High protein diet and health: The role of protein snacks

Authors

  • Xin Qi Glycologic Limited, Lamb’s Farm Business Park, RG7 1PQ Reading, Berkshire, United Kingdom
  • Richard F Tester Glycologic Limited, Lamb’s Farm Business Park, RG7 1PQ Reading, Berkshire, United Kingdom
Article ID: 355
147 Views

DOI:

https://doi.org/10.18686/fnc355

Keywords:

high protein; snacks; amino acids; health risks; dietary awareness

Abstract

High protein products in the form of snacks have built a market presence in the last few decades, where individuals seeking weight loss/management, bodybuilders and athletes requiring high protein are probably major consumers. Some individuals regularly consume diets containing in excess of 0.8 g protein/kg/day. However, increasing protein intake beyond this amount may raise the potential risk of harm to the body, particularly to the kidneys. People are often unaware that not all proteins are equal in terms of amino acid score and hence may not be the best match for their body’s needs. Equally, they may not realise that some added protein may be of animal origin. This in view of the apparent plant-base appearance of these types of products. It is not clear from the literature how potentially detrimental high protein diets are especially in the context of weight-management/sport/endurance/body building where in general the diets do not appear to create acute physiological/psychological issues. For the groups of vulnerable people who need to manage their protein/amino acid consumption carefully due to disease states, in the most part they would be aware of the need to control protein intake within their diet. For them, high protein foods would almost certainly be excluded. This review pulls together the health issues associated with eating high protein snacks and is intended to inform health professionals and consumers alike.

Downloads

Published

2025-09-10

How to Cite

Qi, X., & Tester, R. F. (2025). High protein diet and health: The role of protein snacks. Food Nutrition Chemistry, 3(3), 355. https://doi.org/10.18686/fnc355

Issue

Section

Review

References

1. Bakaloudi DR, Halloran A, Rippin HL, et al. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clinical Nutrition. 2021; 40(5): 3503-3521. doi: 10.1016/j.clnu.2020.11.035 DOI: https://doi.org/10.1016/j.clnu.2020.11.035

2. Neufingerl N, Eilander A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: A systematic review. Nutrients. 2022; 14(1): 29. doi: 10.3390/nu14010029 DOI: https://doi.org/10.3390/nu14010029

3. Alexy U. Diet and growth of vegetarian and vegan children. BMJ Nutrition, Prevention and Health. 2023; 6: e000697. doi: 10.1136/bmjnph-2023-000697 DOI: https://doi.org/10.1136/bmjnph-2023-000697

4. Bali A, Naik R. The impact of a vegan diet on many aspects of health: The overlooked side of veganism. Cureus. 2023; 15(2): e35148. doi: 10.7759/cureus.35148 DOI: https://doi.org/10.7759/cureus.35148

5. Piccoli GB, Vigotti FN, Leone F, et al. Low-protein diets in CKD: How can we achieve them? A narrative, pragmatic review. Clinical Kidney Journal. 2015; 8(1): 61-70. doi: 10.1093/ckj/sfu125 DOI: https://doi.org/10.1093/ckj/sfu125

6. Haghighatdoost F, Mohammadifard N, Zakeri P, et al. Differences in all cause mortality risk associated with animal and plant dietary protein sources consumption. Scientific Reports. 2023; 13(1): 3396. doi: 10.1038/s41598-023-30455-9 DOI: https://doi.org/10.1038/s41598-023-30455-9

7. Kurata H, Meguro S, Abe Y, et al. Dietary protein intake and all-cause mortality: Results from The Kawasaki Aging and Wellbeing Project. BMC Geriatrics. 2023; 23: 479. doi: 10.1186/s12877-023-04173-w DOI: https://doi.org/10.1186/s12877-023-04173-w

8. Naghshi S, Sadeghi O, Willett WC, Esmaillzadeh A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2020; 370: m2412. doi: 10.1136/bmj.m2412 DOI: https://doi.org/10.1136/bmj.m2412

9. Bilsborough, Mann, N. A review of issues of dietary protein intake in humans. International Journal of Sport Nutrition and Exercise Metabolism. 2006; 16(2): 129-152. doi: 10.1123/ijsnem.16.2.129 DOI: https://doi.org/10.1123/ijsnem.16.2.129

10. Bernstein AM, Treyzon L, Li Z. Are high-protein, vegetable-based diets safe for kidney function? A review of the literature. Journal of the American Dietetic Association. 2007; 107(4): 644-650. doi: 10.1016/j.jada.2007.01.002 DOI: https://doi.org/10.1016/j.jada.2007.01.002

11. Semba RD. The rise and fall of protein malnutrition in global health. Annals of Nutrition and Metabolism. 2016; 69(2): 79-88. doi: 10.1159/000449175 DOI: https://doi.org/10.1159/000449175

12. Cawood AL, Elia M, Stratton RJ. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Research Reviews. 2012; 11(2): 278-296. doi: 10.1016/j.arr.2011.12.008 DOI: https://doi.org/10.1016/j.arr.2011.12.008

13. Day L, Cakebread JA, Loveday SM. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science and Technology. 2022; 119: 428-442. doi: 10.1016/j.tifs.2021.12.020 DOI: https://doi.org/10.1016/j.tifs.2021.12.020

14. Hulmi JJ, Lockwood CM, Stout JR. Review Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition and Metabolism. 2010; 7: 51. doi: 10.1186/1743-7075-7-51 DOI: https://doi.org/10.1186/1743-7075-7-51

15. Loveday SM. Protein digestion and absorption: the influence of food processing. Nutrition Research Reviews. 2023; 36(2): 544-559. doi: 10.1017/S0954422422000245 DOI: https://doi.org/10.1017/S0954422422000245

16. Elango R. Tolerable upper intake level for individual amino acids in humans: A narrative review of recent clinical studies. Advances in Nutrition. 2023; 14(4): 885-894. doi: 10.1016/j.advnut.2023.04.004 DOI: https://doi.org/10.1016/j.advnut.2023.04.004

17. Pizzorno J. Homocysteine: Friend or foe? Integrative Medicine. 2014; 13(4): 8-14.

18. Rasmussen CJ. Nutritional supplements for endurance athletes. In: Greenwood M, Kalman D, Antonio J (editors). Nutritional Supplements in Sports and Exercise. Humana Press (Springer Science and Business Media, LLC); 2008. pp. 369-407. DOI: https://doi.org/10.1007/978-1-59745-231-1_11

19. Garlick PJ. The nature of human hazards associated with excessive intake of amino acids. The Journal of Nutrition. 2004; 134(6): 1633S-1639S. doi: 10.1093/jn/134.6.1633S DOI: https://doi.org/10.1093/jn/134.6.1633S

20. Tomé D, Bos C. Lysine requirement through the human life cycle. The Journal of Nutrition. 2007; 137(6): 1642S-1645S. doi: 10.1093/jn/137.6.1642S DOI: https://doi.org/10.1093/jn/137.6.1642S

21. Hayamizu K, Oshima I, Fukuda Z, et al. Safety assessment of L-lysine oral intake: A systematic review. Amino Acids. 2019; 51(4): 647-659. doi: 10.1007/s00726-019-02697-3 DOI: https://doi.org/10.1007/s00726-019-02697-3

22. Garlick PJ. Toxicity of methionine in humans. The Journal of Nutrition. 2006; 136(6): 1722S-1725S. doi: 10.1093/jn/136.6.1722S DOI: https://doi.org/10.1093/jn/136.6.1722S

23. Dioguardi FS. Clinical use of amino acids as dietary supplement: Pros and cons. Journal of Cachexia, Sarcopenia and Muscle. 2011; 2(2): 75-80. doi: 10.1007/s13539-011-0032-8 DOI: https://doi.org/10.1007/s13539-011-0032-8

24. Navik U, Sheth VG, Khurana A, et al. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Research Reviews. 2021; 72: 101500. doi.org/10.1016/j.arr.2021.101500 DOI: https://doi.org/10.1016/j.arr.2021.101500

25. World Health Organisation. Protein and amino acid requirements in human nutrition: Report of a joint FAO/WHO/UNU expert consultation. World Health Organisation; 2007.

26. Johnstone AM. Safety and efficacy of high-protein diets for weight loss. Proceedings of the Nutrition Society. 2012; 71(2): 339-349. doi: 10.1017/S0029665112000122 DOI: https://doi.org/10.1017/S0029665112000122

27. Lagiou P, Sandin S, Lof M, et al. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ. 2012; 344: e4026. doi: 10.1136/bmj.e4026 DOI: https://doi.org/10.1136/bmj.e4026

28. Delimaris I. Adverse effects associated with protein intake above the recommended dietary allowance for adults. ISRN Nutrition. 2013: 126929. doi: 10.5402/2013/126929 DOI: https://doi.org/10.5402/2013/126929

29. Cuenca-Sánchez M, Navas-Carrillo D, Orenes-Piñero E. Controversies surrounding high-protein diet intake: Satiating effect and kidney and bone health. Advances in Nutrition. 2015; 6(3): 260-266. doi: 10.3945/an.114.007716 DOI: https://doi.org/10.3945/an.114.007716

30. Wu G. Dietary protein intake and human health. Food Functionality. 2016; 7(3): 1251-1265. doi: 10.1039/c5fo01530h DOI: https://doi.org/10.1039/C5FO01530H

31. Jiménez MDA. When the sport stops being health: Diets, supplements and substances to increase the performance and its relation with the kidney. Nefrologia. 2019; 39(3): 223-226. doi: 10.1016/j.nefro.2018.10.004 DOI: https://doi.org/10.1016/j.nefroe.2018.10.007

32. Ko G-J, Rhee CM, Kalantar-Zadeh K, Joshi S. The effects of high-protein diets on kidney health and longevity. JASN. 2020; 31(8): 1667-1679. doi: 10.1681/ASN.2020010028 DOI: https://doi.org/10.1681/ASN.2020010028

33. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. The American Journal of Clinical Nutrition. 2011; 93(5): 1062-1072. doi: 10.3945/ajcn.110.002188 DOI: https://doi.org/10.3945/ajcn.110.002188

34. Maughan RJ, Greenhaff PL, Leiper JB, et al. Diet composition and the performance of high-intensity exercise. Journal of Sports Sciences. 1997; 15(3): 265-275. doi: 10.1080/026404197367272 DOI: https://doi.org/10.1080/026404197367272

35. Kalantar-Zadeh K, Kramer HM, Fouque D. High-protein diet is bad for kidney health: unleashing the taboo. Nephrology Dialysis Transplantation. 2020; 35(1): 1-4. doi: 10.1093/ndt/gfz216 DOI: https://doi.org/10.1093/ndt/gfz216

36. Manninen AH. High-protein weight loss diets and purported adverse effects: Where is the evidence? Sports Nutrition Review Journal. 2004; 1(1): 45-51. DOI: https://doi.org/10.1186/1550-2783-1-1-45

37. Carbone JW, Pasiakos SM. Dietary protein and muscle mass: Translating science to application and health benefit. Nutrients. 2019; 11(5): 1136. doi: 10.3390/nu11051136 DOI: https://doi.org/10.3390/nu11051136

38. Gaudichon C, Azzout-Marniche D, Tomé D. Dietary protein and hepatic glucose production. In: Dardevet D (editor). The Molecular Nutrition of Amino Acids and Proteins. Academic Press (Elsevier); 2016. pp. 233-240. DOI: https://doi.org/10.1016/B978-0-12-802167-5.00017-7

39. Yanagisawa Y. How dietary amino acids and high protein diets influence insulin secretion. Physiological Reports. 2023; 11: e15577. doi: 10.14814/phy2.15577 DOI: https://doi.org/10.14814/phy2.15577

40. Santesso N, Akl EA, Bianchi M, et al. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. European Journal of Clinical Nutrition. 2012; 66(7): 780-788. doi: 10.1038/ejcn.2012.37 DOI: https://doi.org/10.1038/ejcn.2012.37

41. Buendia JR, Bradlee ML, Singer MR, Moore LL. Diets higher in protein predict lower high blood pressure risk in Framingham offspring study adults. American Journal of Hypertension. 2015; 28(3): 372-379. doi: 10.1093/ajh/hpu157 DOI: https://doi.org/10.1093/ajh/hpu157

42. Moon J, Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. Journal of Obesity and Metabolic Syndrome. 2020; 29(3): 166-173. doi: 10.7570/jomes20028 DOI: https://doi.org/10.7570/jomes20028

43. Daoud E, Scheede-Bergdahl C, Bergdahl A. Effects of dietary macronutrients on plasma lipid levels and the consequence for cardiovascular disease. Journal of Cardiovascular Development and Disease. 2014; 1(3): 201-213. doi: 10.3390/jcdd1030201 DOI: https://doi.org/10.3390/jcdd1030201

44. Pasiakos SM, Lieberman HR, Fulgoni VL. Higher-protein diets are associated with higher HDL cholesterol and lower BMI and waist circumference in US adults. The Journal of Nutrition, 2015; 145(3): 605-614. doi: 10.3945/jn.114.205203 DOI: https://doi.org/10.3945/jn.114.205203

45. Puri S, Shaheen M, Grover B. Nutrition and cognitive health: A life course approach. Frontiers in Public Health. 2023; 11: 023907. doi: 10.3389/fpubh.2023.1023907 DOI: https://doi.org/10.3389/fpubh.2023.1023907

46. Li Y, Li S, Wang W, Zhang D. Association between dietary protein intake and cognitive function in adults aged 60 years and older. The Journal of Nutrition, Health and Aging. 2020; 24(2): 223-229. doi: 10.1007/s12603-020-1317-4 DOI: https://doi.org/10.1007/s12603-020-1317-4

47. Xu X, Yin Y, Niu L, et al. Association between changes in protein intake and risk of cognitive impairment: A prospective cohort study. Nutrients. 2022; 15(1): 2. doi: 10.3390/nu15010002 DOI: https://doi.org/10.3390/nu15010002

48. Gao R, Yang Z, Yan W, et al. Protein intake from different sources and cognitive decline over 9 years in community-dwelling older adults. Frontiers in Public Health. 2022; 10: 1016016. doi: 10.3389/fpubh.2022.1016016 DOI: https://doi.org/10.3389/fpubh.2022.1016016

49. Lonnie M, Hooker E, Brunstrom JM, et al. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients. 2018;10(3): 360. doi: 10.3390/nu10030360 DOI: https://doi.org/10.3390/nu10030360

50. Yeh T-S, Yuan C, Ascherio A, et al. Long-term dietary protein intake and subjective cognitive decline in US men and women. The American Journal of Clinical Nutrition. 2022; 115(1): 199-210. doi: 10.1093/ajcn/nqab236 DOI: https://doi.org/10.1093/ajcn/nqab236

51. Oh J, Yun K, Chae J-H, Kim T-S. Association between macronutrients intake and depression in the United States and South Korea. Frontiers in Psychiatry. 2020; 11: 207. doi: 10.3389/fpsyt.2020.00207 DOI: https://doi.org/10.3389/fpsyt.2020.00207

52. Gerber M, Jakowski S, Kellmann M, et al. Macronutrient intake as a prospective predictor of depressive symptom severity: An exploratory study with adolescent elite athletes. Psychology of Sport and Exercise. 2023; 66: 102387. doi: 10.1016/j.psychsport.2023.102387 DOI: https://doi.org/10.1016/j.psychsport.2023.102387

53. Veldhorst M, Smeets A, Soenen S, et al. Protein-induced satiety: Effects and mechanisms of different proteins. Physiology and Behavior. 2008; 94(2): 300-307. doi: 10.1016/j.physbeh.2008.01.003 DOI: https://doi.org/10.1016/j.physbeh.2008.01.003

54. Braden ML, Gwin JA, Leidy HJ. Examining the direct and indirect effects of postprandial amino acid responses on markers of satiety following the acute consumption of lean beef-rich meals in healthy women with overweight. Nutrients. 2024; 16(11): 1718. doi: 10.3390/nu16111718 DOI: https://doi.org/10.3390/nu16111718

55. Westerterp KR. Diet induced thermogenesis. Nutrition and Metabolism. 2004; 1: 5. doi: 10.1186/1743-7075-1-5 DOI: https://doi.org/10.1186/1743-7075-1-5

56. Pesta DH, Samuel VT. A high-protein diet for reducing body fat: Mechanisms and possible caveats. Nutrition and Metabolism. 2014; 11: 53. doi: 10.1186/1743-7075-11-53 DOI: https://doi.org/10.1186/1743-7075-11-53

57. Nakajima Y, Takamata A, Matsukawa T, et al. The effect of an amino acid infusion on central thermoregulatory control in humans. Anaesthesiology. 2004; 100(3): 634-639. doi: 10.1097/00000542-200403000-00025 DOI: https://doi.org/10.1097/00000542-200403000-00025

58. Aragon AA, Schoenfeld BJ, Wildman R, et al. International society of sports nutrition position stand: diets and body composition. Journal of the International Society of Sports Nutrition. 2017; 14: 16. doi: 10.1186/s12970-017-0174-y DOI: https://doi.org/10.1186/s12970-017-0174-y

59. Soenen S, Bonomi AG, Lemmens SGT, et al. Relatively high-protein or ‘low-carb’ energy-restricted diets for body weight loss and body weight maintenance? Physiology and Behaviour. 2012; 107(3): 374-380. doi: 10.1016/j.physbeh.2012.08.004 DOI: https://doi.org/10.1016/j.physbeh.2012.08.004

60. Lepe M, Bacardí Gascón M, Jiménez Cruz A. Long-term efficacy of high-protein diets: A systematic review. Nutrición Hospitalaria. 2011; 26(6):1256-1259. doi: 10.1590/S0212-16112011000600010

61. Kushner RF, Doerfler B. Low carbohydrate, high protein diets revisited. Current Opinion in Gastroenterology. 2008; 24(2): 198-203. doi: 10.1097/MOG.0b013e3282f43a87 DOI: https://doi.org/10.1097/MOG.0b013e3282f43a87

62. Morenga LT, Mann J. The role of high-protein diets in body weight management and health. British Journal of Nutrition. 2012; 108(S2)): S130-S138. doi: 10.1017/S0007114512002437 DOI: https://doi.org/10.1017/S0007114512002437

63. Phillips SM. A brief review of higher dietary protein diets in weight loss: A focus on athletes. Sports Medicine. 2014; 44 (S2): S149-S153. doi: 10.1007/s40279-014-0254-y DOI: https://doi.org/10.1007/s40279-014-0254-y

64. Luscombe-Marsh ND. High protein diets in obesity management and weight control. In: Gill TP (editors). Managing and Preventing Obesity. Behavioural Factors and Dietary Interventions. Woodhead Publishing (Elsevier); 2015. pp. 79-90. DOI: https://doi.org/10.1533/9781782420996.2.79

65. Pasiakos SM. Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycaemic regulation, and bone. Journal of Food Science. 2015; 80 (S1): A2-A7. doi: 10.1111/1750-3841.12804 DOI: https://doi.org/10.1111/1750-3841.12804

66. Phillips SM, Chevalier S, Leidy HJ. Protein ‘requirements’ beyond the RDA: implications for optimising health. Applied Physiology, Nutrition, and Metabolism. 2016; 41(5): 565-572. doi: 10.1139/apnm-2015-0550 DOI: https://doi.org/10.1139/apnm-2015-0550

67. Leidy HJ, Clifton PM, Astrup A, et al. The role of protein in weight loss and maintenance. The American Journal of Clinical Nutrition. 2015; 101(6): 1320S-1329S. doi: 10.3945/ajcn.114.084038 DOI: https://doi.org/10.3945/ajcn.114.084038

68. Kårlund A, Gómez-Gallego C, Turpeinen AM, et al. Protein supplements and their relation with nutrition, microbiota composition and health: Is more protein always better for sportspeople? Nutrients. 2019; 11(4): 829. doi: 10.3390/nu11040829 DOI: https://doi.org/10.3390/nu11040829

69. Davis R, Bonham MP, Nguo K, Huggins CE. Glycaemic response at night is improved after eating a high protein meal compared with a standard meal: A cross-over study. Clinical Nutrition. 2020; 39(5): 1510-1516. doi: 10.1016/j.clnu.2019.06.014 DOI: https://doi.org/10.1016/j.clnu.2019.06.014

70. Gannon MC, Nuttall FQ, Saeed A, Jordan K, Hoover H. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. The American Journal of Clinical Nutrition. 2003; 78(4): 734-741. doi: 10.1093/ajcn/78.4.734 DOI: https://doi.org/10.1093/ajcn/78.4.734

71. Dong J-Y, Zhang Z-L, Wang P-Y, Qin L-Q. Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. British Journal of Nutrition. 2013; 110(5): 781-789. doi: 10.1017/S0007114513002055 DOI: https://doi.org/10.1017/S0007114513002055

72. Samkani A, Skytte MJ, Kande D, et al. A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients. British Journal of Nutrition. 2018; 119(8): 910-917. doi: 10.1017/S0007114518000521 DOI: https://doi.org/10.1017/S0007114518000521

73. Yu Z, Nan F, Wang LY, et al. Effects of high-protein diet on glycaemic control, insulin resistance and blood pressure in type 2 diabetes: A systematic review and meta-analysis of randomised controlled trial. Clinical Nutrition. 2020; 39(6): 1724-1734. doi: 10.1016/j.clnu.2019.08.008 DOI: https://doi.org/10.1016/j.clnu.2019.08.008

74. Yang J, Park HJ, Hwang W, et al. Changes in the glucose and insulin responses according to high-protein snacks for diabetic patients. Nutrition Research and Practice. 2021; 15(1): 54-65. doi: 10.4162/nrp.2021.15.1.54 DOI: https://doi.org/10.4162/nrp.2021.15.1.54

75. Potgieter S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. South African Journal of Clinical Nutrition. 2013; 26(1): 6-16. doi: 10.1080/16070658.2013.11734434 DOI: https://doi.org/10.1080/16070658.2013.11734434

76. Tipon KD. Exercise and protein nutrition - Efficacy and consequences of very-high-protein diets for athletes and exercisers. Proceedings of the Nutrition Society. 2011; 70(2): 205-214. doi: 10.1017/S0029665111000024 DOI: https://doi.org/10.1017/S0029665111000024

77. Murphy CH, Hector AJ, Phillips SM. Considerations for protein intake in managing weight loss in athletes. European Journal of Sport Science. 2015; 15(1): 21-28. doi: 10.1080/17461391.2014.936325 DOI: https://doi.org/10.1080/17461391.2014.936325

78. Jang L-G, Choi G, Kim S-W, et al. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: An observational study. Journal of the International Society of Sports Nutrition. 2019; 16: 21. doi: 10.1186/s12970-019-0290-y DOI: https://doi.org/10.1186/s12970-019-0290-y

79. Egan B. Protein intake for athletes and active adults: Current concepts and controversies. Nutrition Bulletin. 2016; 41: 202-213. doi: 10.1111/nbu.12215 DOI: https://doi.org/10.1111/nbu.12215

80. Williamson E, Kato H, Volterman KA, Suzuki K, Moore DR. The effect of dietary protein on protein metabolism and performance in endurance-trained males. Medicine and Science in Sports and Exercise. 2019; 51(2): 352-360. doi: 10.1249/MSS.0000000000001791 DOI: https://doi.org/10.1249/MSS.0000000000001791

81. Antonio J. High-protein diets in trained individuals. Research in Sports Medicine.2019; 27(2): 195-203. doi: 10.1080/15438627.2018.1523167 DOI: https://doi.org/10.1080/15438627.2018.1523167

82. Antonio J, Ellerbroek A, Silver T, et al. A high protein diet has no harmful effects: A one-year crossover study in resistance-trained males. Journal of Nutrition and Metabolism. 2016; 9104792. doi: 10.1155/2016/9104792 DOI: https://doi.org/10.1155/2016/9104792

83. Antonio J, Ellerbroek A, Silver T, Vargas L, Peacock CA. The effects of a high protein diet on indices of health and body composition - A crossover trial in resistance-trained men. Journal of the International Society of Sports Nutrition. 2016; 13: 3. doi: 10.1186/s12970-016-0114-2 DOI: https://doi.org/10.1186/s12970-016-0114-2

84. Antonio J, Ellerbroek A, Silver T, et al. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women - a follow-up investigation. Journal of the International Society of Sports Nutrition. 2015; 12: 39. doi: 10.1186/s12970-015-0100-0 DOI: https://doi.org/10.1186/s12970-015-0100-0

85. Antonio J, Peacock CA, Ellerbroek A, Fromhoff B, Silver T. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition. 2014; 11: 19. doi: 10.1186/1550-2783-11-19 DOI: https://doi.org/10.1186/1550-2783-11-19

86. Jäger R, Kerksick CM, Campbell BI, et al. International Society of Sports Nutrition Position Stand: Protein and exercise. Journal of the International Society of Sports Nutrition. 2017; 14: 20. doi: 10.1186/s12970-017-0177-8 DOI: https://doi.org/10.1186/s12970-017-0177-8

87. Poortmans JR, Dellalieux O. Do regular high protein diets have potential health risks on kidney function in athletes. International Journal of Sport Nutrition and Exercise Metabolism. 2015; 10(1): 28-38. doi: 10.1123/ijsnem.10.1.28 DOI: https://doi.org/10.1123/ijsnem.10.1.28

88. Di Girolamo FG, Situlin R, Fiotti N, et al. Higher protein intake is associated with improved muscle strength in elite senior athletes. Nutrition. 2017; 42: 82-86. doi: 10.1016/j.nut.2017.05.003 DOI: https://doi.org/10.1016/j.nut.2017.05.003

89. van Loon LJC. Is There a Need for Protein Ingestion During Exercise? Sports Medicine. 2015; 44 (S1): S105-S111. doi: 10.1007/s40279-014-0156-z DOI: https://doi.org/10.1007/s40279-014-0156-z

90. Beck KL, Thomson JS, Swift RJ, von Hurst PR. Role of nutrition in performance enhancement and postexercise recovery. Open Access Journal of Sports Medicine. 2015; 6: 259-267. doi: 10.2147/OAJSM.S33605 DOI: https://doi.org/10.2147/OAJSM.S33605

91. Villemejane C, Wahl R, Aymard P, Denis S, Michon C. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): Viscosity measurement and prediction. Food Chemistry. 2015; 182: 55-63. doi: 10.1016/j.foodchem.2015.02.125 DOI: https://doi.org/10.1016/j.foodchem.2015.02.125

92. Villemejane C, Denis S, Marsset-Baglieri A, et al. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres using a multi-compartmental and dynamic system (2): Protein and starch hydrolyses. Food Chemistry. 2016; 190: 164-172. doi: 10.1016/j.foodchem.2015.05.050 DOI: https://doi.org/10.1016/j.foodchem.2015.05.050

93. Małecki J, Tomasevic I, Djekic I, Sołowiej BG. The effect of protein source on the physicochemical, nutritional properties and microstructure of high-protein bars intended for physically active people. Foods. 2020; 9(10): 1467. doi: 10.3390/foods9101467 DOI: https://doi.org/10.3390/foods9101467

94. Binou P, Yanni AE, Kartsioti K, et al. Wheat biscuits enriched with plant-based protein contribute to weight loss and beneficial metabolic effects in subjects with overweight/obesity. Nutrients. 2022; 14(12): 2516. doi: 10.3390/nu14122516 DOI: https://doi.org/10.3390/nu14122516

95. Blasiola J. Protein bars. Journal of Renal Nutrition. 2006; 16(4): e11-e16. doi: 10.1053/j.jrn.2006.07.002 DOI: https://doi.org/10.1053/j.jrn.2006.07.002

96. Moghaddam E, Vogt JA, Wolever TMS. The effects of fat and protein on glycaemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin and dietary fibre intake. The Journal of Nutrition. 2006; 136(10): 2506-2511. doi: 10.1093/jn/136.10.2506 DOI: https://doi.org/10.1093/jn/136.10.2506

97. Whelan WJ, Ghanchi H, Ricciardi M. Protein causes a glycaemic response. IUBMB Life; 2010; 62(6): 477-479. doi: 10.1002/iub.333 DOI: https://doi.org/10.1002/iub.333

98. Foster-Powell K, Holt SHA, Brand-Miller JC. International table of glycaemic index and glycaemic load values: 2002. The American Journal of Clinical Nutrition. 2002; 76(1): 5-56. doi: 10.1093/ajcn/76.1.5 DOI: https://doi.org/10.1093/ajcn/76.1.5

99. Atkinson FS, Brand-Miller JC, Foster-Powell K, Buyken AE, Goletzke J. International tables of glycaemic index and glycaemic load values 2021: A systematic review. The American Journal of Clinical Nutrition. 2021; 114(5): 1625-1632. doi: 10.1093/ajcn/nqab233 DOI: https://doi.org/10.1093/ajcn/nqab233

100. Smith HA, Watkins JD, Walhin J-P, et al. Whey protein-enriched and carbohydrate rich breakfasts attenuate insulinemic responses to an ad libitum lunch relative to extended morning fasting: A randomised crossover trial. The Journal of Nutrition. 2023; 153(10): 2842-2853. doi: 10.1016/j.tjnut.2023.08.008 DOI: https://doi.org/10.1016/j.tjnut.2023.08.008

101. Nagamani SCS, Lichter-Konecki U. Inborn errors of urea synthesis. In: Swaiman KF, Ashwal S, Ferriero DM, et al. (editors). Swaiman's Paediatric Neurology, 6th Editon. Elsevier Inc; 2017. pp. 298-304. DOI: https://doi.org/10.1016/B978-0-323-37101-8.00038-2

102. Nyhan WL, Haas R. Inborn errors of amino acid metabolism. In: Rosenberg RN, Pascual JM (editors). Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th Edition. Academic Press, Elsevier; 2015. pp. 627-632. DOI: https://doi.org/10.1016/B978-0-12-410529-4.00056-5

103. Aliu E, Kanungo S, Arnold GL. Amino acid disorders. Annals of Translational Medicine. 2018; 6(24): 471. doi: 10.21037/atm.2018.12.12 DOI: https://doi.org/10.21037/atm.2018.12.12

104. Ziegler SG, Kim J, Ehmsen JT, Vernon HJ. Inborn errors of amino acid metabolism - from underlying pathophysiology to therapeutic advances. Disease Models and Mechanisms. 2023; 16(11): dmm050233. doi:10.1242/dmm.050233 DOI: https://doi.org/10.1242/dmm.050233

105. Qi X, Tester RF. Phenylketonuria and dietary carbohydrate - A review. Food and Humanity; 2024; 2: 100208. doi: 10.1016/j.foohum.2023.100208 DOI: https://doi.org/10.1016/j.foohum.2023.100208

106. Turnbull JL, Adams HN, Gorard DA. Review article: The diagnosis and management of food allergy and food intolerances. Alimentary Pharmacology and Therapeutics. 2015; 41(1): 3-25. doi: 10.1111/apt.12984 DOI: https://doi.org/10.1111/apt.12984

107. Caio G, Volta U, Sapone A, et al. Coeliac disease: A comprehensive current review. BMC Medicine. 2019; 17(1): 142. doi: 10.1186/s12916-019-1380-z DOI: https://doi.org/10.1186/s12916-019-1380-z

108. Tuck CJ, Biesiekierski JR, Schmid-Grendelmeier P, Pohl D. Food intolerances. Nutrients. 2019; 11(7): 1684. doi: 10.3390/nu11071684 DOI: https://doi.org/10.3390/nu11071684

109. Vojdani A, Gushgari LR, Vojdani E. Interaction between food antigens and the immune system: Association with autoimmune disorders. Autoimmunity Reviews. 2020; 19(3): 102459. doi: 10.1016/j.autrev.2020.102459 DOI: https://doi.org/10.1016/j.autrev.2020.102459

110. Gargano D, Appanna R, Santonicola A, et al. Food allergy and intolerance: A narrative review on nutritional concerns. Nutrients. 2021; 13(5): 1638. doi: 10.3390/ nu13051638 DOI: https://doi.org/10.3390/nu13051638

111. Anon. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of the European Union. 2006; L404: 9-25.