. Rhee OJ, Rhee MY, Oh SW, et al. Effects of sodium intake on renin level: analysis of general population and meta-analysis of randomized controlled trials. International journal of cardiology. 2016, 215: 120-126. doi: 10.1016/j.ijcard.2016.04.109. DOI: https://doi.org/10.1016/j.ijcard.2016.04.109

167. Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflügers Archiv-European Journal of Physiology. 2015, 467(3): 565-76. doi.10.1007/s00424-014-1668-y. DOI: https://doi.org/10.1007/s00424-014-1668-y

168. Capric V, Chandrakumar HP, Celenza-Salvatore J, et al. The role of renin-angiotensin-aldosterone system in cardiovascular disease: pathogenetic insights and clinical implications. In: McFarlane SI (editor). Renin-Angiotensin Aldosterone System. 2021. IntechOpen. doi: 10.5772/intechopen.96415. DOI: https://doi.org/10.5772/intechopen.96415

169. Morris RC, Schmidlin O, Sebastian A, et al. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt induced hypertension. Circulation. 2016, 133(9): 881-893. doi: 10.1161/CIRCULATIONAHA.115.017923. DOI: https://doi.org/10.1161/CIRCULATIONAHA.115.017923

170. Kurtz T, Dicarlo S, Morris R. The pivotal role of renal vasodysfunction in salt sensitive and the initiation of salt induced hypertension. Medicine. Current opinion in nephrology and hypertension, 2018, 27(2), 83-92. doi: 10.1097/MNH.0000000000000394. DOI: https://doi.org/10.1097/MNH.0000000000000394

171. Matjuda EN, Engwa GA, Sewan-Rusika CR. et al. An overview of vascular dysfunction and determinants: the case of children of African ancestry. Frontiers in Pediatrics. 2021, 9: doi: 10.3389/fped.2021.769589. DOI: https://doi.org/10.3389/fped.2021.769589

172. Vinaiphat A, Pazhanchamy K, Jebamercy G, et al. Endothelial damage arising from high salt hypertension is elucidated by vascular bed systematic profiling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43(3): 427-442. doi: 10.1161/ATVBAHA.122.318439. DOI: https://doi.org/10.1161/ATVBAHA.122.318439

173. Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high salt mean intake in subjects. The American journal of clinical nutrition. 2011, 93: 500-505. doi: 10.3945/ajcn.110.006155 DOI: https://doi.org/10.3945/ajcn.110.006155

174. Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. British journal of pharmacology. 2017, 174(12): 1591-1619. doi: 10.1111/bph.13517. DOI: https://doi.org/10.1111/bph.13517

175. Patik J, Lennon SL, Farquhar WB, et al. Mechanisms of dietary sodium induced impairments in endothelial function and potential countermeasures. Nutrients. 2021, 13(1): 270. doi: 10.3390/nu13010270. DOI: https://doi.org/10.3390/nu13010270

176. Villalba N, Baby S, Yuan SY. The endothelial glycocalyx as a double-edge sword in microvascular homeostasis and pathogenesis. Frontiers in Cell and Developmental Biology. 2021, 9. doi: 10.3389/fcell.2021.711003. DOI: https://doi.org/10.3389/fcell.2021.711003

177. Suzuki A, Tomita H, Okada H. Form follows function: the endothelial glycocalyx. Translational Research. 2022, 247: 158-167. doi: 10.1016/j.trsl.2022.03.014. DOI: https://doi.org/10.1016/j.trsl.2022.03.014

178. Kim Y, Nijst P, Kiefer K, et al. Endothelial glycocalyx as biomarker for cardiovascular diseases: mechanistic and clinical implications. Current heart failure reports. 2017, 14(2): 117-126. doi: 1007/s11897-017-0320-5. DOI: https://doi.org/10.1007/s11897-017-0320-5

179. Milusev A, Rieben R, Sorvillo N. The endothelial glycocalyx: a possible therapeutic target in cardiovascular disorders. Frontiers in cardiovascular medicine. 2022, 9: 897087. doi: 10.3389/fcvm.2022.897087. DOI: https://doi.org/10.3389/fcvm.2022.897087

180. Qin O, Zhang M, Han M, et al. Fried food consumption and risk of cardiovascular disease and all-cause mortality: a meta-analysis of observational studies. Heart. 2021, 107(19). doi: 10.1136/heartjnl-2020-317883. DOI: https://doi.org/10.1136/heartjnl-2020-317883

181. Provido SM, Abris GP, Hong S, et al. Association of fried food intake with prehypertension and hypertension: the Filipino women’s diet and health study. Nutrition Research and Practice. 2020, 14(1): 76-84. doi: 10.4162/nrp.2020.14.1.76. DOI: https://doi.org/10.4162/nrp.2020.14.1.76

182. Djousse L, Petrone AB, Gaziano JM. Consumption of fried foods and heart failure in the physicains health study. Journal of the American Heart Association. 2015, 4: e001740. doi: 10.1161/JAHA.114.001740. DOI: https://doi.org/10.1161/JAHA.114.001740

183. Gadiraju TV, Patel Y, Gaziano JM, et al. Fried food consumption and cardiovascular health: a review of current evidence. Nutrients. 2015, 7; 8424-8430. doi: 10.3390/nu7105404. DOI: https://doi.org/10.3390/nu7105404

184. Cahill LE, Pan A, Chiuve SE, et al. Fried food consumption and risk of type 2 diabetes and coronary artery disease: a prospective study in 2 cohort of US women and men. The American journal of clinical nutrition. 2014, 100: 667-675. DOI: https://doi.org/10.3945/ajcn.114.084129

185. Sayon-Orea C, Bes-Rastrollo M, Gea A, et al. Reported fried food consumption and the incidence of hypertension in a Mediterranean Cohort: the SUN (Seguimiento Universidad de Navarran) project. British Journal of Nutrition. 2014, 112(6): 984-891. doi: 10.1017/sooo7114514001755. DOI: https://doi.org/10.1017/S0007114514001755

186. Honerlaw JP, Ho Y, Nguyen XT, et al. Fried food consumption and risk of coronary artery disease: the million veteran program. Clinical nutrition. 2020, 39(4); 1203-1208. doi: 10.1016/j.clnu.2019.05.008 DOI: https://doi.org/10.1016/j.clnu.2019.05.008

187. Sun Y, Liu B, Snetselaar LG, et al. Association of fried food consumption with all cause cardiovascular, and cancer mortality: prospective cohort study. BMJ. 2019, 364: k5420. doi: 10.1136/bmj.k5420. DOI: https://doi.org/10.1136/bmj.k5420

188. Belin RJ, Greenland P, Martin L, et al. Fish intake and the risk of incident of heart failure. Circulation: Heart Failure. 2011, 4(4): 404-413. doi: 10.1161/CIRHEARTFAILURE.110.960450. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.110.960450

189. Nahab F, Pearson K, Frankel MR, et al. Dietary fried fish intake increases risk of CVD: the reason for geographic and rural differences in stroke (REGARDS). Public health nutrition. 2016, 19(18): 3327-3336. doi: 10.1017/S136898001600152X. DOI: https://doi.org/10.1017/S136898001600152X

190. Flores M, Meyer L, Jorquera P, et al. Consumption of deep fried food and its association with cardiovascular risk factor among first year students in a Chilean University. Journal of Nutrition and Metabolism, 2021, 2021.1: 5591662. doi: 10.1155/2021/5591661. DOI: https://doi.org/10.1155/2021/5591662

191. Kang Y, Kim J. Association between fried food consumption and hypertension in Korean adults. British Journal of Nutrition. 2016, 115(1): 87-94. doi: 10.1017/s000711451500402x. DOI: https://doi.org/10.1017/S000711451500402X

192. Yuningrum H, Rahmuniyati ME, Sumiratsi NNR. Consumption of fried food as a risk factor for hypercholesterolemia: study of eating habits in public health students. Journal of Health Education. 2020, 52(2); 78-85. DOI: https://doi.org/10.15294/jhe.v5i2.38683

193. Hu P, Li Y, Campos H. Fried food intake and risk of non-fatal acute myocardial infarction in the Costa Rica heart study. PLoS ONE. 2018, 13(2): e0192960. doi: 10.1371/journal. Pone.0192960. DOI: https://doi.org/10.1371/journal.pone.0192960

194. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007, 27: 996-1003. doi: 10.1161/ATVBAHA.106.131755. DOI: https://doi.org/10.1161/ATVBAHA.106.131755

195. Koenen M, Hill M, Cohen P, et al. Obesity, adipose tissue and vascular dysfunction. Circulation research. 2021, 128; 951-968. doi: 10.1161/CIRCRESAHA.121.318093. DOI: https://doi.org/10.1161/CIRCRESAHA.121.318093

196. Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharmaceutica Sinica B. 2023, 13 (6): 2403-2424. doi: 10.1016/j.apsb.2023.01.012. DOI: https://doi.org/10.1016/j.apsb.2023.01.012

197. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic syndrome and related disorders. 2015, 13(10): 423-444. doi: 10.1089/met.2015.0095. DOI: https://doi.org/10.1089/met.2015.0095

198. Lotfi M, Jalali SM, Leilami K et al. The association between dietary patterns and cardiovascular disease risk factors in Iranian adults: a cross-sectional study. BMC Research Notes. 2024. 17, 322. doi: 10.1186/s13104-024-06976-5. DOI: https://doi.org/10.1186/s13104-024-06976-5

199. Kjeldsen EW, JThomassen JQ, Rasmussen KL et al. Impact of diet on ten-year absolute cardiovascular risk in a prospective cohort of 94 321 individuals: A tool for implementation of healthy diets. The Lancet Regional health. 2022, 19; 100419. DOI: https://doi.org/10.1016/j.lanepe.2022.100419

200. Rikhtehgaran R, Shamsi K, Renani EM, et alPopulation food intake clusters and cardiovascular disease incidence: a Bayesian quantifying of a prospective population-based cohort study in a low and middle-income country. Frontiers in Nutritionr. 2023, 10:1150481. doi: 10.3389/fnut.2023.1150481 DOI: https://doi.org/10.3389/fnut.2023.1150481

201. Shan Z, Li Y, Baden MY et al. Association Between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA internal medicine. 2020, 180(8):1090–1100. doi: 10.1001/jamainternmed.2020.2176. DOI: https://doi.org/10.1001/jamainternmed.2020.2176

202. Mertens E, Markey O, Geleijnse JM et al. Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: evidence from the Caerphilly Prospective Study. European journal of nutrition. 2018, 57, 1245–1258. doi: 10.1007/s00394-017-1408-0. DOI: https://doi.org/10.1007/s00394-017-1408-0

203. Heidarzadeh-Esfahani N, Hajahmadi S, Pasdar Y et al. Diet-related inflammation is positively associated with atherogenic indices. Scientific Reports. 2024, 14, 13190. doi: 10.1038/s41598-024-63153-1. DOI: https://doi.org/10.1038/s41598-024-63153-1

204. Somers KR, Svatikova A. Cardiovascular and autonomic responses to energy drinks – clinical implications. Journal of Clinical Medicine. 2020, 9(2):431. doi: 10.3390/jcm9020431. DOI: https://doi.org/10.3390/jcm9020431

205. Grasser EK, Miles-Chan JL, Charriere N, et al. Energy drinks and their impact on the cardiovascular system: potential mechanisms. Advances in nutrition. 2016, 7(5): 950-960. doi: 10.3945/an.116.012526. DOI: https://doi.org/10.3945/an.116.012526

206. Visram S, Cheetham M, Riby DM, et al. Consumption of energy drinks by children and young people: a rapid review examining evidence of physical effects and consumer attitudes. BMJ Open. 2016, 6:e010380. doi: 10.1136/bmjopen-2015-010380. DOI: https://doi.org/10.1136/bmjopen-2015-010380

207. Malinauskas BM, Aeby VG, Overton RF, et al. A survey of energy drink consumption patterns among college students. Nutrition journal. 2007, 6: 35. doi: 10.1186/1475-2891-6-35. DOI: https://doi.org/10.1186/1475-2891-6-35

208. Mangi MA, Rehman H, Rafique M, et al. Energy drinks and the risk of cardiovascular disease: A Rev Curr Lit. Cureus. 2017, 9(6): e1322. doi: 10.7759/cureus.1322. DOI: https://doi.org/10.7759/cureus.1322

209. Wassef B, Kohansieh M, Makaryus AN. Effects of energy drinks on the cardiovascular system. World Journal of Cardiology. 2017, 9(11): 796-806. doi: 10.4330/wjc.v9.i11.796. DOI: https://doi.org/10.4330/wjc.v9.i11.796

210. Cao DX, Maiton K, Nasir JM, et al. Energy drink-associated electrophysiological and ischemic abnormalities: a narrative review. Frontiers in Cardiovascular Medicine. 2021, 8. doi: 10.3389/fcvm.2021.679105. DOI: https://doi.org/10.3389/fcvm.2021.679105

211. Lasheras I, Seral P, Alonso-Ventura V, et al. The impact of acute energy drink consumption on electrical heart disease: a systematic review and meta-analysis. Journal of electrocardiology. 2021, 65: 128-135. doi: 10.1016/j.jelectrocard.2021.01.020. DOI: https://doi.org/10.1016/j.jelectrocard.2021.01.020

212. Shah SA, Szeto AH, Farewell R, et al. Impact of high volume energy drink consumption on electrocardiographic and blood pressure parameters: a randomized trial. Journal of the American heart association. 2019, 8:e011318. doi: 10.1161/JAHA.118.011318. DOI: https://doi.org/10.1161/JAHA.118.011318

213. Fisk G, Hammond-Haley M, D’Silva A. Energy drink-induced cardiomyopathy. BMJ Case Reports CP. 2020, 14(4). doi: 10.1136/bcr-2020239370. DOI: https://doi.org/10.1136/bcr-2020-239370

214. Usman A, Jawaid A. Hypertension in a young boy: an energy drink effect. BMC research notes. 2012, 5: 591. doi: 10.1186/1756-0500-5-591. DOI: https://doi.org/10.1186/1756-0500-5-591

215. Hanif M, Muacevic A, Adler JR. Energy drinks and arterial fibrillation: an usual case of caution. Cureus. 2020, 12(10): e10807. doi: 10.7759/cureus.10807. DOI: https://doi.org/10.7759/cureus.10807

216. Mattioli AV, Pannella S, Farinetti A, et al. Energy drinks and atrial fibrillation in young adults. Clinical Nutrition. 2018, 37(3): 1073-1074. doi: 10.1016/j.clnu.2017.05.002. DOI: https://doi.org/10.1016/j.clnu.2017.05.002

217. Ullah MW, Lakhani S, Siddiq W, et al. Energy drinks and myocardial infarction. Cureus. 2018, 10(5): e2658. doi: 10.7759/cureus.2658. DOI: https://doi.org/10.7759/cureus.2658

218. Lippi G, Cervellin G, Sanchis-Gomar F. Energy drinks and myocardial ischemia: a review of case reports. Cardiovascular toxicology. 2016, 16: 207-212. doi: 10.1007/s12012-015-9339-6. DOI: https://doi.org/10.1007/s12012-015-9339-6

219. Pallangyo P, Bhalia SV, Komba M, et al. Acute myocardial infarction following the consumption of energy drink in a 28 year old male: a case report. Journal of Investigative Medicine High Impact Case Reports. 2023, 11: 1-5. doi: 10.1177/23247096231168811. DOI: https://doi.org/10.1177/23247096231168811

220. Grasser EK, Yepuri G, Dulloo AG, et al. Cardio and cerebrovascular responses to the energy drink Red Bull in young adults: a randomized cross-over study. European journal of nutrition. 2014, 53: 1561-1571. doi: 10.1007/s00394-014-0661-8. DOI: https://doi.org/10.1007/s00394-014-0661-8

221. Kudema S, Thomas C, Ngowi H. The caffeine content of energy drinks in accordance with the information on the package label. Advances in Public Health. 2023, 1: 9938190. doi: 10.1155/2023/9938190. DOI: https://doi.org/10.1155/2023/9938190

222. Puupponen M, Tynjala J, Valimaa R, et al. Association between adolescents’ energy drink consumption frequency and several negative health indicators. BMC Public Health. 2023, 23; 258. doi: 10.1186/s12889-023-15055-6. DOI: https://doi.org/10.1186/s12889-023-15055-6

223. Yamasaki S, Kawasaki H, Cui Z. Use of caffeine containing energy drinks by Japanese middle school students: a cross-sectional study of related factors. Nutrients. 2023, 15: 1275. doi: 10.3390/nu15051275. DOI: https://doi.org/10.3390/nu15051275

224. Reichert CF, Debor T, Landoh H. Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. Journal of sleep research. 2022, 31(4): e13597. doi: 10.1111/jsr.13597. DOI: https://doi.org/10.1111/jsr.13597

225. Headrick JP, Ashton KJ, Rose’Meyer RB, et al. Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacology & therapeutics. 2013, 140(1): 92-111. doi: 10.1016/j.pharmthera.2013.002. DOI: https://doi.org/10.1016/j.pharmthera.2013.06.002

226. Ballesteros-Yanez I, Castillio CA, Merghi S, et al. The role of adenosine receptors in psychostimulant addiction. Frontiers in pharmacology. 2018, 8. doi: 10.3389/fphar.2017.00985. DOI: https://doi.org/10.3389/fphar.2017.00985

227. Guieu R, Deharo J, Maille B, et al. Adenosine and the cardiovascular system: the good and the bad. Journal of clinical medicine. 2020, 9(5): 1366. doi: 10.3390/jcm9051366. DOI: https://doi.org/10.3390/jcm9051366

228. Pasquini S, Vincenzi F, Castta I, et al. Adenosinergic system involvement in ischemic stroke patients; lymphocytes. Cells. 2020, 9(5): 1072. doi: 10.3390/cells9051072. DOI: https://doi.org/10.3390/cells9051072

229. Chen S, Li J, Gao M, et al. Association of caffeine intake with all cause and cardiovascular mortality in elderly patients with hypertension. Frontiers in nutrition. 2022, 9: 102345. doi: 10.3389/fnut.2022.1023345. DOI: https://doi.org/10.3389/fnut.2022.1023345

230. Chieng D, Kistler PM. Coffee and tea on cardiovascular disease (CVD) prevention. Trends in cardiovascular medicine. 2022, 32(7): 399-405. doi: 10.1016/j.tcm.2021.08.004. DOI: https://doi.org/10.1016/j.tcm.2021.08.004

231. Ding M, Bhupathiraju SN, Satija A, et al. Longterm coffee consumption and risk of cardiovascular disease: a systematic review and dose-response meta-analysis of prospective cohort studies. Circulation. 2014, 129(6): 643-59. doi: 10.1161/CIRCULATIONAHA.113.0059. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.005925

232. Mostafa HS. Assessment of the caffeine containing beverages available in the local markets, and development of a real energy drink based on the date fruit. Food Science and Technology. 2020, 42: e51820. doi: 10.1590/fst.51820. DOI: https://doi.org/10.1590/fst.51820

233. El-Nimr N, Bassiouny S, Tayel DI. Pattern of caffeine consumption among university students. Journal of High Institute of Public Health. 2019, 49(3): 154-161. DOI: https://doi.org/10.21608/jhiph.2019.56579

234. Vuletic N, Bardic L, Odzak R. Spectrophotometric determination of caffeine content in the selection of teas, soft and energy drinks available on the Croatian market. Food research (Kuala Lumpur). 2021, 5(2): 325-330. DOI: https://doi.org/10.26656/fr.2017.5(2).482