Thermophysical properties and antioxidant capacity of spray-dried curcumin multilayered microcapsules stabilized by gelatin, gum arabic and tannic acid
DOI:
https://doi.org/10.18686/fnc281Keywords:
curcumin; microcapsule; multilayer; antioxidant capacityAbstract
The use of curcumin in different food products is restricted due to its poor water solubility and chemical instability. In this context, to facilitate the incorporation of curcumin in food products and increase its protection against light, the study was aimed at developing spray-dried curcumin multilayered microcapsules stabilized by gelatin, gum arabic, and tannic acid, characterizing their thermophysical properties, and studying the antioxidant capacity of microencapsulated curcumin and storage under light conditions. Spray-dried curcumin multilayered microcapsules were prepared and characterized by particle size distribution, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, Differential Scanning Calorimetry (DSC), and antioxidant capacity. The volume mean diameter D (4.3) of the microcapsules stabilized with one (gelatin), two (gelatin + gum arabic), and three (gelatin + gum arabic + tannic acid) layers was 106.44 (14.80), 22.83 (0.59), and 41.74 (2.30), respectively. The microcapsules exhibited a semi-spherical shell structure, and the governing forces between microcapsule components were electrostatic, hydrophobic, and hydrogen bonding interactions. The addition of wall materials increased the glass transition temperature (Tg), which allowed that two- and three-layered preserved the antioxidant capacity of curcumin under light conditions, holding great promise for this approach in the application to other lipophilic bioactive compounds.
References
1. Araiza-Calahorra A, Akhtar M, Sarkar A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology. 2018; 71: 155–169. doi: 10.1016/j.tifs.2017.11.009
2. Kaufmann FN, Gazal M, Bastos CR, et al. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings. European Journal of Pharmacology. 2016; 784: 192–198. doi: 10.1016/j.ejphar.2016.05.026
3. Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacological Research. 2017; 115: 133–148. doi: 10.1016/j.phrs.2016.11.017
4. Rauf A, Imran M, Orhan IE, Bawazeer S. Health perspectives of a bioactive compound curcumin: A review. Trends in Food Science & Technology. 2018; 74: 33–45. doi: 10.1016/j.tifs.2018.01.016
5. Serafini MM, Catanzaro M, Rosini M, et al. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacological Research. 2017; 124: 146–155. doi: 10.1016/j.phrs.2017.08.004
6. Bansal SS, Goyal M, Aquil F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research. 2011; 4(8): 1158–1171.
7. Donsì F, Sessa M, Mediouni H, et al. Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Science. 2011; 1: 1666–1671. doi: 10.1016/j.profoo.2011.09.246
8. Lim ASL, Burdikova Z, Sheehan JJ, Roos YH. Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose–WPI composites as wall materials. Innovative Food Science & Emerging Technologies. 2016; 34: 310–319. doi: 10.1016/j.ifset.2016.03.001
9. Guzey D, McClements DJ. Impact of Electrostatic Interactions on Formation and Stability of Emulsions Containing Oil Droplets Coated by β-Lactoglobulin−Pectin Complexes. Journal of Agricultural and Food Chemistry. 2007; 55(2): 475–485. doi: 10.1021/jf062342f
10. McClements DJ. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid & Interface Science. 2012; 17(5): 235–245. doi: 10.1016/j.cocis.2012.06.002
11. Huang J, Wang Q, Li T, et al. Multilayer emulsions as a strategy for linseed oil and α‐lipoic acid micro-encapsulation: Study on preparation and in vitro characterization. Journal of the Science of Food and Agriculture. 2018; 98(9): 3513–3523. doi: 10.1002/jsfa.8870
12. Piornos JA, Burgos-Díaz C, Morales E, et al. Highly efficient encapsulation of linseed oil into alginate/lupin protein beads: Optimization of the emulsion formulation. Food Hydrocolloids. 2017; 63: 139–148. doi: 10.1016/j.foodhyd.2016.08.031
13. Acevedo-Fani A, Silva HD, Soliva-Fortuny R, et al. Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol. Food Hydrocolloids. 2017; 71: 207–215. doi: 10.1016/j.foodhyd.2017.05.007
14. Silva HD, Poejo J, Pinheiro AC, et al. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods. 2018; 48: 605–613. doi: 10.1016/j.jff.2018.08.002
15. Hou Z, Zhang M, Liu B, et al. Effect of chitosan molecular weight on the stability and rheological properties of β-carotene emulsions stabilized by soybean soluble polysaccharides. Food Hydrocolloids. 2012; 26(1): 205–211. doi: 10.1016/j.foodhyd.2011.05.013
16. Dickinson E. In: An introduction to food colloids. Oxford University Press; 1992.
17. McClements DJ. Food emulsions: Principles, practices, and techniques, 3rd ed. CRC Press; 2016.
18. Mirhosseini H, Tan CP, Hamid NSA, Yusof S. Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 315(1–3): 47–56. doi: 10.1016/j.colsurfa.2007.07.007
19. Rein MJ, Renouf M, Cruz-Hernandez C, et al. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology. 2013; 75(3): 588–602. doi: 10.1111/j.1365-2125.2012.04425.x
20. Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International. 2007; 40(9): 1107–1121. doi: 10.1016/j.foodres.2007.07.004
21. Encina C, Vergara C, Giménez B, et al. Conventional spray-drying and future trends for the microencapsulation of fish oil. Trends in Food Science & Technology. 2016; 56: 46–60. doi: 10.1016/j.tifs.2016.07.014
22. Berendsen R, Güell C, Ferrando M. Spray dried double emulsions containing procyanidin-rich extracts produced by premix membrane emulsification: Effect of interfacial composition. Food Chemistry. 2015; 178: 251–258. doi: 10.1016/j.foodchem.2015.01.093
23. Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology. 2008; 26(7): 816–835. doi: 10.1080/07373930802135972
24. Zou Y, Guo J, Yin SW, et al. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. Journal of Agricultural and Food Chemistry. 2015; 63(33): 7405–7414. doi: 10.1021/acs.jafc.5b03113
25. Narukulla R, Ojha U, Sharma T. Enhancing the stability and redispersibility of o/w Pickering emulsion through polyacryloyl hydrazide-tannic acid synergy. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 568: 204–215. doi: 10.1016/j.colsurfa.2019.02.012
26. Hu Z, Marway HS, Kasem H, et al. Dried and redispersible cellulose nanocrystal pickering emulsions. ACS Macro Letters. 2016; 5(2): 185–189. doi: 10.1021/acsmacrolett.5b00919
27. Matalanis A, Jones OG, McClements DJ. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids. 2011; 25(8): 1865–1880. doi: 10.1016/j.foodhyd.2011.04.014
28. Ogrodowska D, Tańska M, Brandt W. The influence of drying process conditions on the physical properties, bioactive compounds and stability of encapsulated pumpkin seed oil. Food and Bioprocess Technology. 2017; 10(7): 1265–1280. doi: 10.1007/s11947-017-1898-z
29. Huang H, Hao S, Li L, et al. Influence of emulsion composition and spray-drying conditions on microencapsulation of tilapia oil. Journal of Food Science and Technology. 2014; 51(9): 2148–2154. doi: 10.1007/s13197-012-0711-2
30. Bucurescu A, Blaga AC, Estevinho BN, Rocha F. Microencapsulation of Curcumin by a Spray-Drying Technique Using Gum Arabic as Encapsulating Agent and Release Studies. Food and Bioprocess Technology. 2018; 11(10): 1795–1806. doi: 10.1007/s11947-018-2140-3
31. Estrada-Fernández AG, Román-Guerrero A, Jiménez-Alvarado R, et al. Stabilization of oil-in-water-in-oil (O1/W/O2) Pickering double emulsions by soluble and insoluble whey protein concentrate-gum arabic complexes used as inner and outer interfaces. Journal of Food Engineering. 2018; 221: 35–44.
32. Shaw LA, McClements DJ, Decker EA. Spray-dried multilayered emulsions as a delivery method for ω-3 fatty acids into food systems. Journal of Agricultural and Food Chemistry. 2007; 55(8): 3112–3119. doi: 10.1021/jf063068s
33. Tavernier I, Patel AR, Van der Meeren P, Dewettinck K. Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes. Food Hydrocolloids. 2017; 65: 107–120. doi: 10.1016/j.foodhyd.2016.11.008
34. Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering. 2013; 115: 443–451. doi: 10.1016/j.jfoodeng.2012.03.033
35. Cano-Higuita DM, Malacrida CR, Telis VRN. Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch. Journal of Food Processing and Preservation. 2015; 39(6): 2049–2060. doi: 10.1111/jfpp.12448
36. Leiva-Vega J, Villalobos-Carvajal R, Ferrari G, et al. Influence of interfacial structure on physical stability and antioxidant activity of curcumin multilayer emulsions. Food and Bioproducts Processing. 2020; 121: 65–75. doi: 10.1016/j.fbp.2020.01.010
37. Mezger T. In: The rheology handbook: For users of rotational and oscillatory rheometers. Vincentz Verlag; 2002.
38. Turchiuli C, Jimenez Munguia MT, Hernandez Sanchez M, et al. Use of different supports for oil encapsulation in powder by spray drying. Powder Technology. 2014; 255: 103–108. doi: 10.1016/j.powtec.2013.08.026
39. Ferreira S, Piovanni GMO, Malacrida CR, Nicoletti VR. Influence of emulsification methods and spray drying parameters on the microencapsulation of turmeric oleoresin. Emirates Journal of Food and Agriculture. 2019; 31: 491–500. doi: 10.9755/ejfa.2019.v31.i7.1968
40. Aniesrani Delfiya DS, Thangavel K, Natarajan N, et al. Microencapsulation of turmeric oleoresin by spray drying and in vitro release studies of microcapsules. Journal of Food Process Engineering. 2014; 38(1): 37–48. doi: 10.1111/jfpe.12124
41. Jillavenkatesa A, Lum LSH, Dapkunas S. NIST Recommended practice guide: Particle size characterization. National Institute of Standards and Technology (NIST). 2001.
42. Carvalho AGS, Silva VM, Hubinger MD. Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Research International. 2014; 61: 236–245. doi: 10.1016/j.foodres.2013.08.012
43. Quan P, Xia D, Piao H, et al. Nitrendipine nanocrystals: Its preparation, characterization, and in vitro—in vivo evaluation. AAPS PharmSciTech. 2011; 12(4): 1136–1143. doi: 10.1208/s12249-011-9682-2
44. Cano-Higuita DM, Vélez HAV, Telis VRN. Microencapsulation of turmeric oleoresin in binary and ternary blends of gum arabic, maltodextrin and modified starch. Ciência e Agrotecnologia. 2015; 39(2): 173–182. doi: 10.1590/s1413-70542015000200009
45. Dhakal S, Chao K, Schmidt W, et al. Evaluation of turmeric powder adulterated with metanil yellow using FT-Raman and FT-IR Spectroscopy. Foods. 2016; 5(2): 36. doi: 10.3390/foods5020036
46. Beldarrain-Iznaga T, Villalobos-Carvajal R, Leiva-Vega J, Sevillano Armesto E. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food and Bioproducts Processing. 2020; 124: 57–71. doi: 10.1016/j.fbp.2020.08.009
47. Yousif SM, Al-Marzouqi AH, Mohsin MA. Microencapsulation of ibuprofen into polyvinylpyrrolidone using supercritical fluid technology. Journal of Chemical Engineering & Process Technology. 2016; 07(04): 306. doi: 10.4172/2157-7048.1000306
48. Noello C, Carvalho AGS, Silva VM, Hubinger MD. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition. Food Research International. 2016; 89: 549–557. doi: 10.1016/j.foodres.2016.09.003
49. Zeng L, Lee J, Jo YJ, Choi MJ. Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocolloids. 2023; 139: 108537. doi: 10.1016/j.foodhyd.2023.108537
50. Dickinson E. Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids. 2011; 25(8): 1966–1983. doi: 10.1016/j.foodhyd.2010.12.001
51. Hua Y, Wei Z, Xue C. Bilayer electrostatic deposition: An effective strategy to enhance physical stability of double emulsion. Food Hydrocolloids. 2023; 145: 109083. doi: 10.1016/j.foodhyd.2023.109083
52. Burgos-Díaz C, Wandersleben T, Marqués AM, Rubilar M. Multilayer emulsions stabilized by vegetable proteins and polysaccharides. Current Opinion in Colloid & Interface Science. 2016; 25: 51–57. doi: 10.1016/j.cocis.2016.06.014
53. Xie L, Ciftci O, Zhang Y. Encapsulation of astaxanthin-enriched camelina oil extract in ovalbumin/gum arabic stabilized emulsion with/without crosslinking by tannic acid. ES Food & Agroforestry. 2020; 1(2): 77–84. doi: 10.30919/esfaf0006
54. Rahimi HR, Nedaeinia R, Sepehri Shamloo A, et al. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna Journal of Phytomedicine. 2016; 6: 383–398.
55. Som S, Singh SK, Khatik GL, et al. Quality by design-based crystallization of curcumin using liquid antisolvent precipitation: Micromeritic, biopharmaceutical, and stability aspects. ASSAY Drug Development Technologies. 2020; 18(1): 11–33.
56. Du J, Dai H, Wang H, et al. Preparation of high thermal stability gelatin emulsion and its application in 3D printing. Food Hydrocolloids. 2021; 113: 106536. doi: 10.1016/j.foodhyd.2020.106536
57. John H, Mansuri SM, Giri SK, Sinha LK. Rheological properties and particle size distribution of soy protein isolate as affected by drying methods. Nutrition & Food Science International Journal. 2018; 75(5): 555721. doi: 10.19080/NFSIJ.2018.07.555721
58. Zhao Z, Xie M, Li Y, et al. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2. International Journal of Nanomedicine. 2015; 3171. doi: 10.2147/ijn.s80434
59. Kanwal Q, Ahmed M, Hamza M, et al. Curcumin nanoparticles: Physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies. RSC Advances. 2023; 13(32): 22268–22280. doi: 10.1039/D3RA01432K
60. Wang Y, Lu Z, Lv F, Bie X. Study on microencapsulation of curcumin pigments by spray drying. European Food Research and Technology. 2009; 229(3): 391–396. doi: 10.1007/s00217-009-1064-6
61. Patel SS, Pushpadass HA, Franklin MEE, et al. Microencapsulation of curcumin by spray drying: Characterization and fortification of milk. Journal of Food Science and Technology. 2021; 59(4): 1326–1340. doi: 10.1007/s13197-021-05142-0
62. Nguyen VT, Huynh TM, Nguyen TNQ, Le TH. Enhancing the stability of synthesized curcumin by spray-drying microencapsulation with soy lecithin and gum arabic. Brazilian Journal of Chemical Engineering. 2021; 38(3): 563–572. doi: 10.1007/s43153-021-00124-3
63. Fioramonti SA, Rubiolo AC, Santiago LG. Characterization of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technology. 2017; 319: 238–244. doi: 10.1016/j.powtec.2017.06.052
64. Ré MI. Microencapsulation by spray drying. Drying Technology. 1998; 16(6): 1195–1236. doi: 10.1080/07373939808917460
65. Singer A, Barakat Z, Mohapatra S, Mohapatra SS. Nanoscale drug-delivery systems: In vitro and in vivo characterization. In: Mohapatra S, Ranjan S, Dasgupta N, et al. (editors). Nanoscale Drug-Delivery Systems: Nanocarriers for Drug Delivery. Elsevier; 2019. pp. 395–419.
66. Oliete B, Yassine SA, Cases E, Saurel R. Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Food Research International. 2019; 119: 444–454. doi: 10.1016/j.foodres.2019.02.015
67. Sahoo S, Chakraborti CK, Behera PK, Mishra SC. FTIR and Raman Spectroscopic investigations of a norfloxacin/carbopol934 polymerie suspension. Journal of Young Pharmacists. 2012; 4(3): 138–145. doi: 10.4103/0975-1483.100017
68. Oliveira RN, Mancini MC, de Oliveira FCS, et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria. 2016; 21(3): 767–779. doi: 10.1590/s1517-707620160003.0072
69. Renuga Devi TS, Gayathri S. FTIR and FT-Raman spectral analysis of paclitaxel drugs. International Journal of Pharmaceutical Sciences Review and Research. 2010; 2: 106–110.
70. Simonova D, Karamancheva I. Application of Fourier Transform Infrared spectroscopy for tumor diagnosis. Biotechnology & Biotechnological Equipment. 2013; 27(6): 4200–4207. doi: 10.5504/bbeq.2013.0106
71. Roy S, Yue CY, Lam YC, et al. Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sensors and Actuators B: Chemical. 2010; 150(2): 537–549. doi: 10.1016/j.snb.2010.08.043
72. Flesch TK, Wilson DJ, Harper LA, Crenna BP. Estimating gas emissions from a farm with an inverse-dispersion technique. Atmospheric Environment. 2005; 39: 4863–4874.
73. Sun Q, Li W. In: Inorganic-whisker-reinforced polymer composites: Synthesis, properties and applications. CRC Press; 2015.
74. Janakiraman N, Johnson M. Functional groups of tree ferns (cyathea) using FT-IR: Chemotaxonomic implications. Romanian Journal of Biophysics. 2015; 25: 131–141.
75. Kim H, Lim C, Hong SI. Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl-terminated polyether and 3-isocyanatopropyltriethoxysilane. Journal of Sol-Gel Science and Technology. 2005; 36(2): 213–221. doi: 10.1007/s10971-005-3782-y
76. Sanaeishoar H, Sabbaghan M, Mohave F. Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Microporous and Mesoporous Materials. 2015; 217: 219–224.
77. Thomas S, Kalarikkal N, Stephan AM, et al. Advanced nanomaterials: Synthesis, properties, and applications. CRC Press; 2014.
78. Rahali K, Ben Messaoud G, Kahn C, et al. Synthesis and characterization of nanofunctionalized gelatin methacrylate hydrogels. International Journal of Molecular Sciences. 2017; 18(12): 2675. doi: 10.3390/ijms18122675
79. Kalia S, Avérous L. In: Biodegradable and biobased polymers for environmental and biomedical applications. John Wiley and Sons; 2016.
80. Thakur VK. In: Lignocellulosic polymer composites: Processing, characterization, and properties. John Wiley and Sons; 2014.
81. Wan M. Conducting polymers with micro or nanometer structure. Springer; 2008.
82. Zhang M, Xu J. Studies on test transformation of chinese coal by micro-organisms. International Coal Preparation congress 2010. Conference Proceedings. 2010.
83. Chen WZ, Li Q, Chen YL, et al. New Materials and Processes. Trans Tech Publications Ltd; 2012.
84. Saito G, Wudl F, Haddon RC, et al. In: Multifunctional conducting molecular materials. RSC Publishing; 2007.
85. Hu Y, Sun W, Liu R, Dai J. Wastewater recycling technology in fankou lead-zinc mine of China. Water in mineral processing. Proceedings of the first international symposium. 2012.
86. Fan W. Advanced materials research Ⅱ. Trans Tech Publications Ltd; 2012.
87. Ouellete RJ, Rawn JD. Organic chemistry study guide: Key concepts, problems, and solutions. Elsevier; 2015.
88. Shaddel R, Hesari J, Azadmard-Damirchi S, et al. Use of gelatin and gum arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules. 2018; 107: 1800–1810. doi: 10.1016/j.ijbiomac.2017.10.044
89. Park K, Jeong H, Tanum J, et al. Developing regulatory property of gelatin-tannic acid multilayer films for coating-based nitric oxide gas delivery system. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-44678-2
90. Velmurugan P, Singam ERA, Jonnalagadda RR, Subramanian V. Investigation on interaction of tannic acid with type I collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications. Biopolymers. 2014; 101(5): 471–483. doi: 10.1002/bip.22405
91. Carpenter J, George S, Saharan VK. Curcumin encapsulation in multilayer oil-in-water emulsion: Synthesis using ultrasonication and studies on stability and antioxidant and release activities. Langmuir. 2019; 35(33): 10866–10876. doi: 10.1021/acs.langmuir.9b01523
92. Kumar R, Nagarwal RC, Dhanawat M, Pandit JK. In-vitro and In-vivo study of indomethacin loaded gelatin nanoparticles. Journal of Biomedical Nanotechnology. 2011; 7(3): 325–333. doi: 10.1166/jbn.2011.1290
93. Khodaei D, Hamidi-Esfahani Z, Lacroix M. Gelatin and low methoxyl pectin films containing probiotics: Film characterization and cell viability. Food Bioscience. 2020; 36: 100660. doi: 10.1016/j.fbio.2020.100660
94. Karpina VR, Kovalenko SS, Kovalenko SM, et al. A novel series of [1,2,4]triazolo[4,3-a]pyridine sulfonamides as potential antimalarial agents: In silico studies, synthesis and in vitro evaluation. Molecules. 2020; 25(19): 4485. doi: 10.3390/molecules25194485
95. Brown SL, Warwick NWM, Prychid CJ. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)? Plant Physiology and Biochemistry. 2013; 73: 219–228. doi: 10.1016/j.plaphy.2013.10.006
96. Guerra RB, Gálico DA, Holanda BBC, Bannach G. Solid-state thermal and spectroscopic studies of the anti-inflammatory drug sulindac using UV–Vis, MIR, NIR, DSC, simultaneous TG–DSC, and the coupled techniques TG-EGA-MIR and DSC–optical microscopy. Journal of Thermal Analysis and Calorimetry. 2016; 123(3): 2523–2530. doi: 10.1007/s10973-015-5228-2
97. Lisperguer J, Saravia Y, Vergara E. Structure and thermal behavior of tannins from Acacia dealbata bark and their reactivity to ward formaldehyde. Journal of the Chilean Chemical Society. 2016; 61(4): 3188–3190. doi: 10.4067/s0717-97072016000400007
98. Tang XC, Pikal MJ, Taylor LS. The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. Pharmaceutical Research. 2002; 19: 484–490.
99. Chuaynukul K, Prodpran T, Benjakul S. Preparation, thermal properties and characteristics of gelatin molding compound resin. Research Journal of Chemical and Environmental Sciences. 2014; 2: 01–09.
100. Righetto AM, Netto FM. Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature Acerola. International Journal of Food Properties. 2005; 8(2): 337–346. doi: 10.1081/jfp-200060262
101. Jansen JC. Glass transition temperature (Tg). In: Encyclopedia of membranes. Springer; 2015. pp. 1–3.
102. Martins RM, Pereira SV, Siqueira S, et al. Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract. Food Research International. 2013; 50(2): 657–663. doi: 10.1016/j.foodres.2011.06.030
103. Fernandes MRV, Azzolini AECS, Martinez MLL, et al. Assessment of Antioxidant Activity of Spray Dried Extracts ofPsidium guajavaLeaves by DPPH and Chemiluminescence Inhibition in Human Neutrophils. BioMed Research International. 2014; 2014: 1–10. doi: 10.1155/2014/382891
104. Ma Y, Wang Q, Wang D, et al. Silica-lipid hybrid microparticles as efficient vehicles for enhanced stability and bioaccessibility of curcumin. Food Technology and Biotechnology. 2019; 57(3): 319–330. doi: 10.17113/ftb.57.03.19.6035

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.