Importance of goat milk for human health and nutrition
DOI:
https://doi.org/10.18686/fnc285Keywords:
goat milk; milk ingredients; protein; fat; lactose; milk contamination; milk hygiene; milking machine; minerals; vitaminsAbstract
Compared with other types of milk, goat milk is relatively rich in valuable nutrients and offers numerous health benefits due to its high concentrations of bioactive compounds. Therefore, goat milk has been shown in various human studies to have numerous effects, such as antithrombotic, antihypertensive, immunomodulatory, antidiabetic, allergy-regulating, anti-inflammatory, antioxidant, antimicrobial, lipid-lowering, and anti-cancer properties. In addition, goat milk has a high level of monounsaturated and polyunsaturated fatty acids, a favorable nutritional profile, a buffering capacity, lower allergenicity, higher digestibility than cow milk, and potential therapeutic benefits. To increase milk production and furthermore improve the quality and food safety of raw goat milk, it is necessary to use appropriate milking procedures and goat milking machine equipment. Such beneficial measures can prevent dirt or microbial contamination of raw goat milk and subsequently lead to clean production of goat milk and colostrum preparations to prevent human diseases. In conclusion, given the importance of goat milk and the associated health benefits of its bioactive constituents, improvements in the milking process, general milking hygiene, and subsequent storage, refrigeration, and transport conditions are needed to ensure that the quality of goat milk meets the requirements for human consumption.
References
1. Harenberg B. Domesticated mammals between 10000 and 3000 BC. In: Chronicle of Mankind. Chronik Verlag; 1997. p. 19.
2. Zervas G, Tsiplakou E. Goat milk. In: Park YW, George FW, Haenlein D (editors). Milk and Dairy Products in Human Nutrition. John Wiley & Sons; 2013. pp. 498–518. DOI: https://doi.org/10.1002/9781118534168.ch23
3. Boyazoglu J, Hatziminaoglou I, Morand-Fehr P. The role of the goat in society: Past, present and perspectives for the future. Small Ruminant Research. 2005; 60(1–2): 13–23. doi: 10.1016/j.smallrumres.2005.06.003 DOI: https://doi.org/10.1016/j.smallrumres.2005.06.003
4. Haenlein GFW. Goat milk in human nutrition. Small Ruminant Research. 2004; 51(2): 155–163. doi: 10.1016/j.smallrumres.2003.08.010 DOI: https://doi.org/10.1016/j.smallrumres.2003.08.010
5. Clark S, Mora García MB. A 100-year review: Advances in goat milk research. Journal of Dairy Science. 2017; 100(12): 10026–10044. doi: 10.3168/jds.2017-13287 DOI: https://doi.org/10.3168/jds.2017-13287
6. Navamniraj N, Sivasabari K, Ankitha J, et al. Beneficial impacts of goat milk on the nutritional status and general well-being of human beings: Anecdotal evidence. Journal of Experimental Biology and Agricultural Sciences. 2023; 11(1): 1–15. doi: 10.18006/2023.11(1).1.15 DOI: https://doi.org/10.18006/2023.11(1).1.15
7. Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. Journal of Food Science. 2021; 86(2): 257–265. doi: 10.1111/1750-3841.15574 DOI: https://doi.org/10.1111/1750-3841.15574
8. Gall CF. Production systems around the world. In: Park YW, George FW, Haenlein D (editors). Milk and Dairy Products in Human Nutrition. John Wiley & Sons; 2013. pp. 1–30. DOI: https://doi.org/10.1002/9781118534168.ch1
9. Liu Y, Cai J, Zhang F. Influence of goat colostrum and mature milk on intestinal microbiota. Journal of Functional Foods. 2021; 86: 104704. doi: 10.1016/j.jff.2021.104704 DOI: https://doi.org/10.1016/j.jff.2021.104704
10. Feng C, Wang B, Zhao A, et al. Quality characteristics, and antioxidant activities of goat milk yogurt with added jujube pulp. Food Chemistry. 2019; 277: 238–245. doi: 10.1016/j.foodchem.2018.10.104 DOI: https://doi.org/10.1016/j.foodchem.2018.10.104
11. Hernell O. Current safety standards in infant nutrition—A European perspective. Annals of Nutrition and Metabolism. 2012; 60: 188–191. DOI: https://doi.org/10.1159/000338210
12. Turck D. Cow’s milk and goat’s milk. In: Szajewska H, Shamir R (editors). Evidence-Based Research in Pediatric Nutrition. Karger Publishers; 2013. pp. 56–62. DOI: https://doi.org/10.1159/000351485
13. He T, Rombouts W, Einerhand AWC, et al. Gastric protein digestion of goat and cow milk infant formula and human milk under simulated infant conditions. International Journal of Food Sciences and Nutrition. 2021; 73(1): 28–38. doi: 10.1080/09637486.2021.1921705 DOI: https://doi.org/10.1080/09637486.2021.1921705
14. Abbas HM, Hassan FAM, Abd El-Gawad MAM, Enab AK. Physicochemical characteristics of goat’s milk. Life Science Journal. 2014; 11(1s): 307–317.
15. Kabwanga I, Altin C. Nutritional benefits of goat’s milk. Major components and medicinal value. GRIN Publishing GmbH; 2017. pp. 1–15.
16. Basnet S, Schneider M, Gazit A, et al. Fresh goat’s milk for infants: myths and realities—A review. Pediatrics. 2010; 125(4): e973–e977. doi: 10.1542/peds.2009-1906 DOI: https://doi.org/10.1542/peds.2009-1906
17. Baur L, Allen J. Goat milk for infants: Yes or no? Journal of Paediatrics and Child Health. 2005; 41(11): 543–543. doi: 10.1111/j.1440-1754.2005.00716.x DOI: https://doi.org/10.1111/j.1440-1754.2005.00716.x
18. Ziegler D, Russell S, Rozenberg G, et al. Goats’ milk quackery. Journal of Paediatrics and Child Health. 2005; 41(11): 569–571. doi: 10.1111/j.1440-1754.2005.00723.x DOI: https://doi.org/10.1111/j.1440-1754.2005.00723.x
19. Maines E, Gugelmo G, Tadiotto E, et al. High-protein goat’s milk diet identified through newborn screening: clinical warning of a potentially dangerous dietetic practice. Public Health Nutrition. 2017; 20(15): 2806–2809. doi: 10.1017/s1368980017001628 DOI: https://doi.org/10.1017/S1368980017001628
20. Lad SS, Aparnathi KD, Mehta B, et al. Goat milk in human nutrition and health—A review. International Journal of Current Microbiology and Applied Sciences. 2017; 6(5): 1781–1792. doi: 10.20546/ijcmas.2017.605.194 DOI: https://doi.org/10.20546/ijcmas.2017.605.194
21. Van Leeuwen SS, te Poele EM, Chatziioannou AC, et al. Goat milk oligosaccharides: Their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. Journal of Agricultural and Food Chemistry. 2020; 68(47): 13469–13485. doi: 10.1021/acs.jafc.0c03766 DOI: https://doi.org/10.1021/acs.jafc.0c03766
22. ALKaisy QH, Al‐Saadi JS, AL‐Rikabi AKJ, et al. Exploring the health benefits and functional properties of goat milk proteins. Food Science & Nutrition. 2023; 11(10): 5641–5656. doi: 10.1002/fsn3.3531 DOI: https://doi.org/10.1002/fsn3.3531
23. Sakandar HA, Zhang H. Trends in Probiotic(s)-Fermented milks and their in vivo functionality: A review. Trends in Food Science & Technology. 2021; 110: 55–65. doi: 10.1016/j.tifs.2021.01.054 DOI: https://doi.org/10.1016/j.tifs.2021.01.054
24. Tian H, Yang R, Sun X, et al. Screening of goaty flavor-inhibiting lactic acid bacteria and their effects on the flavor profiles of goat milk cakes. Food Bioscience. 2023; 53: 102504. doi: 10.1016/j.fbio.2023.102504 DOI: https://doi.org/10.1016/j.fbio.2023.102504
25. Kumar S, Kumar B, Kumar R, et al. Nutritional features of goat milk—A review. Indian Journal of Dairy Science. 2012; 65(4): 266–273.
26. Nuhriawangsa ADM, Kartikasari LR, Hadi RF, et al. Microbiological profile of fresh goat milk: Impact of goat farmer practices in “Taruna Mukti” goat farmer group, Sragen, Central Java. IOP Conference Series: Materials Science and Engineering. 2019; 633(1): 012010. doi: 10.1088/1757-899x/633/1/012010 DOI: https://doi.org/10.1088/1757-899X/633/1/012010
27. Park YW, Juárez M, Ramos M, et al. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research. 2007; 68(1–2): 88–113. doi: 10.1016/j.smallrumres.2006.09.013 DOI: https://doi.org/10.1016/j.smallrumres.2006.09.013
28. Park YW. Goat Milk—Chemistry and nutrition. In: Park YW, Haenlein GFW (editors). Handbook of Milk of Non‐Bovine Mammals. John Wiley & Sons; 2017. pp. 42–83. DOI: https://doi.org/10.1002/9781119110316.ch2.2
29. Getaneh G, Mebrat A, Wubie A, et al. Review on goat milk composition and its nutritive value. Journal of Nutrition and Health Sciences. 2016; 3(4). doi: 10.15744/2393-9060.3.401 DOI: https://doi.org/10.15744/2393-9060.3.401
30. Cerbulis J, Parks OW, Farrell HM. Composition and distribution of lipids of goats’ milk. Journal of Dairy Science. 1982; 65(12): 2301–2307. doi: 10.3168/jds.S0022-0302(82)82501-0 DOI: https://doi.org/10.3168/jds.S0022-0302(82)82501-0
31. Vega S, Gutierrez R, Ramirez A, et al. Effect of the time of the year on the physical and chemical characteristics of goat milk of French Alpine and Saanen breeds. In: Proceedings of 1st Symposium Hygienic and Quality Evaluation in the Agrifood and Hotel Industry. pp. 1–7.
32. Park Y. Goat milk and human nutrition. In: Proceedings of 1st Asian Dairy Goat Conference; 9–12 April 2012; Kuala Lumpur, Malysia. pp. 32–39.
33. Buranakarl C, Thammacharoen S, Semsirmboon S, et al. Effects of litter size and parity number on mammary secretions including, insulin-like growth factor-1, immunoglobulin G and vitamin A of Black Bengal, Saanen and their crossbred goats in Thailand. Veterinary Sciences. 2021; 8(6): 95. doi: 10.3390/vetsci8060095 DOI: https://doi.org/10.3390/vetsci8060095
34. Marcinkoniene L, Ciprovica I. Fatty acid composition of different breed goat milk. Rural Sustainability Research. 2023; 49(344): 35–39. doi: 10.2478/plua-2023-0005 DOI: https://doi.org/10.2478/plua-2023-0005
35. Kabwanga IT, Altin C. Nutritional benefits of goat’s milk. Major components and medicinal value. Grin Verlag; 2017. pp. 1–20.
36. Tiwari G, Chauhan A, Sharma P, et al. Nutritional values and therapeutic uses of Capra hircus milk. International Journal of Pharmaceutical Investigation. 2022; 12(4): 408-417. doi: 10.5530/ijpi.2022.4.71 DOI: https://doi.org/10.5530/ijpi.2022.4.71
37. Park YW, Haenlein GFW. Goat milk, its products and nutrition. In: Hui YH (editor). Handbook of Food Products Manufacturing. John Wiley & Sons; 2006. pp. 449–488. DOI: https://doi.org/10.1002/9780470113554.ch69
38. Frister H. Composition of the milk. In: Kroemker V (editor). Milk Science and Milk Hygiene. Parey; 2007. pp. 80–102.
39. D’Urso S, Cutrignelli MI, Calabrò S, et al. Influence of pasture on fatty acid profile of goat milk. Journal of Animal Physiology and Animal Nutrition. 2008; 92(3): 405–410. doi: 10.1111/j.1439-0396.2008.00824.x DOI: https://doi.org/10.1111/j.1439-0396.2008.00824.x
40. Gantner V. The overall and fat composition of milk of various species. Mljekarstvo. 2015; 65(4): 223–231. doi: 10.15567/mljekarstvo.2015.0401 DOI: https://doi.org/10.15567/mljekarstvo.2015.0401
41. Tudisco R, Chiofalo B, Lo Presti V, et al. Influence of feeding linseed on SCD activity in grazing goat mammary glands. Animals. 2019; 9(10): 786. doi: 10.3390/ani9100786 DOI: https://doi.org/10.3390/ani9100786
42. Tudisco R, Morittu VM, Addi L, et al. Influence of pasture on stearoyl-CoA desaturase and miRNA 103 expression in goat milk: Preliminary results. Animals. 2019; 9(9): 606. doi: 10.3390/ani9090606 DOI: https://doi.org/10.3390/ani9090606
43. Alférez MJM, Barrionuevo M, López AI, et al. Digestive utilization of goat and cow milk fat in malabsorption syndrome. Journal of Dairy Research. 2001; 68(3): 451–461. doi: 10.1017/s0022029901004903 DOI: https://doi.org/10.1017/S0022029901004903
44. Jenness R. Composition and characteristics of goat’s milk. Journal of Dairy Science. 1980; 63: 1605–1630. doi: 10.3168/jds.S0022-0302(80)83125-0 DOI: https://doi.org/10.3168/jds.S0022-0302(80)83125-0
45. Kompan D, Komprej A. The effect of fatty acids in goat milk on health. In: Chaiyabutr N (editor). Milk Production—An Up-to-Date Overview of Animal Nutrition, Management and Health. Intech; 2012. DOI: https://doi.org/10.5772/50769
46. Kalantzopoulos GC. Cheese from ewes and goats’ milk. In: Fox PF (editor). Chemistry, Physics and Microbiology, 2nd ed. Chapman and Hall; 1993. pp. 507–542. DOI: https://doi.org/10.1007/978-1-4615-2648-3_16
47. Attaie R, Richter RL. Size distribution of fat globules in goat milk. Journal of Dairy Science. 2000; 83: 940–944. doi: 10.3168/jds.S0022-0302(00)74957-5 DOI: https://doi.org/10.3168/jds.S0022-0302(00)74957-5
48. Cebo C, Caillat H, Bouvier F, et al. Major proteins of the goat milk fat globule membrane. Journal of Dairy Science. 2010; 93(3): 868–876. doi: 10.3168/jds.2009-2638 DOI: https://doi.org/10.3168/jds.2009-2638
49. Toral PG, Chilliard Y, Rouel J, et al. Comparison of the nutritional regulation of milk fat secretion and composition in cows and goats. Journal of Dairy Science. 2015; 98(10): 7277–7297. doi: 10.3168/jds.2015-9649 DOI: https://doi.org/10.3168/jds.2015-9649
50. Haenlein GF. Status and prospects of the dairy goat industry in the United States. Journal of Animal Science. 1996; 74(5): 1173. doi: 10.2527/1996.7451173x DOI: https://doi.org/10.2527/1996.7451173x
51. Gibson M, Newsham P. Milk and Dairy in Food Science and the Culinary Arts, 1st ed. Elsevier; 2018. pp. 133–167. DOI: https://doi.org/10.1016/B978-0-12-811816-0.00011-7
52. Michalski MC, Januel C. Does homogenization affect the human health properties of cow’s milk? Trends in Food Science & Technology. 2006; 17(8): 423–437. doi: 10.1016/j.tifs.2006.02.004 DOI: https://doi.org/10.1016/j.tifs.2006.02.004
53. Li S, Ye A, Pan Z, et al. Dynamic in vitro gastric digestion behavior of goat milk: Effects of homogenization and heat treatments. Journal of Dairy Science. 2022; 105(2): 965–980. doi: 10.3168/jds.2021-20980 DOI: https://doi.org/10.3168/jds.2021-20980
54. Mollica M, Trinchese G, Cimmino F, et al. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients. 2021; 13(4): 1111. doi: 10.3390/nu13041111 DOI: https://doi.org/10.3390/nu13041111
55. Vazquez PGQ. Effect of antibiotics in goat milk on the manufacture and characteristics of cheese [PhD thesis]. Polytechnic University of Valencia; 2019.
56. Zhang RH, Mustafa AF, Zhao X. Effects of feeding oilseeds rich in linoleic and linolenic fatty acids to lactating ewes on cheese yield and on fatty acid composition of milk and cheese. Animal Feed Science and Technology. 2006; 127(3–4): 220–233. doi: 10.1016/j.anifeedsci.2005.09.001 DOI: https://doi.org/10.1016/j.anifeedsci.2005.09.001
57. LeDoux M, Rouzeau A, Bas P, Sauvant D. Occurrence of trans-C18:1 fatty acid isomer in goat milk: effect of two dietary regimens. Journal of Dairy Science. 2002; 85(1): 190–197. doi: 10.3168/jds.S0022-0302(02)74067-8 DOI: https://doi.org/10.3168/jds.S0022-0302(02)74067-8
58. Goetsch AL, Zeng SS, Gipson TA. Factors affecting goat milk production and quality. Small Ruminant Research. 2011; 101(1–3): 55–63. doi: 10.1016/j.smallrumres.2011.09.025 DOI: https://doi.org/10.1016/j.smallrumres.2011.09.025
59. Martínez Marín AL, Gómez-Cortés P, Gómez Castro AG, et al. Animal performance and milk fatty acid profile of dairy goats fed diets with different unsaturated plant oils. Journal of Dairy Science. 2011; 94(11): 5359–5368. doi: 10.3168/jds.2011-4569 DOI: https://doi.org/10.3168/jds.2011-4569
60. Saikia D, Hassan MI, Walia A. Review: Goat milk and its nutraceutical properties. International Journal of Applied Research. 2022; 8(4): 119–122. doi: 10.22271/allresearch.2022.v8.i4b.9639 DOI: https://doi.org/10.22271/allresearch.2022.v8.i4b.9639
61. Ceballos LS, Morales ER, de la Torre Adarve G, et al. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis. 2009; 22(4): 322–329. doi: 10.1016/j.jfca.2008.10.020 DOI: https://doi.org/10.1016/j.jfca.2008.10.020
62. Liao Y, Weber D, Xu W, et al. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation. Journal of Proteome Research. 2017; 16(11): 4113–4121. doi: 10.1021/acs.jproteome.7b00486 DOI: https://doi.org/10.1021/acs.jproteome.7b00486
63. Muñoz-Salinas F, Andrade-Montemayor HM, De la Torre-Carbot K, et al. Comparative Analysis of the Protein Composition of Goat Milk from French Alpine, Nubian, and Creole Breeds and Holstein Friesian Cow Milk: Implications for Early Infant Nutrition. Animals. 2022; 12(17): 2236. doi: 10.3390/ani12172236 DOI: https://doi.org/10.3390/ani12172236
64. Roy D, Ye A, Moughan PJ, et al. Composition, Structure, and Digestive Dynamics of Milk from Different Species—A Review. Frontiers in Nutrition. 2020; 7. doi: 10.3389/fnut.2020.577759 DOI: https://doi.org/10.3389/fnut.2020.577759
65. Csapóné Riskó T, Csapó Z. Goat Keeping and Goat Milk Products in Human Nutrition—Review. Applied Studies in Agribusiness and Commerce. 2019; 13(1–2): 24–36. doi: 10.19041/apstract/2019/1-2/3 DOI: https://doi.org/10.19041/APSTRACT/2019/1-2/3
66. Qin YS, Jiang H, Wang CF, et al. Physicochemical and functional properties of goat milk whey protein and casein obtained during different lactation stages. Journal of Dairy Science. 2021; 104(4): 3936–3946. doi: 10.3168/jds.2020-19454 DOI: https://doi.org/10.3168/jds.2020-19454
67. Crowley SV, Kelly AL, Lucey JA, et al. Potential Applications of Non‐Bovine Mammalian Milk in Infant Nutrition. In: Park YW, Haenlein GFW (editors). Handbook of Milk of Non‐Bovine Mammals. John Wiley & Sons; 2017. pp. 625–654. DOI: https://doi.org/10.1002/9781119110316.ch13
68. Niero G, Franzoi M, Manuelian CL, et al. Protein profile of cow milk from multibreed herds and its relationship with milk coagulation properties. Italian Journal of Animal Science. 2021; 20(1): 2232–2242. doi: 10.1080/1828051x.2021.1996288 DOI: https://doi.org/10.1080/1828051X.2021.1996288
69. Grosclaude F, Mahe MF, Brignon G, et al. A mendelian polymorphism underlying quantitative variations of goat αs1-casein. Genetics Selection Evolution. 1987; 19: 399–412. doi: 10.1051/gse:19870402 DOI: https://doi.org/10.1051/gse:19870402
70. Martin P, Szymanowska M, Zwierzchowski L, Leroux C. The impact of genetic polymorphisms on the protein composition of ruminant milks. Reproduction Nutrition Development. 2002; 42: 433–459. doi: 10.1051/rnd:2002036 DOI: https://doi.org/10.1051/rnd:2002036
71. Selvaggi M, Laudadio V, Dario C, et al. Major proteins in goat milk: an updated overview on genetic variability. Molecular Biology Reports. 2014; 41(2): 1035–1048. doi: 10.1007/s11033-013-2949-9 DOI: https://doi.org/10.1007/s11033-013-2949-9
72. Tomotake H, Okuyama R, Katagiri M, et al. Comparison between Holstein Cow’s Milk and Japanese-Saanen Goat’s Milk in Fatty Acid Composition, Lipid Digestibility and Protein Profile. Bioscience, Biotechnology, and Biochemistry. 2006; 70(11): 2771–2774. doi: 10.1271/bbb.60267 DOI: https://doi.org/10.1271/bbb.60267
73. Park YW, Haenlein GFW. A2 Bovine Milk and Caprine Milk as a Means of Remedy for Milk Protein Allergy. Dairy. 2021; 2(2): 191–201. doi: 10.3390/dairy2020017 DOI: https://doi.org/10.3390/dairy2020017
74. Ye A, Cui J, Carpenter E, et al. Dynamic in vitro gastric digestion of infant formulae made with goat milk and cow milk: Influence of protein composition. International Dairy Journal. 2019; 97: 76–85. doi: 10.1016/j.idairyj.2019.06.002 DOI: https://doi.org/10.1016/j.idairyj.2019.06.002
75. Belewu MA, Aiyegbusi OF. Comparison of the Mineral Content and Apparent Biological Value of Milk from Human, Cow and Goat. Journal of Food Technology in Africa. 2002; 7(1). doi: 10.4314/jfta.v7i1.19310 DOI: https://doi.org/10.4314/jfta.v7i1.19310
76. Almaas H, Cases AL, Devold TG, et al. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. International Dairy Journal. 2006; 16(9): 961–968. doi: 10.1016/j.idairyj.2005.10.029 DOI: https://doi.org/10.1016/j.idairyj.2005.10.029
77. El-Agamy EI. The challenge of cow milk protein allergy. Small Ruminant Research. 2007; 68(1–2): 64–72. doi: 10.1016/j.smallrumres.2006.09.016 DOI: https://doi.org/10.1016/j.smallrumres.2006.09.016
78. Restani, Gaiaschi, Plebani, et al. Cross‐reactivity between milk proteins from different animal species. Clinical & Experimental Allergy. 1999; 29(7): 997–1004. doi: 10.1046/j.1365-2222.1999.00563.x DOI: https://doi.org/10.1046/j.1365-2222.1999.00563.x
79. Ramos Morales E, De la Torre G, Carmona López FD, et al. Nutritional value of goat and cow milk protein. In: Molina Alcaide E, Ben Salem H, Biala K, Morand-Fehr P (editors). Sustainable grazing, nutritional utilization and quality of sheep and goat products. CIHEAM; 2005. pp. 167–170.
80. Haenlein GF. Past, present, and future perspectives of small ruminant dairy research. Journal of Dairy Science. 2021; 84(9): 2097–2115. doi: 10.3168/jds.S0022-0302(01)74655-3 DOI: https://doi.org/10.3168/jds.S0022-0302(01)74655-3
81. Prosser CG, McLaren RD, Frost D, et al. Composition of the non-protein nitrogen fraction of goat whole milk powder and goat milk-based infant and follow-on formulae. International Journal of Food Sciences and Nutrition. 2008; 59(2): 123–133. doi: 10.1080/09637480701425585 DOI: https://doi.org/10.1080/09637480701425585
82. European Food Safety Authority. Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission relating to the evaluation of goats’ milk protein as a protein source for infant formulae and follow-on formulae. EFSA Journal. 2004; 30: 1–15. doi: 10.2903/j.efsa.2004.30 DOI: https://doi.org/10.2903/j.efsa.2004.30
83. Park YW. Goat milk-chemistry and nutrition. In: Park YW, Haenlein GFW (editors). Handbook of Milk of Nonbovine Mammals, 1st ed. Blackwell Publishing Professional; 2006. pp. 34–58. DOI: https://doi.org/10.1002/9780470999738.ch3
84. Lopez‐Aliaga I, Alferez MJM, Barrionuevo M, et al. Study of nutritive utilization of protein and magnesium in rats with resection of the distal small intestine. Beneficial effect of goat milk. Journal of Dairy Science. 2003; 86(9): 2958–2966. doi: 10.3168/jds.S0022-0302(03)73893-4 DOI: https://doi.org/10.3168/jds.S0022-0302(03)73893-4
85. Moron D, Martin Alonso JJ, Gil Extremera F, et al. Composition of goat milk and cow milk produced in the Iberian southeast. Comparative study. In: Proceedings of 7th International Conference on Goats; 15–21 May 2000; Tours, France. p. 617.
86. Tsabouri S, Douros K, Priftis K. Cow’s milk allergenicity. Endocrine‚ Metabolic & Immune Disorders-Drug Targets. 2014; 14(1): 16–26. doi: 10.2174/1871530314666140121144224 DOI: https://doi.org/10.2174/1871530314666140121144224
87. Rutherfurd SM, Moughan PJ, Lowry D, et al. Amino acid composition determined using multiple hydrolysis times for three goat milk formulations. International Journal of Food Sciences and Nutrition. 2008; 59(7–8): 679–690. doi: 10.1080/09637480701705424 DOI: https://doi.org/10.1080/09637480701705424
88. Jooyandeh H, Aberoumand A. Physico-chemical, nutritional, heat treatments effects and dairy products aspects of goats and sheep milks. World Applied Sciences Journal. 2010; 11(11): 1322–1376.
89. McBean LD, Miller GD. Allaying fears and fallacies about lactose intolerance. Journal of the American Dietetic Association. 1998; 98(6): 671–676. doi: 10.1016/S0002-8223(98)00152-7 DOI: https://doi.org/10.1016/S0002-8223(98)00152-7
90. Pribila BA, Herzler SR, Martin BR, et al. Improved lactose digestion and intolerance among African-American adolescent girls fed a dairy-rich diet. Journal of the American Dietetic Association. 2000; 100(5): 524–528. doi: 10.1016/S0002-8223(00)00162-0 DOI: https://doi.org/10.1016/S0002-8223(00)00162-0
91. Choudhari DM, Kadam VS, Khedkar JN. Quality of goat milk. The Asian Journal of Animal Science. 2018; 13(2): 90–93. doi: 10.15740/has/tajas/13.2/90-93 DOI: https://doi.org/10.15740/HAS/TAJAS/13.2/90-93
92. Van der Toorn MV, Chatziioannou AC, Pellis L, et al. Biological relevance of goat milk oligosaccharides to infant health. Journal of Agricultural and Food Chemistry. 2023; 71(38): 13935–13949. doi: 10.1021/acs.jafc.3c02194 DOI: https://doi.org/10.1021/acs.jafc.3c02194
93. Kiskini A, Difilippo E. Oligosaccharides in goat milk: Structure, health effects and isolation. Cellular and molecular biology. 2013; 59(1): 25–30.
94. Coppa GV, Gabrielli O, Pierani P, et al. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics. 1993; 91(3): 637–641. doi: 10.1542/peds.91.3.637 DOI: https://doi.org/10.1542/peds.91.3.637
95. Coppa G, Pierani P, Zampini L, et al. Oligosaccharides in human milk during different phases of lactation. Acta Paediatrica. 1999; 88(s430): 89–94. doi: 10.1111/j.1651-2227.1999.tb01307.x DOI: https://doi.org/10.1111/j.1651-2227.1999.tb01307.x
96. Kunz C, Rudloff S, Baier W, et al. Oligosaccharides in human milk: Structural, functional, and metabolic aspects. Annual Review of Nutrition. 2000; 20(1): 699–722. doi: 10.1146/annurev.nutr.20.1.699 DOI: https://doi.org/10.1146/annurev.nutr.20.1.699
97. Martinez-Ferez A, Rudloff S, Guadix A, et al. Goats’ milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. International Dairy Journal. 2006; 16(2): 173–181. doi: 10.1016/j.idairyj.2005.02.003 DOI: https://doi.org/10.1016/j.idairyj.2005.02.003
98. Meyrand M, Dallas DC, Caillat H, et al. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein. Small Ruminant Research. 2013; 113(2–3): 411–420. doi: 10.1016/j.smallrumres.2013.03.014 DOI: https://doi.org/10.1016/j.smallrumres.2013.03.014
99. Claps S, Di Napoli MA, Sepe L, et al. Sialyloligosaccharides content in colostrum and milk of two goat breeds. Small Ruminant Research. 2014; 121(1): 116–119. doi: 10.1016/j.smallrumres.2013.12.024 DOI: https://doi.org/10.1016/j.smallrumres.2013.12.024
100. Claps S, Di Napoli MA, Caputo AR, et al. Factor affecting the 3′ sialyllactose, 6′ sialyllactose and disialyllactose content in caprine colostrum and milk: Breed and parity. Small Ruminant Research. 2016; 134: 8–13. doi: 10.1016/j.smallrumres.2015.11.002 DOI: https://doi.org/10.1016/j.smallrumres.2015.11.002
101. Martín-Ortiz A, Barile D, Salcedo J, et al. Changes in caprine milk oligosaccharides at different lactation stages analyzed by high performance liquid chromatography coupled to mass spectrometry. Journal of Agricultural and Food Chemistry. 2017; 65(17): 3523–3531. doi: 10.1021/acs.jafc.6b05104 DOI: https://doi.org/10.1021/acs.jafc.6b05104
102. Marziali S, Guerra E, Cerdán-Garcia C, et al. Effect of early lactation stage on goat colostrum: Assessment of lipid and oligosaccharide compounds. International Dairy Journal. 2018; 77: 65–72. doi: 10.1016/j.idairyj.2017.09.004 DOI: https://doi.org/10.1016/j.idairyj.2017.09.004
103. Thurl S, Munzert M, Boehm G, et al. Systematic review of the concentrations of oligosaccharides in human milk. Nutrition Reviews. 2017; 75(11): 920–933. doi: 10.1093/nutrit/nux044 DOI: https://doi.org/10.1093/nutrit/nux044
104. Kunz C, Meyer C, Collado MC, et al. Influence of gestational age, secretor, and Lewis blood group status on the oligosaccharide content of human milk. Journal of Pediatric Gastroenterology and Nutrition. 2017; 64(5): 789–798. doi: 10.1097/mpg.0000000000001402 DOI: https://doi.org/10.1097/MPG.0000000000001402
105. Fong B, Ma K, McJarrow P. Quantification of bovine milk oligosaccharides using liquid chromatography—Selected reaction monitoring—Mass spectrometry. Journal of Agricultural and Food Chemistry. 2011; 59(18): 9788–9795. doi: 10.1021/jf202035m DOI: https://doi.org/10.1021/jf202035m
106. Bruhn JC. Dairy goat milk composition. Available online: https://www.goatworld.com/articles/goatmilkcomposition.shtml#about (accessed on 2 October 2024).
107. National Center for Biotechnology Information (NCBI). Dietary reference values for food energy and nutrients for the United Kingdom. Report of the panel on dietary reference values of the committee on medical aspects of food policy. Reports on health and social subjects. 1991; 41: 1–210.
108. George H. Composition of goat milk and factors affecting it. Small Ruminant Research. 2002; 6: 303–310.
109. Rodríguez EMR, Alaejos MS, Romero CD. Mineral content in goats’ milks. Journal of Food Quality. 2002; 25(4): 343–358. doi: 10.1111/j.1745-4557.2002.tb01030.x DOI: https://doi.org/10.1111/j.1745-4557.2002.tb01030.x
110. Mohsin AZ, Sukor R, Selamat J, et al. Chemical and mineral composition of raw goat milk as affected by breed varieties available in Malaysia. International Journal of Food Properties. 2019; 22(1): 815–824. doi: 10.1080/10942912.2019.1610431 DOI: https://doi.org/10.1080/10942912.2019.1610431
111. Napoli N, Thompson J, Civitelli R, et al. Effects of dietary calcium compared with calcium supplements on estrogen metabolism and bone mineral density. The American Journal of Clinical Nutrition. 2007; 85(5): 1428–1433. doi: 10.1093/ajcn/85.5.1428 DOI: https://doi.org/10.1093/ajcn/85.5.1428
112. Domellöf M, Lönnerdal B, Dewey KG, et al. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. The American Journal of Clinical Nutrition. 2004; 79(1): 111–115. doi: 10.1093/ajcn/79.1.111 DOI: https://doi.org/10.1093/ajcn/79.1.111
113. Kumar H, Yadav D, Kumar N, et al. Nutritional, and nutraceutical properties of goat milk—A review. Indian Journal of Dairy Science. 2016; 69(5): 513–518.
114. Mitchell EJ, Frisbie SH, Roudeau S, et al. Estimating daily intakes of manganese due to breast milk, infant formulas, or young child nutritional beverages in the United States and France: Comparison to sufficiency and toxicity thresholds. Journal of Trace Elements in Medicine and Biology. 2020; 62: 126607. doi: 10.1016/j.jtemb.2020.126607 DOI: https://doi.org/10.1016/j.jtemb.2020.126607
115. Zhou F, Yang Q, Lei C, et al. Relationship between genetic variants of POU1F1, PROP1, IGFBP3 genes and milk performance in Guanzhong dairy goats. Small Ruminant Research. 2016; 140: 40–45. doi: 10.1016/j.smallrumres.2016.05.015 DOI: https://doi.org/10.1016/j.smallrumres.2016.05.015
116. Cavicchioli VQ, Scatamburlo TM, Yamazi AK, et al. Occurrence of Salmonella, Listeria monocytogenes, and enterotoxigenic Staphylococcus in goat milk from small and medium-sized farms located in Minas Gerais State, Brazil. Journal of Dairy Science. 2015; 98(12): 8386–8390. doi: 10.3168/jds.2015-9733 DOI: https://doi.org/10.3168/jds.2015-9733
117. Mohammed A. Review on nutritional and medicinal value of goat milk. Available online: https://www.academia.edu/38493518/nutritional_and_medicinal_importance_of_goat_milk (accessed on 2 October 2024).
118. Park YW. Hypo-allergenic and therapeutic significance of goat milk. Small Ruminant Research. 1994; 14: 151–159. doi: 10.1016/0921-4488(94)90105-8 DOI: https://doi.org/10.1016/0921-4488(94)90105-8
119. Collard KM, McCormick DP. A nutritional comparison of cow’s milk and alternative milk products. Academic Pediatrics. 2021; 21(6): 1067–1069. doi: 10.1016/j.acap.2020.12.007 DOI: https://doi.org/10.1016/j.acap.2020.12.007
120. Kaskous S. A1- and A2-milk and their effect on human health. Journal of Food Engineering and Technology. 2020; 9(1): 15–21. doi: 10.32732/jfet.2020.9.1.15 DOI: https://doi.org/10.32732/jfet.2020.9.1.15
121. Morgan D, Gunneberg C, Gunnell D, et al. Medicinal properties of goat milk. Dairy Goat Journal. 2012; 90: 1.
122. Host A. Frequency of cow’s milk allergy in childhood. Annals of Allergy, Asthma & Immunology. 2002; 89: 33–37. doi: 10.1016/S1081-1206(10)62120-5 DOI: https://doi.org/10.1016/S1081-1206(10)62120-5
123. Sampson HA. Update on food allergy. Journal of Allergy and Clinical Immunology. 2004; 113(5): 805–819. doi: 10.1016/j.jaci.2004.03.014 DOI: https://doi.org/10.1016/j.jaci.2004.03.014
124. Host A, Halken S. Cow’s milk allergy: Where have we come from and where are we going? Endocrine‚ Metabolic & Immune Disorders-Drug Targets. 2014; 14(1): 2–8. doi: 10.2174/1871530314666140121142900 DOI: https://doi.org/10.2174/1871530314666140121142900
125. Lifschitz C, Szajewska H. Cow’s milk allergy: Evidence-based diagnosis and management for the practitioner. European Journal of Pediatrics. 2014; 174(2): 141–150. doi: 10.1007/s00431-014-2422-3 DOI: https://doi.org/10.1007/s00431-014-2422-3
126. Ribeiro AC, Ribeiro SDA. Specialty products made from goat milk. Small Ruminant Research. 2010; 89(2–3): 225–233. doi: 10.1016/j.smallrumres.2009.12.048 DOI: https://doi.org/10.1016/j.smallrumres.2009.12.048
127. Jirillo F, Jirillo E, Magrone T. Donkeys and goats milk consumption and benefits to human health with special reference to the inflammatory status. Current Pharmaceutical Design. 2010; 16(7): 859–863. doi: 10.2174/138161210790883688 DOI: https://doi.org/10.2174/138161210790883688
128. Ballabio C, Chessa S, Rignanese D, et al. Goat milk allergenicity as a function of αS1-casein genetic polymorphism. Journal of Dairy Science. 2011; 94(2): 998–1004. doi: 10.3168/jds.2010-3545 DOI: https://doi.org/10.3168/jds.2010-3545
129. Tetens I. Scientific Opinion on the essential composition of infant and follow-on formulae. European Food Safety Authority. 2014; 1–33. doi: 10.2903/j.efsa.2014.3760 DOI: https://doi.org/10.2903/j.efsa.2014.3760
130. Dhasmana S, Das S, Shrivastava S, Singh KR. Casein, and its fractions from goat milk as promising nutraceuticals. International Journal of Medical Research and Health Science. 2022; 11(7): 1–5.
131. Russell DA, Ross RP, Fitzgerald GF, et al. Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology. 2011; 149(1): 88–105. doi: 10.1016/j.ijfoodmicro.2011.06.003 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.06.003
132. Tripaldi C, Martillotti F, Terramoccia S. Content of taurine and other free amino acids in milk of goats bred in Italy. Small Ruminant Research. 1998; 30: 127–136. doi: 10.1016/S0921-4488(98)00095-9 DOI: https://doi.org/10.1016/S0921-4488(98)00095-9
133. Kaskous S. Importance of camel milk for human health. Emirates Journal of Food and Agriculture. 2016; 28(3): 158. doi: 10.9755/ejfa.2015-05-296 DOI: https://doi.org/10.9755/ejfa.2015-05-296
134. Kaskous S, Pfaffl MW. Bioactive properties of minor camel milk ingredients—An overview. Journal of Camel Practice and Research. 2017; 24(1): 15. doi: 10.5958/2277-8934.2017.00003.0 DOI: https://doi.org/10.5958/2277-8934.2017.00003.0
135. Kaskous S, Pfaffl MW. Milk properties and morphological characteristics of the donkey mammary gland for development of an adopted milking machine—A review. Dairy. 2022; 3(2): 233–247. doi: 10.3390/dairy3020019 DOI: https://doi.org/10.3390/dairy3020019
136. Ulusoy BH. Nutritional and health aspects of goat milk consumption. Academic Food. 2015; 13(1): 56–60.
137. Zenebe T, Ahmed N, Kabeta T, Kebede G. Review on medicinal and nutritional values of goat milk. Academic Journal of Nutrition. 2014; 3(3): 30–39.
138. Roy SK, Vadodaria VP. Goat milk and its importance. Indian Dairyman. 2006; 58: 65–69.
139. Salva S, Villena J, Alvarez S. Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: Impact on intestinal and respiratory infections. International Journal of Food Microbiology. 2010; 141(1–2): 82–89. doi: 10.1016/j.ijfoodmicro.2010.03.013 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.03.013
140. Stergiadis S, Nørskov NP, Purup S, et al. Comparative Nutrient Profiling Of Retail Goat And Cow Milk. Nutrients. 2019; 11(10): 2282. doi: 10.3390/nu11102282 DOI: https://doi.org/10.3390/nu11102282
141. Lejaniya AS, Chandran D, Venkatachalapathy T, et al. Analysis of milk production performance of Attappadi Black, Malabari and cross-bred goats under organized farm conditions of Kerala. The Indian Veterinary Journal. 2021; 98(05): 13–19.
142. Queiroga RCRE, Santos BM, Gomes AMP, et al. Nutritional, textural and sensory properties of Coalho cheese made of goats’, cows’ milk and their mixture. LWT—Food Science and Technology. 2013; 50(2): 538–544. doi: 10.1016/j.lwt.2012.08.011 DOI: https://doi.org/10.1016/j.lwt.2012.08.011
143. Savoini G, Agazzi A, Invernizzi G, et al. Polyunsaturated fatty acids and choline in dairy goats nutrition: Production and health benefits. Small Ruminant Research. 2010; 88(2–3): 135–144. doi: 10.1016/j.smallrumres.2009.12.021 DOI: https://doi.org/10.1016/j.smallrumres.2009.12.021
144. Claeys WL, Verraes C, Cardoen S, et al. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control. 2014; 42: 188–201. doi: 10.1016/j.foodcont.2014.01.045 DOI: https://doi.org/10.1016/j.foodcont.2014.01.045
145. Kabwanga IT, Akal C, Yetisemiyen A. Role of milk, dairy products and milk components used in the management of metabolic syndrome. Research Journal of Agriculture and Forestry Sciences. 2016; 4(9): 14–20.
146. Pandya AJ, Ghodke KM. Goat and sheep milk products other than cheeses and yoghurt. Small Ruminant Research. 2007; 68(1–2): 193–206. doi: 10.1016/j.smallrumres.2006.09.007 DOI: https://doi.org/10.1016/j.smallrumres.2006.09.007
147. Kamelska AM, Jarmołowska B, Bryl K. A simplified enzymatic method for total cholesterol determination in milk. International Dairy Journal. 2015; 50: 50–57. doi: 10.1016/j.idairyj.2015.06.004 DOI: https://doi.org/10.1016/j.idairyj.2015.06.004
148. Bonczar G, Pustkowiak H, Domagała J, et al. Content of cholesterol and fatty acid profile in sweet cream and cream made from milk produced by cows of three different breeds. Food Science Technology Quality. 2016; 105(2): 81–94. doi: 10.15193/zntj/2016/105/117 DOI: https://doi.org/10.15193/zntj/2016/105/117
149. Pietrzak-Fiećko R, Kamelska-Sadowska AM. The comparison of nutritional value of human milk with other mammals’ milk. Nutrients. 2020; 12(5): 1404. doi: 10.3390/nu12051404 DOI: https://doi.org/10.3390/nu12051404
150. Baranwal D. The benefits of consuming goat’s milk. Trends Biosciences. 2013; 6: 513–515.
151. Zapico P, Gaya P, De Paz M, et al. Influence of breed, animal, and days of lactation on lactoperoxidase system components in goat milk. Journal of Dairy Science. 1991; 74: 783–787. doi: 10.3168/jds.S0022-0302(91)78225-8 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78225-8
152. Park YW. Bioactive Components in Goat Milk. In: Park YW (editor). Bioactive Components in Milk and Dairy Products. Wiley-Blackwell; 2009. pp. 43–81. DOI: https://doi.org/10.1002/9780813821504.ch3
153. Martin-Hernandez MC, Juarez M, Ramos M. Biochemical characteristic of three types of goat cheese. Journal of Dairy Science. 1992; 75: 1747–1752. doi: 10.3168/jds.S0022-0302(92)77933-8 DOI: https://doi.org/10.3168/jds.S0022-0302(92)77933-8
154. Bozanic R, Tratnik LJ, Maric O. Effect of skin milk on viscosity and microbiological yogurt during storage (Croatian). Darkness. 1998; 48: 63–74.
155. Pavlović H, Hardi J, Slačanac V, et al. Inhibitory effect of goat and cow milk fermented by Bifidobacterium longum on Serratia marcescens and Campylobacter jejuni. Czech Journal of Food Sciences. 2006; 24(4): 164–171. doi: 10.17221/3312-cjfs DOI: https://doi.org/10.17221/3312-CJFS
156. Quinn EM, Slattery H, Walsh D, et al. Bifidobacterium longum subsp. infantis ATCC 15697 and goat milk oligosaccharides show synergism in vitro as anti-infectives against Campylobacter jejuni. Foods. 2020; 9(3): 348. doi: 10.3390/foods9030348 DOI: https://doi.org/10.3390/foods9030348
157. Liu W, Sun H, Zhou Y, et al. Front Cover: Goat milk consumption ameliorates abnormalities in glucose metabolism and enhances hepatic and skeletal muscle AMP‐activated protein kinase activation in rats fed with high‐fat diets. Molecular Nutrition & Food Research. 2019; 63(24). doi: 10.1002/mnfr.201970059 DOI: https://doi.org/10.1002/mnfr.201970059
158. Liu W, Zhou Y, Sun H, et al. Goat milk improves glucose homeostasis via enhancement of hepatic and skeletal muscle AMP‐activated protein kinase activation and modulation of gut microbiota in streptozocin‐induced diabetic rats. Molecular Nutrition & Food Research. 2021; 65(6). doi: 10.1002/mnfr.202000888 DOI: https://doi.org/10.1002/mnfr.202000888
159. Chen X, Zhang Z, Niu H, et al. Goat milk improves glucose metabolism in Type 2 diabetic mice and protects pancreatic β‐cell functions. Molecular Nutrition & Food Research. 2023; 68(1). doi: 10.1002/mnfr.202200842 DOI: https://doi.org/10.1002/mnfr.202200842
160. Han B, Zhang L, Hou Y, et al. Phosphoproteomics reveals that camel and goat milk improve glucose homeostasis in HDF/STZ-induced diabetic rats through activation of hepatic AMPK and GSK3-GYS axis. Food Research International. 2022; 157: 111254. doi: 10.1016/j.foodres.2022.111254 DOI: https://doi.org/10.1016/j.foodres.2022.111254
161. Liu H, Zhao Q, Guo X, et al. Application of isotopic and elemental fingerprints in identifying the geographical origin of goat milk in China. Food Chemistry. 2019; 277: 448–454. doi: 10.1016/j.foodchem.2018.10.144 DOI: https://doi.org/10.1016/j.foodchem.2018.10.144
162. Kaskous S. Laboratory Tests to Optimize the Milking Machine Settings with Air Inlet Teat Cups for Sheep and Goats. Dairy. 2022; 3(1): 29–46. doi: 10.3390/dairy3010003 DOI: https://doi.org/10.3390/dairy3010003
163. Fernández C, Hernando I, Moreno-Latorre E, et al. Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies. Animal. 2020; 14: s382–s395. doi: 10.1017/s1751731120001470 DOI: https://doi.org/10.1017/S1751731120001470
164. Sandrucci A, Bava L, Tamburini A, et al. Management practices and milk quality in dairy goat farms in Northern Italy. Italian Journal of Animal Science. 2018; 18(1): 1–12. doi: 10.1080/1828051x.2018.1466664 DOI: https://doi.org/10.1080/1828051X.2018.1466664
165. Bergonier D, De Cremoux R, Rupp R, et al. Mastitis of dairy small ruminants. Veterinary Research. 2003; 34(5): 689–716. doi: 10.1051/vetres:2003030 DOI: https://doi.org/10.1051/vetres:2003030
166. Zucali M, Tamburini A, Sandrucci A, et al. Effect of vacuum level on milk flow and vacuum stability in Alpine goat milking. Small Ruminant Research. 2019; 171: 1–7. doi: 10.1016/j.smallrumres.2018.11.025 DOI: https://doi.org/10.1016/j.smallrumres.2018.11.025
167. Caria M, Boselli C, Murgia L, et al. Influence of low vacuum levels on milking characteristics of sheep, goat and buffalo. Journal of Agricultural Engineering. 2013; 44(2s). doi: 10.4081/jae.2013.285 DOI: https://doi.org/10.4081/jae.2013.s2.e43
168. Marnet PG, Combaud JF, Dano Y. Relationships between characteristics of the meat and milk ability in Lacaune ewes. In: milking and milk production of dairy sheep and goats, Proceedings of the sixth International Symposium on the Milking of Small Ruminants; 26 September–1 October 1998; Athens, Greece. EAAP Publication; 1999. Volume 95, pp. 41–44.
169. Sinapis E, Marnet PG, Skapetas B, et al. Vacuum level for opening the teat sphincter and the change of the teat end wall thickness during the machine milking of mountainous Greek breed (Boutsiko) ewes. Small Ruminant Research. 2007; 69(1–3): 136–143. doi: 10.1016/j.smallrumres.2006.01.003 DOI: https://doi.org/10.1016/j.smallrumres.2006.01.003
170. Le Du J, Benmederbel B. Suitability of Saanen goats for mechanical milking: Relationship with physical characteristics of the teat (French). Ann. Zootech. 1984; 33: 375–384. doi: 10.1051/animres:19840307 DOI: https://doi.org/10.1051/animres:19840307
171. Skapetas B, Katanos J, Laga V, et al. Vacuum level for opening the teat sphincter and the change in the teat end wall thickness in response to the machine milking of indigenous Greek goats. Czech Journal of Animal Science. 2008; 53(3): 112–118. doi: 10.17221/2714-cjas DOI: https://doi.org/10.17221/2714-CJAS
172. Marnet PG, Mckusick BC. Regulation of milk ejection and milk ability in small ruminants. Livestock Production Science. 2001; 70(1–2): 125–133. doi: 10.1016/S0301-6226(01)00205-6 DOI: https://doi.org/10.1016/S0301-6226(01)00205-6
173. Sinapis E, Hatziminaoglu I, Marnet PG, et al. Influence of vacuum level, pulsation rate and pulsator ratio on machine milking efficiency in local Greek goats. Livestock Production Science. 2000; 64: 175–181. doi: 10.1016/S0301-6226(99)00151-7 DOI: https://doi.org/10.1016/S0301-6226(99)00151-7
174. Billion P, Marnet PG, Maugras J. Influence of pulsation parameters on milking and udder health of dairy goats. In: Tancin V, Mihina S, Uhrincat M (editors). Physiological and Technical Aspects of Machine Milking. ICAR; 2005. pp. 137–146.
175. Kaskous S, Pfaffl MW. Milking machine settings and liner design are important to improve milking efficiency and lactating animal welfare—Technical note. AgriEngineering. 2023; 5(3): 1314–1326. doi: 10.3390/agriengineering5030083 DOI: https://doi.org/10.3390/agriengineering5030083
176. Salama AAK, Such X, Caja G, et al. Effect of once versus twice daily milking throughout lactation on milk yield and milk composition in dairy goats. Journal of Dairy Science. 2003; 86: 1673–1680. doi: 10.3168/jds.S0022-0302(03)73753-9 DOI: https://doi.org/10.3168/jds.S0022-0302(03)73753-9
177. Capote J, Castro N, Caja G, et al. Effects of the frequency of milking and lactation stage on milk fractions and milk composition in Tinerfeña dairy goats. Small Ruminant Research. 2008; 75(2–3): 252–255. doi: 10.1016/j.smallrumres.2007.11.004 DOI: https://doi.org/10.1016/j.smallrumres.2007.11.004
178. Katanos J, Skapetas B, Laga V. Machine milking ability and milk composition of some imported dairy goat breeds and some crosses in Greece. Czech Journal of Animal Science. 2005; 50(9): 394–401. doi: 10.17221/4220-cjas DOI: https://doi.org/10.17221/4220-CJAS
179. Laga V, Skapetas B, Katanos I, et al. Efficiency of milking machines for dairy ewes in central Macedonia, Greece. Journal of Animal Science. 2007; 36: 23–40.
180. Skapetas B. Fatty acid profile, somatic cell count and microbiological quality of total machine milk and hand stripped milk of Chios ewes. Mljekarstvo. 2017; 67(2): 146–154. DOI: https://doi.org/10.15567/mljekarstvo.2017.0207
181. AlGhsyar MA, Salem SA, Ahmad SH. Studies on physiochemical and functional properties of protein co-precipitates from camel’s and goat’s milk. Health Science Journal. 2018; 12(5). doi: 10.21767/1791-809x.1000587 DOI: https://doi.org/10.21767/1791-809X.1000587
182. Mondeshka L, Dimitrova T, Markov N, et al. Goat colostrum—Composition and impact. Animal Science. 2022; 1: 400–407.
183. Lopez A, Vasconi M, Moretti VM, et al. Fatty acid profile in goat milk from high- and low-input conventional and organic systems. Animals. 2019; 9(7): 452. doi: 10.3390/ani9070452 DOI: https://doi.org/10.3390/ani9070452
184. Polidori P, Rapaccetti R, Klimanova Y, et al. Nutritional parameters in colostrum of different mammalian species. Beverages. 2022; 8(3): 54. doi: 10.3390/beverages8030054 DOI: https://doi.org/10.3390/beverages8030054
185. Delgadillo-Puga C, Noriega LG, Morales-Romero AM, et al. Goat’s milk intake prevents obesity, hepatic steatosis and insulin resistance in mice fed a high-fat diet by reducing inflammatory markers and increasing energy expenditure and mitochondrial content in skeletal muscle. International Journal of Molecular Sciences. 2020; 21(15): 5530. doi: 10.3390/ijms21155530 DOI: https://doi.org/10.3390/ijms21155530
186. Ličková M, Fumačová Havlíková S, Sláviková M, et al. Alimentary Infections by tick-borne encephalitis virus. Viruses. 2021; 14(1): 56. doi: 10.3390/v14010056 DOI: https://doi.org/10.3390/v14010056
187. Berry E, Broughan J. Use of the DeLaval cell counter (DCC) on goats’ milk. Journal of Dairy Research. 2007; 74(3): 345–348. doi: 10.1017/s0022029907002592 DOI: https://doi.org/10.1017/S0022029907002592
188. Petzer IM, Donkin EF, Du Preez E, et al. Value of tests for evaluating udder health in dairy goats: somatic cell counts, California Milk Cell Test and electrical conductivity. Onderstepoort Journal of Veterinary Research. 2008; 75(4). doi: 10.4102/ojvr.v75i4.104 DOI: https://doi.org/10.4102/ojvr.v75i4.104
189. McDougall S, Malcolm D, Prosser C. Prevalence, and incidence of intramammary infections of lactating dairy goats. New Zealand Veterinary Journal. 2014; 62(3): 136–145. doi:10.1080/00480169.2013.865294 DOI: https://doi.org/10.1080/00480169.2013.865294
190. Persson Y, Olofsson I. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. Acta Veterinaria Scandinavica. 2011; 53(1). doi: 10.1186/1751-0147-53-15 DOI: https://doi.org/10.1186/1751-0147-53-15
191. Murphy SC, Boor KJ. Trouble-shooting sources and causes of high bacteria counts in raw milk. Dairy Food Environmental Sanitation. 2000; 20: 606–611.
192. Oliver SP, Jayarao BM, Almeida RA. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease. 2005; 2(2): 115–129. doi: 10.1089/fpd.2005.2.115 DOI: https://doi.org/10.1089/fpd.2005.2.115
193. Pandey GS, Voskuil GCS. Manual on milk safety, quality, and hygiene. Golden Valley Agricultural Research. 2011; 2(1): 52–53.
194. Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. The Lancet Infectious Diseases. 2006; 6(2): 91–99. doi: 10.1016/S1473-3099(06)70382-6 DOI: https://doi.org/10.1016/S1473-3099(06)70382-6
195. Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. The Lancet Infectious Diseases. 2007; 7(12): 775–786. doi: 10.1016/S1473-3099(07)70286-4 DOI: https://doi.org/10.1016/S1473-3099(07)70286-4
196. Di M, Tao Z, et al. Investigation of brucellosis caused by raw goat milk—Fujian Province, China, April–June, 2019. China CDC Weekly. 2021; 3(20): 430–433. doi: 10.46234/ccdcw2021.111 DOI: https://doi.org/10.46234/ccdcw2021.111
197. Wójcik-Fatla A, Krzowska-Firych J, Czajka K, et al. The consumption of raw goat milk resulted in TBE in patients in Poland, 2022 “Case Report”. Pathogens. 2023; 12(5): 653. doi: 10.3390/pathogens12050653 DOI: https://doi.org/10.3390/pathogens12050653
198. Kuhn KG, Nielsen EM, Mølbak K, et al. Determinants of sporadic Campylobacter infections in Denmark: a nationwide case-control study among children and young adults. Clinical Epidemiology. 2018; 10: 1695–1707. doi: 10.2147/clep.s177141 DOI: https://doi.org/10.2147/CLEP.S177141
199. Sainato R, ElGendy A, Poly F, et al. Epidemiology of Campylobacter infections among children in Egypt. The American Journal of Tropical Medicine and Hygiene. 2018; 98(2): 581–585. doi: 10.4269/ajtmh.17-0469 DOI: https://doi.org/10.4269/ajtmh.17-0469
200. Obaidat MM, Alshdaifat RM. High prevalence of multidrug-resistant Campylobacter jejuni in sheep and goats’ milk in Jordan. International Dairy Journal. 2023; 143: 105676. doi: 10.1016/j.idairyj.2023.105676 DOI: https://doi.org/10.1016/j.idairyj.2023.105676
201. Kornblatt AN, Barrett T, Morris GK, et al. Epidemiologic and laboratory investigation of an outbreak of Campylobacter enteritis associated with raw milk. American Journal of Epidemiology. 1985; 122(5): 884–889. doi: 10.1093/oxfordjournals.aje.a114171 DOI: https://doi.org/10.1093/oxfordjournals.aje.a114171
202. Harris NV, Kimball TJ, Bennett P, et al. Campylobacter jejuni enteritis associated with raw goat’s milk. American Journal of Epidemiology. 1987; 126(2): 179–186. doi: 10.1093/aje/126.2.179 DOI: https://doi.org/10.1093/aje/126.2.179
203. Asuming-Bediako N, Kunadu PH, Abraham AS, Habib I. Campylobacter at the human-food interface: The African perspective. Pathogens. 2019; 8(2): 87. doi: 10.3390/pathogens8020087 DOI: https://doi.org/10.3390/pathogens8020087
204. Carron M, Chang YM, Momanyi K, et al. Campylobacter, a zoonotic pathogen of global importance: Prevalence and risk factors in the fast-evolving chicken meat system of Nairobi, Kenya. PLOS Neglected Tropical Diseases. 2018; 12(8): e0006658. doi: 10.1371/journal.pntd.0006658 DOI: https://doi.org/10.1371/journal.pntd.0006658
205. Gaya P, Saralegui C, Medina M, Munez M. Occurrence of Listeria monocytogenes and other Listeria spp. in raw caprine milk. Journal of Dairy Science 1996; 79: 1936–1941. doi: 10.3168/jds.S0022-0302(96)76563-3 DOI: https://doi.org/10.3168/jds.S0022-0302(96)76563-3
206. Abou-Eleinin AAM, Ryser ET, Donnelly CW. Incidence and seasonal variation of Listeria species in bulk tank goat’s milk. Journal of Food Protection. 2000; 63(9): 1208–1213. doi: 10.4315/0362-028x-63.9.1208 DOI: https://doi.org/10.4315/0362-028X-63.9.1208
207. World Health Organization (WHO). Foodborne listeriosis. WHO. 1988; 66: 421–428.
208. Ryser ET, Marth EH. Listeria, listeriosis and food safety, 2nd ed. Marcel Dekker Inc.; 1999. pp. 1–356.
209. Greenwood MH, Roberts D, Burden P. The occurrence of Listeria species in milk and dairy products: a national survey in England and Wales. International Journal of Food Microbiology. 1991; 12: 197–206. doi: 10.1016/0168-1605(91)90070-6 DOI: https://doi.org/10.1016/0168-1605(91)90070-6
210. Basanisi MG, La Bella G, Nobili G, et al. Detection of Coxiella burnetii DNA in sheep and goat milk and dairy products by droplet digital PCR in south Italy. International Journal of Food Microbiology. 2022; 366: 109583. doi: 10.1016/j.ijfoodmicro.2022.109583 DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109583
211. Maurin M, Raoult D. Q Fever. Clinical Microbiology Reviews. 1999; 12(4): 518–553. doi: 10.1128/cmr.12.4.518 DOI: https://doi.org/10.1128/CMR.12.4.518
212. Angelakis E, Raoult D. Q fever. Veterinary Microbiology. 2010; 140(3–4): 297–309. doi: 10.1016/j.vetmic.2009.07.016 DOI: https://doi.org/10.1016/j.vetmic.2009.07.016
213. Pexara A, Solomakos N, Govaris A. Q fever and seroprevalence of Coxiella burnetii in domestic ruminants. Veterinaria Italiana. 2018; 54(4): 265–279.
214. Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009; 364(1530): 2709–2723. doi: 10.1098/rstb.2009.0094 DOI: https://doi.org/10.1098/rstb.2009.0094
215. Hempstead SC, Gensler CA, Keelara S, et al. Detection and molecular characterization of Salmonella species on U.S. goat operations. Preventive Veterinary Medicine. 2022; 208: 105766. doi: 10.1016/j.prevetmed.2022.105766 DOI: https://doi.org/10.1016/j.prevetmed.2022.105766
216. Woldemariam E, Molla B, Alemayehu D, et al. Prevalence and distribution of Salmonella in apparently healthy slaughtered sheep and goats in Debre Zeit, Ethiopia. Small Ruminant Research. 2005; 58(1): 19–24. doi: 10.1016/j.smallrumres.2004.08.008 DOI: https://doi.org/10.1016/j.smallrumres.2004.08.008
217. Silanikove N, Leitner G, Merin U, et al. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Ruminant Research. 2010; 89(2–3): 110–124. doi: 10.1016/j.smallrumres.2009.12.033 DOI: https://doi.org/10.1016/j.smallrumres.2009.12.033
218. Rola JG, Sosnowski M, Ostrowska M, et al. Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Ruminant Research. 2015; 123(1): 124–128. doi: 10.1016/j.smallrumres.2014.11.010 DOI: https://doi.org/10.1016/j.smallrumres.2014.11.010
219. Bernardo YAA, do Rosario DKA, Mutz YS, et al. Optimizing Escherichia coli O157: H7 inactivation in goat’s milk by thermosonication. Journal of Food Process Engineering. 2022; 46(6). doi: 10.1111/jfpe.14188 DOI: https://doi.org/10.1111/jfpe.14188
220. Zorraquino MA, Althaus RL, Roca M, et al. Heat treatment effects on the antimicrobial activity of macrolide and lincosamide antibiotics in milk. Journal of Food Protection. 2011; 74(2): 311–315. doi: 10.4315/0362-028x.jfp-10-297 DOI: https://doi.org/10.4315/0362-028X.JFP-10-297

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.