The effect of aquaculture feed on the nutritional quality of farmed seafood: A review of feed ingredients and their impact on human health

Authors

  • Gulsun Akdemir Evrendilek The University of Maine Cooperative Extension Orono, ME 04469, USA
Article ID: 287
586 Views

DOI:

https://doi.org/10.18686/fnc287

Keywords:

aquaculture feed; farmed seafood; omega-3 fatty acids; fishmeal; plant-based feed; algae; seafood nutrition; human health

Abstract

Aquaculture has emerged as a primary source of global seafood production, with the nutritional quality of farmed seafood being significantly influenced by the composition of aquaculture feed. This review examines the impact of various feed ingredients—including fishmeal, plant-based formulations, and algae—on the nutritional profiles of farmed seafood, focusing particularly on key nutrients such as omega-3 fatty acids, protein quality, and essential vitamins. While fishmeal has traditionally served as a cornerstone in aquaculture feed due to its high-quality protein and omega-3 content, sustainability challenges have driven the adoption of alternative ingredients. Plant-based feeds, though widely available, may alter the nutritional composition of seafood by reducing omega-3 levels, while algae-based feeds offer a promising sustainable alternative capable of enriching seafood with essential fatty acids and bioactive compounds. Furthermore, the potential accumulation of contaminants such as heavy metals and persistent organic pollutants (POPs) in feed ingredients raises concerns about seafood safety and human health. This review underscores the need for optimizing feed formulations to balance nutritional quality, sustainability, and safety, thereby enhancing the health benefits of farmed seafood for consumers while addressing environmental concerns.

Downloads

Published

2024-12-31

How to Cite

Evrendilek, G. A. (2024). The effect of aquaculture feed on the nutritional quality of farmed seafood: A review of feed ingredients and their impact on human health. Food Nutrition Chemistry, 2(4), 287. https://doi.org/10.18686/fnc287

Issue

Section

Review

References

1. Action SI. World fisheries and aquaculture. Food and Agriculture Organization; 2020. pp. 1-244.

2. Mandal RN, Bera P. Macrophytes Used as Multifaceted Benefits Including Feeding, Bioremediation, and Symbiosis in Freshwater Aquaculture—A Review. Reviews in Aquaculture. 2024; 17(1). doi: 10.1111/raq.12983 DOI: https://doi.org/10.1111/raq.12983

3. Glencross B, Hawkins W, Evans D, et al. Evaluation of the nutritional value of prototype lupin protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture. 2006; 251(1): 66-77. doi: 10.1016/j.aquaculture.2005.05.023 DOI: https://doi.org/10.1016/j.aquaculture.2005.05.023

4. Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 2008; 285(1-4): 146-158. doi: 10.1016/j.aquaculture.2008.08.015 DOI: https://doi.org/10.1016/j.aquaculture.2008.08.015

5. Naylor RL, Hardy RW, Bureau DP, et al. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences. 2009; 106(36): 15103-15110. doi: 10.1073/pnas.0905235106

6. Gould D, Compagnoni A, Lembo G. Organic Aquaculture: Principles, Standards and Certification. In: Organic Aquaculture: Impacts and Future Developments. Springer International Publishing, Cham; 2019. pp. 1–22. DOI: https://doi.org/10.1007/978-3-030-05603-2_1

7. Wilson RP. Amino acid requirements of finfish and crustaceans. Amino acids in animal nutrition; 2003. DOI: https://doi.org/10.1079/9780851996547.0427

8. Hekmatpour F, Mozanzadeh MT. Legumes, Sustainable Alternative Protein Sources for Aquafeeds. Legumes Research. 2022; 2. doi: 10.5772/intechopen.99778 DOI: https://doi.org/10.5772/intechopen.99778

9. Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001; 199(3-4): 197-227. doi: 10.1016/S0044-8486(01)00526-9 DOI: https://doi.org/10.1016/S0044-8486(01)00526-9

10. Blaufuss PC, Bledsoe JW, Gaylord TG, et al. Selection on a plant-based diet reveals changes in oral tolerance, microbiota and growth in rainbow trout (Oncorhynchus mykiss) when fed a high soy diet. Aquaculture. 2020; 525: 735287. doi: 10.1016/j.aquaculture.2020.735287 DOI: https://doi.org/10.1016/j.aquaculture.2020.735287

11. Kamalam BS, Medale F, Panserat S. Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture. 2017; 467: 3-27. doi: 10.1016/j.aquaculture.2016.02.007 DOI: https://doi.org/10.1016/j.aquaculture.2016.02.007

12. Yamamoto Y, Adam Luckenbach J, Goetz FW, et al. Disruption of the salmon reproductive endocrine axis through prolonged nutritional stress: Changes in circulating hormone levels and transcripts for ovarian genes involved in steroidogenesis and apoptosis. General and Comparative Endocrinology. 2011; 172(3): 331-343. doi: 10.1016/j.ygcen.2011.03.017 DOI: https://doi.org/10.1016/j.ygcen.2011.03.017

13. Olli JJ, Krogdahl Å, van den Ingh TSGAM, et al. Nutritive Value of Four Soybean Products in Diets for Atlantic Salmon (Salmo salar, L.). Acta Agriculturae Scandinavica, Section A - Animal Science. 1994; 44(1): 50-60. doi: 10.1080/09064709409410181 DOI: https://doi.org/10.1080/09064709409410181

14. Buttle LG, Burrells AC, Good JE, et al. The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar and Rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. Veterinary Immunology and Immunopathology. 2001; 80(3-4): 237-244. doi: 10.1016/S0165-2427(01)00269-0 DOI: https://doi.org/10.1016/S0165-2427(01)00269-0

15. Morris MC, Evans DA, Tangney CC, et al. Fish Consumption and Cognitive Decline With Age in a Large Community Study. Archives of Neurology. 2005; 62(12): 1849. doi: 10.1001/archneur.62.12.noc50161 DOI: https://doi.org/10.1001/archneur.62.12.noc50161

16. Cho CY, Bureau DP. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research. 2001; 32: 349-360. doi: 10.1046/j.1355-557x.2001.00027.x DOI: https://doi.org/10.1046/j.1355-557x.2001.00027.x

17. Cho SH, Myoung JG, Kim JM, Hwan Lee J. Fish fauna associated with drifting seaweed in the coastal area of Tongyeong, Korea. Transactions of the American Fisheries Society. 2001; 130(6): 1190-1202. doi: 10.1577/1548-8659(2001)130<1190:FFAWDS>2.0.CO;2 DOI: https://doi.org/10.1577/1548-8659(2001)130<1190:FFAWDS>2.0.CO;2

18. Naylor RL, Goldburg RJ, Primavera JH, et al. Effect of aquaculture on world fish supplies. Nature. 2000; 405(6790): 1017-1024. doi: 10.1038/35016500 DOI: https://doi.org/10.1038/35016500

19. Turchini GM, Conlan JA, Emery JA, et al. The melting point of dietary fatty acids is a key regulator of omega-3 fatty acid metabolism in Atlantic salmon. Aquaculture. 2024; 578: 740141. doi: 10.1016/j.aquaculture.2023.740141 DOI: https://doi.org/10.1016/j.aquaculture.2023.740141

20. Khader M, Shehata S, Ebrahim M, et al. Effect of replacement of fish meal by corn by product meal on growth performance for Nile Tilapia (Oreochromis niloticus). Egyptian Journal of Veterinary Sciences. 2025; 56(2): 21-334. doi:10.21608/ejvs.2024.267728.1825 DOI: https://doi.org/10.21608/ejvs.2024.267728.1825

21. Gatlin III DM, Barrows FT, Brown P, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research. 2007; 38(6): 551-579. doi: 10.1111/j.1365-2109.2007.01704.x DOI: https://doi.org/10.1111/j.1365-2109.2007.01704.x

22. Glencross BD, Huyben D, Schrama JW. The Application of Single-Cell Ingredients in Aquaculture Feeds—A Review. Fishes. 2020; 5(3): 22. doi: 10.3390/fishes5030022 DOI: https://doi.org/10.3390/fishes5030022

23. Doreau M, Corson MS, Wiedemann SG. Water use by livestock: A global perspective for a regional issue? Animal Frontiers. 2012; 2(2): 9-16. doi: 10.2527/af.2012-0036 DOI: https://doi.org/10.2527/af.2012-0036

24. Sousa I, Gouveia L, Batista AP, et al. Microalgae in novel food products. Food Chemistry Research Developments; 2008.

25. Becker EW. Micro-algae as a source of protein. Biotechnology Advances. 2007; 25(2): 207-210. doi: 10.1016/j.biotechadv.2006.11.002 DOI: https://doi.org/10.1016/j.biotechadv.2006.11.002

26. Turchini GM, Torstensen BE, Ng W. Fish oil replacement in finfish nutrition. Reviews in Aquaculture. 2009; 1(1): 10-57. doi: 10.1111/j.1753-5131.2008.01001.x DOI: https://doi.org/10.1111/j.1753-5131.2008.01001.x

27. Torstensen BE, Espe M, Sanden M, et al. Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture. 2008; 285(1-4): 193-200. doi: 10.1016/j.aquaculture.2008.08.025 DOI: https://doi.org/10.1016/j.aquaculture.2008.08.025

28. Berntssen MHG, Maage A, Lundebye AK. Contamination of finfish with persistent organic pollutants and metals. Chemical Contaminants and Residues in Food. Published online 2012: 498-534. doi: 10.1533/9780857095794.3.498 DOI: https://doi.org/10.1533/9780857095794.3.498

29. Kris-Etherton PM, Harris WS, Appel LJ. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 2002; 106(21): 2747-2757. doi: 10.1161/01.cir.0000038493.65177.94 DOI: https://doi.org/10.1161/01.CIR.0000038493.65177.94

30. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy. 2002; 56(8): 365-379. doi: 10.1016/S0753-3322(02)00253-6 DOI: https://doi.org/10.1016/S0753-3322(02)00253-6

31. Glencross BD, Tocher DR, Matthew C, et al. Interactions between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids on performance and fatty acid retention in post-smolt Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry; 2014. DOI: https://doi.org/10.1007/s10695-014-9917-8

32. Naylor RL, Hardy RW, Bureau DP, et al. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences. 2009; 106(36): 15103-15110. doi: 10.1073/pnas.0905235106 DOI: https://doi.org/10.1073/pnas.0905235106

33. Emery JA, Norambuena F, Trushenski J, et al. Uncoupling EPA and DHA in Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA Alone. Lipids. 2016; 51(4): 399-412. doi: 10.1007/s11745-016-4136-y DOI: https://doi.org/10.1007/s11745-016-4136-y

34. Cho JH, Kim IH. Fish meal – nutritive value. Journal of Animal Physiology and Animal Nutrition. 2010; 95(6): 685-692. doi: 10.1111/j.1439-0396.2010.01109.x DOI: https://doi.org/10.1111/j.1439-0396.2010.01109.x

35. Hardy RW, Barrows FT. Diet Formulation and Manufacture. Fish Nutrition; 2003. DOI: https://doi.org/10.1016/B978-012319652-1/50010-0

36. Bell JG, McGhee F, Dick JR, et al. Dioxin and dioxin-like polychlorinated biphenyls (PCBs) in Scottish farmed salmon (Salmo salar): effects of replacement of dietary marine fish oil with vegetable oils. Aquaculture. 2005; 243(1-4): 305-314. doi: 10.1016/j.aquaculture.2004.10.016 DOI: https://doi.org/10.1016/j.aquaculture.2004.10.016

37. Béné C, Barange M, Subasinghe R, et al. Feeding 9 billion by 2050 – Putting fish back on the menu. Food Security. 2015; 7(2): 261-274. doi: 10.1007/s12571-015-0427-z DOI: https://doi.org/10.1007/s12571-015-0427-z

38. Drew MD, Ogunkoya AE, Janz DM, et al. Dietary influence of replacing fish meal and oil with canola protein concentrate and vegetable oils on growth performance, fatty acid composition and organochlorine residues in rainbow trout (Oncorhynchus mykiss). Aquaculture. 2007; 267(1-4): 260-268. doi: 10.1016/j.aquaculture.2007.01.002 DOI: https://doi.org/10.1016/j.aquaculture.2007.01.002

39. Kaushik N, Falch E, Slizyte R, et al. Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chemistry. 2024; 459: 140244. doi: 10.1016/j.foodchem.2024.140244 DOI: https://doi.org/10.1016/j.foodchem.2024.140244

40. Borsetta G, Frapiccini E, Roncarati A, et al. AgrI-fiSh: sustainable and innovative feeds from agricultural wastes for a resilient and high-quality aquaculture. Detritus. 2024; (28): 97-101. doi: 10.31025/2611-4135/2024.19398 DOI: https://doi.org/10.31025/2611-4135/2024.19398

41. Rosenlund G, Obach A, Sandberg MG, et al. Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquaculture Research. 2001; 32: 323-328. doi: 10.1046/j.1355-557x.2001.00025.x DOI: https://doi.org/10.1046/j.1355-557x.2001.00025.x

42. Kumar MSY, Dutta R, Prasad D, et al. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chemistry. 2011; 127(3): 1309-1316. doi: 10.1016/j.foodchem.2011.01.088 DOI: https://doi.org/10.1016/j.foodchem.2011.01.088

43. Nagarajan D, Varjani S, Lee DJ, et al. Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components. Renewable and Sustainable Energy Reviews. 2021; 150: 111549. doi: 10.1016/j.rser.2021.111549 DOI: https://doi.org/10.1016/j.rser.2021.111549

44. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture. 1997; 151(1): 315-331. doi: 10.1016/S0044-8486(96)01501-3 DOI: https://doi.org/10.1016/S0044-8486(96)01501-3

45. Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 2017; 6(5): 33. doi: 10.3390/foods6050033 DOI: https://doi.org/10.3390/foods6050033

46. Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 2006; 101(2): 87-96. doi: 10.1263/jbb.101.87 DOI: https://doi.org/10.1263/jbb.101.87

47. Ankita, Rana A, Smriti, Singh G. Exploring the potential of microalgae as food supplements: A comprehensive review: The promising future of microalgae. Journal of Scientific & Industrial Research (JSIR). 2024; 83(6): 688–702. doi: 10.56042/jsir.v83i6.9786 DOI: https://doi.org/10.56042/jsir.v83i6.9786

48. Tibbetts SM, Scaife MA, Armenta RE. Apparent digestibility of proximate nutrients, energy and fatty acids in nutritionally-balanced diets with partial or complete replacement of dietary fish oil with microbial oil from a novel Schizochytrium sp. (T18) by juvenile Atlantic salmon (Salmo salar L.). Aquaculture. 2020; 520: 735003. doi: 10.1016/j.aquaculture.2020.735003 DOI: https://doi.org/10.1016/j.aquaculture.2020.735003

49. Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology. 2011; 23(3): 543-597. doi: 10.1007/s10811-010-9632-5 DOI: https://doi.org/10.1007/s10811-010-9632-5

50. Nakagawa H, Umino T, Tasaka Y. Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture. 1997; 151(1): 275-281. doi: 10.1016/S0044-8486(96)01488-3 DOI: https://doi.org/10.1016/S0044-8486(96)01488-3

51. Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology. 2008; 36(2): 269-274. doi: 10.1007/s10295-008-0495-6 DOI: https://doi.org/10.1007/s10295-008-0495-6

52. Hemaiswarya S, Raja R, Ravi Kumar R, et al. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology. 2010; 27(8): 1737-1746. doi: 10.1007/s11274-010-0632-z DOI: https://doi.org/10.1007/s11274-010-0632-z

53. Choubert G, Heinrich O. Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture. 1993; 112(2): 217-226. doi: 10.1016/0044-8486(93)90447-7 DOI: https://doi.org/10.1016/0044-8486(93)90447-7

54. Novoveská L, Nielsen SL, Eroldoğan OT, et al. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Marine Drugs. 2023; 21(8): 445. doi: 10.3390/md21080445 DOI: https://doi.org/10.3390/md21080445

55. Moreno-Arias A, López-Elías JA, Martínez-Córdova LR, et al. Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture. 2018; 483: 53-62. doi: 10.1016/j.aquaculture.2017.10.011 DOI: https://doi.org/10.1016/j.aquaculture.2017.10.011

56. Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology. 1999; 70(1): 313-321. doi: 10.1016/S0168-1656(99)00083-8 DOI: https://doi.org/10.1016/S0168-1656(99)00083-8

57. Chisti Y. Biodiesel from microalgae. Biotechnology Advances. 2007; 25(3): 294-306. doi: 10.1016/j.biotechadv.2007.02.001 DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001

58. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology. 2004; 65(6): 635-648. doi: 10.1007/s00253-004-1647-x DOI: https://doi.org/10.1007/s00253-004-1647-x

59. Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. In: Asian Pacific Phycology in the 21st Century: Prospects and Challenges. Springer Netherlands, Dordrecht; 2004. pp. 33–37. DOI: https://doi.org/10.1007/978-94-007-0944-7_5

60. Camacho-Rodríguez J, Cerón-García MC, González-López CV, et al. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresource Technology. 2013; 144: 57-66. doi: 10.1016/j.biortech.2013.06.083 DOI: https://doi.org/10.1016/j.biortech.2013.06.083

61. Adeola O, Cowieson AJ. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science. 2011; 89(10): 3189-3218. doi: 10.2527/jas.2010-3715 DOI: https://doi.org/10.2527/jas.2010-3715

62. Kumar V, Sinha AK, Makkar HPS, et al. Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition. 2011; 96(3): 335-364. doi: 10.1111/j.1439-0396.2011.01169.x DOI: https://doi.org/10.1111/j.1439-0396.2011.01169.x

63. Cao L, Wang W, Yang C, et al. Application of microbial phytase in fish feed. Enzyme and Microbial Technology. 2007; 40(4): 497-507. doi: 10.1016/j.enzmictec.2007.01.007 DOI: https://doi.org/10.1016/j.enzmictec.2007.01.007

64. Cao SM, Wu YY, Li LH, et al. Activities of Endogenous Lipase and Lipolysis Oxidation of Low-Salt Lactic Acid-Fermented Fish (Decapterus maruadsi). Journal of Oleo Science. 2018; 67(4): 445-453. doi: 10.5650/jos.ess17176 DOI: https://doi.org/10.5650/jos.ess17176

65. Sinha AK, Kumar V, Makkar HPS, et al. Non-starch polysaccharides and their role in fish nutrition – A review. Food Chemistry. 2011; 127(4): 1409-1426. doi: 10.1016/j.foodchem.2011.02.042 DOI: https://doi.org/10.1016/j.foodchem.2011.02.042

66. Cowieson AJ, Ruckebusch JP, Sorbara JOB, et al. A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Animal Feed Science and Technology. 2017; 225: 182-194. doi: 10.1016/j.anifeedsci.2017.01.008 DOI: https://doi.org/10.1016/j.anifeedsci.2017.01.008

67. Cowieson AJ, Acamovic T, Bedford MR. Supplementation of Corn–Soy-Based Diets with an Eschericia coli-Derived Phytase: Effects on Broiler Chick Performance and the Digestibility of Amino Acids and Metabolizability of Minerals and Energy. Poultry Science. 2006; 85(8): 1389-1397. doi: 10.1093/ps/85.8.1389 DOI: https://doi.org/10.1093/ps/85.8.1389

68. Krogdahl Å, Penn M, Thorsen J, et al. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research. 2010; 41(3): 333-344. doi: 10.1111/j.1365-2109.2009.02426.x DOI: https://doi.org/10.1111/j.1365-2109.2009.02426.x

69. Krogdahl Å, Marie Bakke-McKellep A. Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2005; 141(4): 450-460. doi: 10.1016/j.cbpb.2005.06.002 DOI: https://doi.org/10.1016/j.cbpb.2005.06.002

70. Liang Q, Yuan M, Xu L, et al. Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology. 2022; 4(2): 208-221. doi: 10.1007/s42995-022-00128-z DOI: https://doi.org/10.1007/s42995-022-00128-z

71. Selle PH, Ravindran V, Partridge GG. Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilisation, mineral retention and growth performance in wheat-based broiler diets. Animal Feed Science and Technology. 2009; 153(3-4): 303-313. doi: 10.1016/j.anifeedsci.2009.06.011 DOI: https://doi.org/10.1016/j.anifeedsci.2009.06.011

72. Selle PH, Ravindran V, Ravindran G, et al. Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens. Asian-Australasian Journal of Animal Sciences. 2007; 20(7): 1100-1107. doi: 10.5713/ajas.2007.1100 DOI: https://doi.org/10.5713/ajas.2007.1100

73. Akhter N, Wu B, Memon AM, et al. Probiotics and prebiotics associated with aquaculture: A review. Fish & Shellfish Immunology. 2015; 45(2): 733-741. doi: 10.1016/j.fsi.2015.05.038 DOI: https://doi.org/10.1016/j.fsi.2015.05.038

74. Butt UD, Lin N, Akhter N, et al. Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish & Shellfish Immunology. 2021; 114: 263-281. doi: 10.1016/j.fsi.2021.05.003 DOI: https://doi.org/10.1016/j.fsi.2021.05.003

75. Henry MA, Gai F, Enes P, et al. Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology. 2018; 83: 308-313. doi: 10.1016/j.fsi.2018.09.040 DOI: https://doi.org/10.1016/j.fsi.2018.09.040

76. van Huis A, Oonincx DGAB. The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development. 2017; 37(5). doi: 10.1007/s13593-017-0452-8 DOI: https://doi.org/10.1007/s13593-017-0452-8

77. Makkar HPS. State-of-the-art on detoxification of Jatropha curcas products aimed for use as animal and fish feed: A review. Animal Feed Science and Technology. 2016; 222: 87-99. doi: 10.1016/j.anifeedsci.2016.09.013 DOI: https://doi.org/10.1016/j.anifeedsci.2016.09.013

78. Makkar HPS, Tran G, Heuzé V, et al. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology. 2014; 197: 1-33. doi: 10.1016/j.anifeedsci.2014.07.008 DOI: https://doi.org/10.1016/j.anifeedsci.2014.07.008

79. Barroso FG, Sánchez-Muros MJ, Segura M, et al. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. Journal of Food Composition and Analysis. 2017; 62: 8-13. doi: 10.1016/j.jfca.2017.04.008 DOI: https://doi.org/10.1016/j.jfca.2017.04.008

80. Barroso FG, de Haro C, Sánchez-Muros MJ, et al. The potential of various insect species for use as food for fish. Aquaculture. 2014; 422-423: 193-201. doi: 10.1016/j.aquaculture.2013.12.024 DOI: https://doi.org/10.1016/j.aquaculture.2013.12.024

81. Gasco L, Henry M, Piccolo G, et al. Tenebrio molitor meal in diets for European sea bass ( Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology. 2016; 220: 34-45. doi: 10.1016/j.anifeedsci.2016.07.003 DOI: https://doi.org/10.1016/j.anifeedsci.2016.07.003

82. Dobermann D, Swift JA, Field LM. Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin. 2017; 42(4): 293-308. doi: 10.1111/nbu.12291 DOI: https://doi.org/10.1111/nbu.12291

83. O’Connor J, Hale R, Mallen-Cooper M, et al. Developing performance standards in fish passage: Integrating ecology, engineering and socio-economics. Ecological Engineering. 2022; 182: 106732. doi: 10.1016/j.ecoleng.2022.106732 DOI: https://doi.org/10.1016/j.ecoleng.2022.106732

84. Belghit I, Liland NS, Gjesdal P, et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture. 2019; 503: 609-619. doi: 10.1016/j.aquaculture.2018.12.032 DOI: https://doi.org/10.1016/j.aquaculture.2018.12.032

85. Gallo BD, Farrell JM, Leydet BF. Fish Gut Microbiome: A Primer to an Emerging Discipline in the Fisheries Sciences. Fisheries. 2020; 45(5): 271-282. doi: 10.1002/fsh.10379 DOI: https://doi.org/10.1002/fsh.10379

86. Burel C, Boujard T, Tulli F, Kaushik SJ. Digestibility of extruded peas, extruded lupin, and rapeseed meal in rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Aquaculture. 2000; 188(3): 285-298. doi: 10.1016/S0044-8486(00)00337-9 DOI: https://doi.org/10.1016/S0044-8486(00)00337-9

87. Gasco L, Biasato I, Dabbou S, et al. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals. 2019; 9(4): 170. doi: 10.3390/ani9040170 DOI: https://doi.org/10.3390/ani9040170

88. Ardoin R, Prinyawiwatkul W. Consumer perceptions of insect consumption: a review of western research since 2015. International Journal of Food Science & Technology. 2021; 56(10): 4942-4958. doi: 10.1111/ijfs.15167 DOI: https://doi.org/10.1111/ijfs.15167

89. Durand JR. The exploitation of fish stocks in the Lake Chad region. In: Lake Chad: Ecology and Productivity of a Shallow Tropical Ecosystem. Springer Netherlands, Dordrecht; 1983. pp. 425–481. DOI: https://doi.org/10.1007/978-94-009-7266-7_14

90. Stull VJ. Impacts of insect consumption on human health. Journal of Insects as Food and Feed. 2021; 7(5): 695-713. doi: 10.3920/jiff2020.0115 DOI: https://doi.org/10.3920/JIFF2020.0115

91. Nyyssölä A, Suhonen A, Ritala A, et al. The role of single cell protein in cellular agriculture. Current Opinion in Biotechnology. 2022; 75: 102686. doi: 10.1016/j.copbio.2022.102686 DOI: https://doi.org/10.1016/j.copbio.2022.102686

92. Ritala A, Häkkinen ST, Toivari M, et al. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Frontiers in Microbiology. 2017; 8. doi: 10.3389/fmicb.2017.02009 DOI: https://doi.org/10.3389/fmicb.2017.02009

93. Øverland M, Skrede A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. Journal of the Science of Food and Agriculture. 2016; 97(3): 733-742. doi: 10.1002/jsfa.8007 DOI: https://doi.org/10.1002/jsfa.8007

94. Anupama, Ravindra P. Value-added food:: Single cell protein. Biotechnology Advances. 2000; 18(6): 459-479. doi: 10.1016/S0734-9750(00)00045-8 DOI: https://doi.org/10.1016/S0734-9750(00)00045-8

95. Minakshi P, Ghosh M, Kumar R, et al. Single-Cell Metabolomics: Technology and Applications. Single-Cell Omics; 2019. DOI: https://doi.org/10.1016/B978-0-12-814919-5.00015-4

96. Matassa S, Boon N, Pikaar I, et al. Microbial protein: future sustainable food supply route with low environmental footprint. Microbial Biotechnology. 2016; 9(5): 568-575. doi: 10.1111/1751-7915.12369 DOI: https://doi.org/10.1111/1751-7915.12369

97. Barka A, Blecker C. Microalgae as a potential source of single-cell proteins. A review. BASE. 2016; 20: 427-436. doi: 10.25518/1780-4507.13132 DOI: https://doi.org/10.25518/1780-4507.13132

98. Reihani SFS, Khosravi-Darani K. Agriculture and Other Waste Substrates for Single-Cell Protein Production. In: Transforming Agriculture Residues for Sustainable Development: From Waste to Wealth. Springer Nature Switzerland, Cham; 2024. pp. 159–182. DOI: https://doi.org/10.1007/978-3-031-61133-9_7

99. Ravi RK, Neeraj A, Yadav RH. Assessment of microbial biomass for production of ecofriendly single-cell protein, bioenergy, and other useful products. Microbes in Land Use Change Management. Published online 2021: 267-284. doi: 10.1016/b978-0-12-824448-7.00015-2 DOI: https://doi.org/10.1016/B978-0-12-824448-7.00015-2

100. Øverland M, Mydland LT, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture. 2018; 99(1): 13-24. doi: 10.1002/jsfa.9143 DOI: https://doi.org/10.1002/jsfa.9143

101. Tacon AGJ. Trends in Global Aquaculture and Aquafeed Production: 2000–2017. Reviews in Fisheries Science & Aquaculture. 2019; 28(1): 43-56. doi: 10.1080/23308249.2019.1649634 DOI: https://doi.org/10.1080/23308249.2019.1649634

102. Minakshi P, Kumar R, Ghosh M, et al. Single-Cell Proteomics: Technology and Applications. Single-Cell Omics; 2019. DOI: https://doi.org/10.1016/B978-0-12-814919-5.00014-2

103. Douglas R, Djamgoz M. The Visual System of Fish. Springer Science & Business Media; 2012.

104. Kroeckel S, Dietz C, Schulz C, et al. Effect of diet composition and lysine supply on growth and body composition in juvenile turbot (Psetta maxima). Archives of Animal Nutrition. 2013; 67(4): 330-345. doi: 10.1080/1745039x.2013.823305 DOI: https://doi.org/10.1080/1745039X.2013.823305

105. El-Sayed AFM, Kawanna M. Optimum water temperature boosts the growth performance of Nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquaculture Research. 2008; 39(6): 670-672. doi: 10.1111/j.1365-2109.2008.01915.x DOI: https://doi.org/10.1111/j.1365-2109.2008.01915.x

106. Cheng Y, Xue F, Yu S, et al. Subcritical Water Extraction of Natural Products. Molecules. 2021; 26(13): 4004. doi: 10.3390/molecules26134004 DOI: https://doi.org/10.3390/molecules26134004

107. Cheng ZJ, Behnke KC, Dominy WG. Effects of poultry by-product meal as a substitute for fish meal in diets on growth and body composition of juvenile pacific white shrimp, Litopenaeus vannamei. Journal of Applied Aquaculture. 2002; 12(1): 71-83. doi: 10.1300/J028v12n01_04 DOI: https://doi.org/10.1300/J028v12n01_04

108. García-Ortega A, Kissinger KR, Trushenski JT. Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture. 2016; 452: 1-8. doi: 10.1016/j.aquaculture.2015.10.020 DOI: https://doi.org/10.1016/j.aquaculture.2015.10.020

109. Koven W, Gisbert E, Meiri-Ashkenazi I, et al. The effect of weaning diet type on grey mullet (Mugil cephalus) juvenile performance during the trophic shift from carnivory to omnivory. Aquaculture. 2020; 518: 734848. doi: 10.1016/j.aquaculture.2019.734848 DOI: https://doi.org/10.1016/j.aquaculture.2019.734848

110. Papatryphon E, Soares JH. Optimizing the levels of feeding stimulants for use in high-fish meal and plant feedstuff-based diets for striped bass, Morone saxatilis. Aquaculture. 2001; 202(3): 279-288. doi: 10.1016/S0044-8486(01)00778-5 DOI: https://doi.org/10.1016/S0044-8486(01)00778-5

111. Rosenfeld D, Gernat A, Marcano J, et al. The effect of using different levels of shrimp meal in broiler diets. Poultry Science. 1997; 76(4): 581-587. doi: 10.1093/ps/76.4.581 DOI: https://doi.org/10.1093/ps/76.4.581

112. Furuya WM, Michelato M, Salaro AL, et al. Estimation of the dietary essential amino acid requirements of colliroja Astyanax fasciatus by using the ideal protein concept. Latin American Journal of Aquatic Research. 2017; 43(5): 888-894. doi: 10.3856/vol43-issue5-fulltext-8 DOI: https://doi.org/10.3856/vol43-issue5-fulltext-8

113. Tabrett S, Ramsay I, Paterson B, et al. A review of the benefits and limitations of waste nutrient treatment in aquaculture pond facilities. Reviews in Aquaculture. 2024; 16(4): 1766-1786. doi: 10.1111/raq.12921 DOI: https://doi.org/10.1111/raq.12921

114. Gatlin DM. Dietary Supplements for the Health and Quality of Cultured Fish. CABI; 2007.

115. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2015; 1851(4): 469-484. doi: 10.1016/j.bbalip.2014.08.010 DOI: https://doi.org/10.1016/j.bbalip.2014.08.010

116. Sprague M, Betancor MB, Tocher DR. Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnology Letters. 2017; 39(11): 1599-1609. doi: 10.1007/s10529-017-2402-6 DOI: https://doi.org/10.1007/s10529-017-2402-6

117. Bell JG, Tocher DR, Henderson RJ, et al. Altered Fatty Acid Compositions in Atlantic Salmon (Salmo salar) Fed Diets Containing Linseed and Rapeseed Oils Can Be Partially Restored by a Subsequent Fish Oil Finishing Diet. The Journal of Nutrition. 2003; 133(9): 2793-2801. doi: 10.1093/jn/133.9.2793 DOI: https://doi.org/10.1093/jn/133.9.2793

118. Ytrestøyl T, Aas TS, Åsgård T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture. 2015; 448: 365-374. doi: 10.1016/j.aquaculture.2015.06.023 DOI: https://doi.org/10.1016/j.aquaculture.2015.06.023

119. Shah MR, Lutzu GA, Alam A, et al. Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology. 2017; 30(1): 197-213. doi: 10.1007/s10811-017-1234-z DOI: https://doi.org/10.1007/s10811-017-1234-z

120. Nasopoulou C, Zabetakis I. Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT. 2012; 47(2): 217-224. doi: 10.1016/j.lwt.2012.01.018 DOI: https://doi.org/10.1016/j.lwt.2012.01.018

121. Figueroa JG, Borrás-Linares I, Lozano-Sánchez J, et al. Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chemistry. 2018; 245: 707-716. doi: 10.1016/j.foodchem.2017.12.011 DOI: https://doi.org/10.1016/j.foodchem.2017.12.011

122. Watanabe KH, Desimone FW, Thiyagarajah A, et al. Fish tissue quality in the lower Mississippi River and health risks from fish consumption. Science of The Total Environment. 2003; 302(1): 109-126. doi: 10.1016/S0048-9697(02)00396-0 DOI: https://doi.org/10.1016/S0048-9697(02)00396-0

123. Jobling M. National Research Council (NRC): Nutrient requirements of fish and shrimp. Aquaculture International. 2011; 20(3): 601-602. doi: 10.1007/s10499-011-9480-6 DOI: https://doi.org/10.1007/s10499-011-9480-6

124. Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research. 2010; 41(5): 770-776. doi: 10.1111/j.1365-2109.2009.02349.x DOI: https://doi.org/10.1111/j.1365-2109.2009.02349.x

125. Hua K, Bureau DP. Estimating changes in essential amino acid requirements of rainbow trout and Atlantic salmon as a function of body weight or diet composition using a novel factorial requirement model. Aquaculture. 2019; 513: 734440. doi: 10.1016/j.aquaculture.2019.734440 DOI: https://doi.org/10.1016/j.aquaculture.2019.734440

126. Tacon AGJ, Lemos D, Metian M. Fish for Health: Improved Nutritional Quality of Cultured Fish for Human Consumption. Reviews in Fisheries Science & Aquaculture. 2020; 28(4): 449-458. doi: 10.1080/23308249.2020.1762163 DOI: https://doi.org/10.1080/23308249.2020.1762163

127. Barrows FT, Stone DAJ, Hardy RW. The effects of extrusion conditions on the nutritional value of soybean meal for rainbow trout (Oncorhynchus mykiss). Aquaculture. 2007; 265(1-4): 244-252. doi: 10.1016/j.aquaculture.2007.01.017 DOI: https://doi.org/10.1016/j.aquaculture.2007.01.017

128. Devic E, Leschen W, Murray F, et al. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquaculture Nutrition. 2017; 24(1): 416-423. doi: 10.1111/anu.12573 DOI: https://doi.org/10.1111/anu.12573

129. Øverland M, Krogdahl Å, Shurson G, et al. Evaluation of distiller’s dried grains with solubles (DDGS) and high protein distiller’s dried grains (HPDDG) in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture. 2013; 416-417: 201-208. doi: 10.1016/j.aquaculture.2013.09.016 DOI: https://doi.org/10.1016/j.aquaculture.2013.09.016

130. Refstie S, Sahlström S, Bråthen E, et al. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture. 2005; 246(1-4): 331-345. doi: 10.1016/j.aquaculture.2005.01.001 DOI: https://doi.org/10.1016/j.aquaculture.2005.01.001

131. Betancor MB, Ortega A, de la Gándara F, et al. Lipid metabolism-related gene expression pattern of Atlantic bluefin tuna (Thunnus thynnus L.) larvae fed on live prey. Fish Physiology and Biochemistry. 2016; 43(2): 493-516. doi: 10.1007/s10695-016-0305-4 DOI: https://doi.org/10.1007/s10695-016-0305-4

132. Sealey WM, Gaylord TG, Barrows FT, et al. Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia illucens. Journal of the World Aquaculture Society. 2011; 42(1): 34-45. doi: 10.1111/j.1749-7345.2010.00441.x DOI: https://doi.org/10.1111/j.1749-7345.2010.00441.x

133. Tibbetts SM, Wall CL, Barbosa-Solomieu V, et al. Effects of combined ‘all-fish’ growth hormone transgenics and triploidy on growth and nutrient utilization of Atlantic salmon (Salmo salar L.) fed a practical grower diet of known composition. Aquaculture. 2013; 406-407: 141-152. doi: 10.1016/j.aquaculture.2013.05.005 DOI: https://doi.org/10.1016/j.aquaculture.2013.05.005

134. Sissener NH, Julshamn K, Espe M, et al. Surveillance of selected nutrients, additives and undesirables in commercial Norwegian fish feeds in the years 2000-2010. Aquaculture Nutrition. 2012; 19(4): 555-572. doi: 10.1111/anu.12007 DOI: https://doi.org/10.1111/anu.12007

135. Kuhn DD, Boardman GD, Lawrence AL, et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture. 2009; 296(1-2): 51-57. doi: 10.1016/j.aquaculture.2009.07.025 DOI: https://doi.org/10.1016/j.aquaculture.2009.07.025

136. Demarco M, Oliveira de Moraes J, Matos ÂP, et al. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends in Food Science & Technology. 2022; 121: 114-128. doi: 10.1016/j.tifs.2022.02.004 DOI: https://doi.org/10.1016/j.tifs.2022.02.004

137. Storelli MM, Storelli A, D’Addabbo R, et al. Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environmental Pollution. 2005; 135(1): 163-170. doi: 10.1016/j.envpol.2004.09.005 DOI: https://doi.org/10.1016/j.envpol.2004.09.005

138. Hosseinpour F, Vazirzadeh A, Farhadi A, et al. Acclimation to higher temperature and antioxidant supplemented diets improved rainbow trout (Oncorhynchus mykiss) resilience to heatwaves. Scientific Reports. 2024; 14(1). doi: 10.1038/s41598-024-62130-y DOI: https://doi.org/10.1038/s41598-024-62130-y

139. Choubert G, Mendes-Pinto MM, Morais R. Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources. Aquaculture. 2006; 257(1-4): 429-436. doi: 10.1016/j.aquaculture.2006.02.055 DOI: https://doi.org/10.1016/j.aquaculture.2006.02.055

140. Wiedeman A, Barr S, Green T, et al. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients. 2018; 10(10): 1513. doi: 10.3390/nu10101513 DOI: https://doi.org/10.3390/nu10101513

141. Wallace TC, Blusztajn JK, Caudill MA, et al. Choline. Nutrition Today. 2018; 53(6): 240-253. doi: 10.1097/nt.0000000000000302 DOI: https://doi.org/10.1097/NT.0000000000000302

142. Xu M, Xue RQ, Lu Y, et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovascular Research. 2018; 115(3): 530-545. doi: 10.1093/cvr/cvy217 DOI: https://doi.org/10.1093/cvr/cvy217

143. Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutrition Reviews. 2009; 67(11): 615-623. doi: 10.1111/j.1753-4887.2009.00246.x DOI: https://doi.org/10.1111/j.1753-4887.2009.00246.x

144. Prabhu GS, Prasad K, K.G. MR, Rai KS. Efficacy of choline and DHA supplements or enriched environment exposure during early adult obesity in mitigating its adverse impact through aging in rats. Saudi Journal of Biological Sciences. 2021; 28(4): 2396-2407. doi: 10.1016/j.sjbs.2021.01.037 DOI: https://doi.org/10.1016/j.sjbs.2021.01.037

145. Shahidi F, Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology. 2018; 9(1): 345-381. doi: 10.1146/annurev-food-111317-095850 DOI: https://doi.org/10.1146/annurev-food-111317-095850

146. Alasalvar C, Shahidi F, Miyashita K, et al. Handbook of Seafood Quality, Safety and Health Applications. Blackwell Publishing Ltd; 2010. DOI: https://doi.org/10.1002/9781444325546

147. Zhang Y, Ma X, Dai Z. Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (Thunnus albacores). Journal of Food Processing and Preservation. 2019; 43(10). doi: 10.1111/jfpp.14111 DOI: https://doi.org/10.1111/jfpp.14111

148. Sicherer SH, Muñoz-Furlong A, Sampson HA. Prevalence of seafood allergy in the United States determined by a random telephone survey. Journal of Allergy and Clinical Immunology. 2004; 114(1): 159-165. doi: 10.1016/j.jaci.2004.04.018 DOI: https://doi.org/10.1016/j.jaci.2004.04.018

149. Bell JG, Waagbø R. Safe and Nutritious Aquaculture Produce: Benefits and Risks of Alternative Sustainable Aquafeeds. In: Aquaculture in the Ecosystem. Springer Netherlands, Dordrecht; 2008. pp. 185–225. DOI: https://doi.org/10.1007/978-1-4020-6810-2_6

150. Cai LM, Wang QS, Luo J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Science of The Total Environment. 2019; 650: 725-733. doi: 10.1016/j.scitotenv.2018.09.081 DOI: https://doi.org/10.1016/j.scitotenv.2018.09.081

151. Hites RA, Foran JA, Carpenter DO, et al. Global Assessment of Organic Contaminants in Farmed Salmon. Science. 2004; 303(5655): 226-229. doi: 10.1126/science.1091447 DOI: https://doi.org/10.1126/science.1091447

152. van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology. 2003; 13(2): 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6 DOI: https://doi.org/10.1016/S1382-6689(02)00126-6

153. Melnick R, Lucier G, Wolfe M, et al. Summary of the National Toxicology Program’s report of the endocrine disruptors low-dose peer review. Environmental Health Perspectives. 2002; 110(4): 427-431. doi: 10.1289/ehp.02110427 DOI: https://doi.org/10.1289/ehp.02110427

154. Rotter BA. Invited Review: Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health. 1996; 48(1): 1-34. doi: 10.1080/009841096161447 DOI: https://doi.org/10.1080/009841096161447

155. Wu H, Liu J, Bi X, et al. Trace metals in sediments and benthic animals from aquaculture ponds near a mangrove wetland in Southern China. Marine Pollution Bulletin. 2017; 117(1-2): 486-491. doi: 10.1016/j.marpolbul.2017.01.026 DOI: https://doi.org/10.1016/j.marpolbul.2017.01.026

156. Huis A. Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology. 2013; 58(1): 563-583. doi: 10.1146/annurev-ento-120811-153704 DOI: https://doi.org/10.1146/annurev-ento-120811-153704

157. Beneventi E, Tietz T, Merkel S. Risk Assessment of Food Contact Materials. EFSA Journal. 2020; 18(S1): e181109. doi: 10.2903/j.efsa.2020.e181109 DOI: https://doi.org/10.2903/j.efsa.2020.e181109

158. Lundebye AK, Lock EJ, Rasinger JD, et al. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environmental Research. 2017; 155: 49-59. doi: 10.1016/j.envres.2017.01.026 DOI: https://doi.org/10.1016/j.envres.2017.01.026

159. Li P, Feng X, Qiu G. Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review. International Journal of Environmental Research and Public Health. 2010; 7(6): 2666-2691. doi: 10.3390/ijerph7062666 DOI: https://doi.org/10.3390/ijerph7062666

160. Colt J, Tetreault J, Fogle RL. Development and Standardization of Physical, Operational, and Performance Metrics for Aquaponics. Reviews in Fisheries Science & Aquaculture. 2024; 32(4): 562-578. doi: 10.1080/23308249.2024.2353578 DOI: https://doi.org/10.1080/23308249.2024.2353578

161. Gallo A, Giuberti G, Frisvad J, et al. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins. 2015; 7(8): 3057-3111. doi: 10.3390/toxins7083057 DOI: https://doi.org/10.3390/toxins7083057

162. Henry M, Gasco L, Piccolo G, et al. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology. 2015; 203: 1-22. doi: 10.1016/j.anifeedsci.2015.03.001 DOI: https://doi.org/10.1016/j.anifeedsci.2015.03.001

163. Kim HS, Chung KH, Son JH. Comparison of different ploidy detection methods in Oncorhynchus mykiss, the rainbow trout. Fisheries and Aquatic Sciences. 2017; 20(1). doi: 10.1186/s41240-017-0074-8 DOI: https://doi.org/10.1186/s41240-017-0074-8

164. Rumbos CI, Mente E, Karapanagiotidis IT, et al. Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece. Insects. 2021; 12(7): 586. doi: 10.3390/insects12070586 DOI: https://doi.org/10.3390/insects12070586

165. Karimi M, Steffensen L, Haug LS. Interlaboratory Comparison on POPs in Food 2023. Norwegian Institute of Public Health – NIPH; 2023.

166. Mozaffarian D, Rimm EB. Fish Intake, Contaminants, and Human Health. JAMA. 2006; 296(15): 1885. doi: 10.1001/jama.296.15.1885 DOI: https://doi.org/10.1001/jama.296.15.1885

167. Sisma-Ventura G, Silverman J, Segal Y, et al. Exceptionally high levels of total mercury in deep-sea sharks of the Southeastern Mediterranean sea over the last ∼ 40 years. Environment International. 2024; 187: 108661. doi: 10.1016/j.envint.2024.108661 DOI: https://doi.org/10.1016/j.envint.2024.108661

168. Domingo JL. Concentrations of polychlorinated naphthalenes in food and human dietary exposure: A review of the scientific literature. Food Research International. 2024; 195: 114949. doi: 10.1016/j.foodres.2024.114949 DOI: https://doi.org/10.1016/j.foodres.2024.114949

169. van der Fels‐Klerx HJ, van Asselt ED, van Leeuwen SPJ, et al. Prioritization of chemical food safety hazards in the European feed supply chain. Comprehensive Reviews in Food Science and Food Safety. 2024; 23(6). doi: 10.1111/1541-4337.70025 DOI: https://doi.org/10.1111/1541-4337.70025

170. Rochman CM, Bucci K, Langenfeld D, et al. Informing the Exposure Landscape: The Fate of Microplastics in a Large Pelagic In-Lake Mesocosm Experiment. Environmental Science & Technology. 2024; 58(18): 7998-8008. doi: 10.1021/acs.est.3c08990 DOI: https://doi.org/10.1021/acs.est.3c08990

171. Roberts S, Jacquet J, Majluf P, et al. Feeding global aquaculture. Science Advances. 2024; 10(42). doi: 10.1126/sciadv.adn9698 DOI: https://doi.org/10.1126/sciadv.adn9698

172. Fantatto RR, Mota J, Ligeiro C, et al. Exploring sustainable alternatives in aquaculture feeding: The role of insects. Aquaculture Reports. 2024; 37: 102228. doi: 10.1016/j.aqrep.2024.102228 DOI: https://doi.org/10.1016/j.aqrep.2024.102228

173. Wong CF, Saif UM, Chow KL, et al. Applications of charcoal, activated charcoal, and biochar in aquaculture – A review. Science of The Total Environment. 2024; 929: 172574. doi: 10.1016/j.scitotenv.2024.172574 DOI: https://doi.org/10.1016/j.scitotenv.2024.172574

174. Orou-Seko A, Chirawurah D, Gnimatin JP, et al. Protocol for pesticide residue monitoring and risk assessment on water, sediment, and fish: A case study of two selected reservoirs in Ghana. Heliyon. 2024; 10(17): e37251. doi: 10.1016/j.heliyon.2024.e37251 DOI: https://doi.org/10.1016/j.heliyon.2024.e37251

175. Li YP, Ahmadi F, Kariman K, et al. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. npj Science of Food. 2024; 8(1). doi: 10.1038/s41538-024-00299-2 DOI: https://doi.org/10.1038/s41538-024-00299-2

176. Heo S, Lee G, Na HE, et al. Current status of the novel food ingredient safety evaluation system. Food Science and Biotechnology. 2023; 33(1): 1-11. doi: 10.1007/s10068-023-01396-w DOI: https://doi.org/10.1007/s10068-023-01396-w