Pickering emulsion technology: An overview of stability and functionality in food processing

Authors

  • Irem Kılınç Fisheries Faculty, Izmir Katip Celebi University, Izmir 35620, Turkey
Article ID: 354
621 Views

DOI:

https://doi.org/10.18686/fnc354

Keywords:

pickering emulsion; emulsion stability; emulsion functionality; food processing

Abstract

Emulsions stabilized by solid particles, known as Pickering emulsions, offer a compelling alternative to conventional surfactant-based emulsions, attracting considerable interest within the food sector. This review comprehensively examines the application of solid particles in stabilizing food emulsions, offering a detailed comparison with traditional surfactant-based methods. Additionally, this paper elucidates how Pickering emulsions, stabilized by particles at the oil-water interface, achieve superior stability, preventing coalescence and phase separation, which is crucial for extending the shelf life of food products. It further explores the enhanced functionality these emulsions provide, including improved nutrient delivery through encapsulation, where sensitive compounds are protected and released in a controlled manner. Moreover, the review delves into innovative applications such as the development of low-fat food alternatives, where Pickering emulsions maintain sensory qualities while reducing lipid content, and their role in enabling advanced food technologies like 3D printing, allowing for tailored food structures and nutritional profiles. By elucidating the mechanisms of particle stabilization and exploring diverse applications, this paper underscores the significant potential of Pickering emulsion technology in transforming food processing and product development.

Downloads

Published

2025-05-28

How to Cite

Kılınç, I. (2025). Pickering emulsion technology: An overview of stability and functionality in food processing. Food Nutrition Chemistry, 3(2), 354. https://doi.org/10.18686/fnc354

Issue

Section

Review

References

1. Ma J, Wang Y, Lu R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals. 2022; 15(4): 459. doi: 10.3390/ph15040459 DOI: https://doi.org/10.3390/ph15040459

2. Aaen R, Brodin FW, Simon S, et al. Oil-in-Water emulsions stabilized by cellulose nanofibrils—The effects of ionic strength and pH. Nanomaterials. 2019; 9(2): 259. doi: 10.3390/nano9020259 DOI: https://doi.org/10.3390/nano9020259

3. Loureiro-Contente DM, Pereira RR, Rodrigues AMC, et al. Nanoemulsions of Acai Oil: Physicochemical Characterization for the Topical Delivery of Antifungal Drugs. Chemical Engineering & Technology. 2020; 43(7): 1424–1432. doi: 10.1002/ceat.202000017 DOI: https://doi.org/10.1002/ceat.201900627

4. Xiao J, Li Y, Huang Q. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science & Technology. 2016; 55: 48–60. doi: 10.1016/j.tifs.2016.05.010 DOI: https://doi.org/10.1016/j.tifs.2016.05.010

5. Kumar LR, Yellapu SK, Drogui P, Tyagi RD. Microbial lipids—Applications and market. In: Microbial Lipids—Processes, Products, and Innovations. Elsevier; 2022. pp. 13–30. DOI: https://doi.org/10.1016/B978-0-323-90631-9.00012-0

6. Berton-Carabin CC, Schroën K. Pickering emulsions for food applications: Background, trends, and challenges. Annual Review of Food Science and Technology. 2015; 6(1): 263–297. doi: 10.1146/annurev-food-081114-110822 DOI: https://doi.org/10.1146/annurev-food-081114-110822

7. Chen L, Ao F, Ge X, Shen W. Food-grade Pickering emulsions: Preparation, stabilization and applications. Molecules. 2020; 25(14): 3202. doi: 10.3390/molecules25143202 DOI: https://doi.org/10.3390/molecules25143202

8. Øye G, Simon S, Rustad T, Paso K. Trends in food emulsion technology: Pickering, nano-, and double emulsions. Current Opinion in Food Science. 2023; 50: 101003. doi: 10.1016/j.cofs.2023.101003 DOI: https://doi.org/10.1016/j.cofs.2023.101003

9. Yang Y, Fang Z, Chen X, et al. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Frontiers in Pharmacology. 2017; 8: 287. doi: 10.3389/fphar.2017.00287 DOI: https://doi.org/10.3389/fphar.2017.00287

10. Albert C, Beladjine M, Tsapis N, et al. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release. 2019; 309: 302–332. doi: 10.1016/j.jconrel.2019.07.003 DOI: https://doi.org/10.1016/j.jconrel.2019.07.003

11. Cassani L, Gomez-Zavaglia A. Pickering emulsions in food and nutraceutical technology: From delivering hydrophobic compounds to cutting-edge food applications. Exploration Food and Foodomics. 2024; 2: 408–442. doi: 10.37349/eff.2024.00044 DOI: https://doi.org/10.37349/eff.2024.00044

12. Cheon J, Haji F, Baek J, et al. Pickering emulsions for functional food systems. Journal of Agriculture and Food Research. 2023; 11: 100510. doi: 10.1016/j.jafr.2023.100510 DOI: https://doi.org/10.1016/j.jafr.2023.100510

13. De Carvalho-Guimarães FB, Correa KL, De Souza TP, et al. A review of Pickering emulsions: Perspectives and applications. Pharmaceuticals. 2022; 15(11): 1413. doi: 10.3390/ph15111413 DOI: https://doi.org/10.3390/ph15111413

14. Rayees R, Gani A, Noor N, et al. General approaches to biopolymer-based Pickering emulsions. International Journal of Biological Macromolecules. 2024; 267: 131430. doi: 10.1016/j.ijbiomac.2024.131430 DOI: https://doi.org/10.1016/j.ijbiomac.2024.131430

15. Hossain KMZ, Deeming L, Edler KJ. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Advances. 2021; 11: 39027–39044. doi: 10.1039/D1RA08086E DOI: https://doi.org/10.1039/D1RA08086E

16. Zhao Q, Fan L, Li J, Zhong S. Pickering emulsions stabilized by biopolymer-based nanoparticles or hybrid particles for the development of food packaging films: A review. Food Hydrocolloids. 2024; 146: 109185. doi: 10.1016/j.foodhyd.2023.109185 DOI: https://doi.org/10.1016/j.foodhyd.2023.109185

17. Wu J, Ma G. Recent Studies of Pickering Emulsions: Particles Make the Difference. Small. 2016; 12(34): 4633–4648. doi: 10.1002/smll.201600877 DOI: https://doi.org/10.1002/smll.201600877

18. Chevalier Y, Bolzinger MA. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013; 439: 23–34. doi: 10.1016/j.colsurfa.2013.02.054 DOI: https://doi.org/10.1016/j.colsurfa.2013.02.054

19. Binks BP, Lumsdon SO. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir. 2000; 16(23): 8622–8631. doi: 10.1021/la000189s DOI: https://doi.org/10.1021/la000189s

20. Binks BP, Lumsdon SO. Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir. 2001; 17(15): 4540–4547. doi: 10.1021/la0103822 DOI: https://doi.org/10.1021/la0103822

21. Liang HN, Tang CH. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids. 2013; 33(2): 309–319. doi: 10.1016/j.foodhyd.2013.04.005 DOI: https://doi.org/10.1016/j.foodhyd.2013.04.005

22. Yan X, Ma C, Cui F, et al. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science & Technology. 2020; 103: 293–303. doi: 10.1016/j.tifs.2020.07.005 DOI: https://doi.org/10.1016/j.tifs.2020.07.005

23. Tang X, Duan W, Xu K, Zheng C. Three-dimensional network gel structure and viscosity reduction mechanism of heavy oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022; 653: 130060. doi: 10.1016/j.colsurfa.2022.130060 DOI: https://doi.org/10.1016/j.colsurfa.2022.130060

24. Gauthier G, Capron I. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. JCIS Open. 2021; 4: 100036. doi: 10.1016/j.jciso.2021.100036 DOI: https://doi.org/10.1016/j.jciso.2021.100036

25. Köhler K, Santana AS, Braisch B, et al. High-pressure emulsification with nano-particles as stabilizing agents. Chemical Engineering Science. 2010; 65(10): 2957–2964. doi: 10.1016/j.ces.2010.01.020 DOI: https://doi.org/10.1016/j.ces.2010.01.020

26. Larson-Smith K, Pozzo DC. Pickering Emulsions Stabilized by Nanoparticle Surfactants. Langmuir. 2012; 28(32): 11725–11732. doi: 10.1021/la301896c DOI: https://doi.org/10.1021/la301896c

27. Pandita G, De Souza CK, Gonçalves MJ, et al. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. International Journal of Biological Macromolecules. 2024; 269: 132067. doi: 10.1016/j.ijbiomac.2024.132067 DOI: https://doi.org/10.1016/j.ijbiomac.2024.132067

28. Lee MH, Lin HY, Chen HC, Thomas JL. Ultrasound Mediates the Release of Curcumin from Microemulsions. Langmuir. 2008; 24(5): 1707–1713. doi: 10.1021/la7022874 DOI: https://doi.org/10.1021/la7022874

29. Lee YT, Li DS, Ilavsky J, et al. Ultrasound-based formation of nano-Pickering emulsions investigated via in-situ SAXS. Journal of Colloid and Interface Science. 2019; 536: 281–290. doi: 10.1016/j.jcis.2018.10.047 DOI: https://doi.org/10.1016/j.jcis.2018.10.047

30. Pang B, Liu H, Zhang K. Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Advances in Colloid and Interface Science. 2021; 296: 102522. doi: 10.1016/j.cis.2021.102522 DOI: https://doi.org/10.1016/j.cis.2021.102522

31. Mortensen HH, Innings F, Håkansson A. The effect of stator design on flowrate and velocity fields in a rotor-stator mixer—An experimental investigation. Chemical Engineering Research and Design. 2017; 121: 245–254. doi: 10.1016/j.cherd.2017.03.016 DOI: https://doi.org/10.1016/j.cherd.2017.03.016

32. Yao X, Liu Z, Ma M, et al. Control of Particle Adsorption for Stability of Pickering Emulsions in Microfluidics. Small. 2018; 14(37): 1802902. doi: 10.1002/smll.201802902 DOI: https://doi.org/10.1002/smll.201802902

33. Engl W, Backov R, Panizza P. Controlled production of emulsions and particles by milli- and microfluidic techniques. Current Opinion in Colloid & Interface Science. 2008; 13(4): 206–216. doi: 10.1016/j.cocis.2007.09.003 DOI: https://doi.org/10.1016/j.cocis.2007.09.003

34. Manga MS, Cayre OJ, Williams RA, et al. Production of solid-stabilised emulsions through rotational membrane emulsification: Influence of particle adsorption kinetics. Soft Matter. 2012; 8(5): 1532–1538. doi: 10.1039/C1SM06547E DOI: https://doi.org/10.1039/C1SM06547E

35. Piacentini E, Drioli E, Giorno L. Membrane emulsification technology: Twenty-five years of inventions and research through patent survey. Journal of Membrane Science. 2014; 468: 410–422. doi: 10.1016/j.memsci.2014.05.059 DOI: https://doi.org/10.1016/j.memsci.2014.05.059

36. Holdich R, Dragosavac M, Williams B, Trotter S. High throughput membrane emulsification using a single‐pass annular flow crossflow membrane. AIChE Journal. 2020; 66(6): e16958. doi: 10.1002/aic.16958 DOI: https://doi.org/10.1002/aic.16958

37. Yuan Q, Aryanti N, Gutiérrez G, Williams RA. Enhancing the Throughput of Membrane Emulsification Techniques to Manufacture Functional Particles. Industrial & Engineering Chemistry Research. 2009; 48(19): 8872–8880. doi: 10.1021/ie801929s DOI: https://doi.org/10.1021/ie801929s

38. Song W, Kovscek AR. Spontaneous clay Pickering emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 577: 158–166. doi: 10.1016/j.colsurfa.2019.05.030 DOI: https://doi.org/10.1016/j.colsurfa.2019.05.030

39. Komaiko J, Sastrosubroto A, McClements DJ. Formation of Oil-in-Water Emulsions from Natural Emulsifiers Using Spontaneous Emulsification: Sunflower Phospholipids. Journal of Agricultural and Food Chemistry. 2015; 63(45): 10078–10088. doi: 10.1021/acs.jafc.5b03824 DOI: https://doi.org/10.1021/acs.jafc.5b03824

40. McClements DJ, Rao J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition. 2011; 51(4): 285–330. doi: 10.1080/10408398.2011.559558 DOI: https://doi.org/10.1080/10408398.2011.559558

41. Kang DJ, Bararnia H, Anand S. Synthesizing Pickering Nanoemulsions by Vapor Condensation. ACS Applied Materials & Interfaces. 2018; 10(25): 21746–21754. doi: 10.1021/acsami.8b06467 DOI: https://doi.org/10.1021/acsami.8b06467

42. Yu SJ, Hu SM, Zhu YZ, et al. Pickering emulsions stabilized by soybean protein isolate/chitosan hydrochloride complex and their applications in essential oil delivery. International Journal of Biological Macromolecules. 2023; 250: 126146. doi: 10.1016/j.ijbiomac.2023.126146 DOI: https://doi.org/10.1016/j.ijbiomac.2023.126146

43. Low LE, Siva SP, Ho YK, et al. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science. 2020; 277: 102117. doi: 10.1016/j.cis.2020.102117 DOI: https://doi.org/10.1016/j.cis.2020.102117

44. Dickinson E. Food emulsions and foams: Stabilization by particles. Current Opinion in Colloid & Interface Science. 2010; 15(1–2): 40–49. doi: 10.1016/j.cocis.2009.11.001 DOI: https://doi.org/10.1016/j.cocis.2009.11.001

45. Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, et al. Current trends in Pickering emulsions: Particle morphology and applications. Engineering. 2020; 6(4): 468–482. doi: 10.1016/j.eng.2019.08.017 DOI: https://doi.org/10.1016/j.eng.2019.08.017

46. Cheng Y, Cai X, Zhang X, et al. Applications in Pickering emulsions of enhancing preservation properties: Current trends and future prospects in active food packaging coatings and films. Trends in Food Science & Technology. 2024; 151: 104643. doi: 10.1016/j.tifs.2024.104643 DOI: https://doi.org/10.1016/j.tifs.2024.104643

47. Nimaming N, Sadeghpour A, Murray BS, Sarkar A. Hybrid particles for stabilization of food-grade Pickering emulsions: Fabrication principles and interfacial properties. Trends in Food Science & Technology. 2023; 138: 671–684. doi: 10.1016/j.tifs.2023.06.034 DOI: https://doi.org/10.1016/j.tifs.2023.06.034

48. Vis M, Opdam J, Van’T Oor ISJ, et al. Water-in-Water Emulsions Stabilized by Nanoplates. ACS Macro Letters. 2015; 4(9): 965–968. doi: 10.1021/acsmacrolett.5b00480 DOI: https://doi.org/10.1021/acsmacrolett.5b00480

49. Varanasi S, Henzel L, Mendoza L, et al. Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals. Frontiers in Chemistry. 2018; 6: 409. doi: 10.3389/fchem.2018.00409 DOI: https://doi.org/10.3389/fchem.2018.00409

50. McClements DJ. Food Emulsions: Principles, Practices, and Techniques, 3rd ed. CRC Press; 2015. DOI: https://doi.org/10.1201/b18868

51. Ridel L, Bolzinger MA, Gilon-Delepine N, et al. Pickering emulsions stabilized by charged nanoparticles. Soft Matter. 2016; 12(36): 7564–7576. doi: 10.1039/C6SM01465H DOI: https://doi.org/10.1039/C6SM01465H

52. Zhang Y, Yu D, Zhao R, et al. A functional Pickering emulsion coating based on octadecenylsuccinic anhydride modified γ-cyclodextrin metal-organic frameworks for food preservation. Food Hydrocolloids. 2024; 150: 109668. doi: 10.1016/j.foodhyd.2023.109668 DOI: https://doi.org/10.1016/j.foodhyd.2023.109668

53. McClements DJ, Decker EA. Lipid Oxidation in Oil‐in‐Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science. 2000; 65(8): 1270–1282. doi: 10.1111/j.1365-2621.2000.tb10596.x DOI: https://doi.org/10.1111/j.1365-2621.2000.tb10596.x

54. Tercki D, Orlińska B, Słotwińska D, Sajdak M. Pickering emulsions as an alternative to traditional polymers: Trends and applications. Reviews in Chemical Engineering. 2023; 39(8): 1343–1358. doi: 10.1515/revce-2022-0011 DOI: https://doi.org/10.1515/revce-2022-0011

55. Chen Z, Zhao Z, Wang W, et al. Simulating the behavior of antioxidant to explore the mechanisms of oxidative stability in Pickering emulsion. Food Chemistry. 2024; 447: 138291. doi: 10.1016/j.foodchem.2023.138291 DOI: https://doi.org/10.1016/j.foodchem.2023.138291

56. Wang Z, Zhang M, Liang S, Li Y. Enhanced antioxidant and antibacterial activities of chitosan/zein nanoparticle Pickering emulsion-incorporated chitosan coatings in the presence of cinnamaldehyde and tea polyphenol. International Journal of Biological Macromolecules. 2024; 266: 131181. doi: 10.1016/j.ijbiomac.2024.131181 DOI: https://doi.org/10.1016/j.ijbiomac.2024.131181

57. Klojdová I, Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods. 2022; 11(11): 1558. doi: 10.3390/foods11111558 DOI: https://doi.org/10.3390/foods11111558

58. Zhang M, Li X, Zhou L, et al. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods. 2023; 12(3): 482. doi: 10.3390/foods12030482 DOI: https://doi.org/10.3390/foods12030482

59. Feng X, Sun Y, Yang Y, et al. Zein nanoparticle stabilized Pickering emulsion enriched with cinnamon oil and its effects on pound cakes. LWT. 2020; 122: 109025. doi: 10.1016/j.lwt.2020.109025 DOI: https://doi.org/10.1016/j.lwt.2020.109025

60. Cui F, Zhao S, Guan X, et al. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids. 2021; 119: 106812. doi: 10.1016/j.foodhyd.2021.106812 DOI: https://doi.org/10.1016/j.foodhyd.2021.106812

61. Marefati A, Bertrand M, Sjöö M, et al. Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocolloids. 2017; 63: 309–320. doi: 10.1016/j.foodhyd.2016.08.043 DOI: https://doi.org/10.1016/j.foodhyd.2016.08.043

62. Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydrate Polymers. 2024; 332: 121900. doi: 10.1016/j.carbpol.2024.121900 DOI: https://doi.org/10.1016/j.carbpol.2024.121900

63. Bi C, Qie AX, Liu Y, et al. Chickpea protein stabilized Pickering emulsions: As a novel mayonnaise substitute. Journal of Food Engineering. 2024; 382: 112180. doi: 10.1016/j.jfoodeng.2024.112180 DOI: https://doi.org/10.1016/j.jfoodeng.2024.112180

64. Yano H, Fukui A, Kajiwara K, et al. Development of gluten-free rice bread: Pickering stabilization as a possible batter-swelling mechanism. LWT—Food Science and Technology. 2017; 79: 632–639. doi: 10.1016/j.lwt.2016.11.086 DOI: https://doi.org/10.1016/j.lwt.2016.11.086

65. Hei X, Liu Z, Li S, et al. Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. International Journal of Biological Macromolecules. 2024; 257: 128183. doi: 10.1016/j.ijbiomac.2023.128183 DOI: https://doi.org/10.1016/j.ijbiomac.2023.128183

66. Berman B. 3D printing: The new industrial revolution. Business Horizons. 2012; 55(2): 155–162. doi: 10.1016/j.bushor.2011.11.003 DOI: https://doi.org/10.1016/j.bushor.2011.11.003

67. Ji C, Luo Y. Plant protein-based high internal phase Pickering emulsions: Functional properties and potential food applications. Journal of Agriculture and Food Research. 2023; 12: 100604. doi: 10.1016/j.jafr.2023.100604 DOI: https://doi.org/10.1016/j.jafr.2023.100604

68. Feng T, Fan C, Wang X, et al. Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocolloids. 2022; 124: 107265. doi: 10.1016/j.foodhyd.2021.107265 DOI: https://doi.org/10.1016/j.foodhyd.2021.107265

69. Wan Y, Wang R, Feng W, et al. High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing. Carbohydrate Polymers. 2021; 273: 118586. doi: 10.1016/j.carbpol.2021.118586 DOI: https://doi.org/10.1016/j.carbpol.2021.118586

70. Tzoumaki MV, Moschakis T, Scholten E, Biliaderis CG. In vitrolipid digestion of chitinnanocrystal stabilized o/w emulsions. Food Funct. 2013; 4(1): 121–129. doi: 10.1039/C2FO30129F DOI: https://doi.org/10.1039/C2FO30129F

71. Sarkar A, Ademuyiwa V, Stubley S, et al. Pickering emulsions co-stabilized by composite protein/polysaccharide particle-particle interfaces: Impact on in vitro gastric stability. Food Hydrocolloids. 2018; 84: 282–291. doi: 10.1016/j.foodhyd.2018.06.019 DOI: https://doi.org/10.1016/j.foodhyd.2018.06.019

72. Zhou H, Tan Y, Lv S, et al. Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocolloids. 2020; 106: 105878. doi: 10.1016/j.foodhyd.2020.105878 DOI: https://doi.org/10.1016/j.foodhyd.2020.105878

73. Hemmatkhah F, Zeynali F, Almasi H. Encapsulated Cumin Seed Essential Oil-Loaded Active Papers: Characterization and Evaluation of the Effect on Quality Attributes of Beef Hamburger. Food and Bioprocess Technology. 2020; 13(3): 533–547. doi: 10.1007/s11947-020-02418-9 DOI: https://doi.org/10.1007/s11947-020-02418-9

74. Xu J, Li X, Xu Y, et al. Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. Food and Bioprocess Technology. 2021; 14(9): 1648–1661. doi: 10.1007/s11947-021-02664-5 DOI: https://doi.org/10.1007/s11947-021-02664-5

75. Oñate-Narciso J, Soliva-Fortuny R, Salvía-Trujillo L, Martín-Belloso O. Pickering Emulsions as Catalytic Systems in Food Applications. ACS Food Science & Technology. 2025; 5(1). doi: 10.1021/acsfoodscitech.4c00839 DOI: https://doi.org/10.1021/acsfoodscitech.4c00839

76. Ni L, Yu C, Wei Q, et al. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angewandte Chemie. 2022; 134(30): e202115885. doi: 10.1002/ange.202115885 DOI: https://doi.org/10.1002/ange.202115885

77. Xi Y, Liu B, Wang S, et al. Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface. Chemical Science. 2021; 12(11): 3885–3889. doi: 10.1039/D0SC06649D DOI: https://doi.org/10.1039/D0SC06649D

78. Kaderides K, Kyriakoudi A, Mourtzinos I, Goula AM. Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology. 2021; 115: 380–390. doi: 10.1016/j.tifs.2021.06.050 DOI: https://doi.org/10.1016/j.tifs.2021.06.050

79. Tian Y, Sun F, Wang Z, et al. Research progress on plant-based protein Pickering particles: Stabilization mechanisms, preparation methods, and application prospects in the food industry. Food Chemistry: X. 2024; 21: 101066. doi: 10.1016/j.fochx.2023.101066 DOI: https://doi.org/10.1016/j.fochx.2023.101066

80. Shah BR, Pathan AK, Lee YK, Yoon KR. Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocolloids. 2016; 52: 369–377. doi: 10.1016/j.foodhyd.2015.07.015 DOI: https://doi.org/10.1016/j.foodhyd.2015.07.015