Vegetarian and ketogenic diets: Their relationship with gut microbiome and mental health, and their clinical applications
DOI:
https://doi.org/10.18686/fnc278Keywords:
vegetarian diets; ketogenic diets; gut microbiome; mental health; clinical applications; healthcare settings; dietary patternsAbstract
In Western societies, vegetarian and ketogenic diets are increasingly raising attention. Understanding the differential effects of these dietary approaches could provide valuable insights into their potential clinical applications and, importantly, refine their use in targeted health promotion strategies. Therefore, the present narrative review examines the vegetarian and ketogenic diets, focusing on their association with the gut microbiome, their influence on mental health, and their potential clinical applications in healthcare settings. The vegetarian diet promotes gut microbiome diversity and enhances the growth of beneficial bacteria associated with fiber fermentation, supporting intestinal health and immune function. In contrast, the ketogenic diet induces ketosis and alters the gut microbiome by reducing certain beneficial bacteria but increasing others associated with metabolic shifts. In terms of mental health, vegetarian diets may improve psychological well-being and cognitive functioning, although there are contradictory results, while ketogenic diets have shown potential benefits in ameliorating seizure symptoms. Clinically, vegetarian diets are often recommended for preventing chronic diseases, managing cardiovascular conditions, and improving overall health, while ketogenic diets are primarily applied in epileptic patients but are also being tested for the treatment of various metabolic and mental disorders. Thus, both dietary approaches can offer potential clinical benefits, but understanding their impacts and underlying mechanisms is essential for developing dietary recommendations adapted to specific populations.
References
1. Cena H, Calder PC. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients. 2020; 12(2): 334. doi: 10.3390/nu12020334
2. Thibault R, Abbasoglu O, Ioannou E, et al. ESPEN guideline on hospital nutrition. Clinical Nutrition. 2021; 40(12): 5684-5709. doi: 10.1016/j.clnu.2021.09.039
3. Zhang Z, Tan S, Wu G. ESPEN guideline on hospital diet nutrition. Clinical Nutrition. 2022; 41(2): 570. doi: 10.1016/j.clnu.2021.12.029
4. Martín-Folgueras T, Velasco-Gimeno C, Salcedo-Crespo S, et al. Hospital feeding process (Spanish). Nutrición Hospitalaria. 2019; 36(3): 734-742. doi: 10.20960/nh.02543
5. Gilbert JA, Lynch SV. Community ecology as a framework for human microbiome research. Nature Medicine. 2019; 25(6): 884-889. doi: 10.1038/s41591-019-0464-9
6. Gerber GK. The dynamic microbiome. FEBS Letters. 2014; 588(22): 4131-4139. doi: 10.1016/j.febslet.2014.02.037
7. Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2024; 128: 110861. doi: 10.1016/j.pnpbp.2023.110861
8. Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019; 7(1): 14. doi: 10.3390/microorganisms7010014
9. Dobersek U, Wy G, Adkins J, et al. Meat and mental health: a systematic review of meat abstention and depression, anxiety, and related phenomena. Critical Reviews in Food Science and Nutrition. 2020; 61(4): 622-635. doi: 10.1080/10408398.2020.1741505
10. Marx W, Lane M, Hockey M, et al. Diet and depression: exploring the biological mechanisms of action. Molecular Psychiatry. 2020; 26(1): 134-150. doi: 10.1038/s41380-020-00925-x
11. Horn J, Mayer DE, Chen S, et al. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry. 2022; 12(1). doi: 10.1038/s41398-022-01922-0
12. Cantarel BL, Lombard V, Henrissat B. Complex Carbohydrate Utilization by the Healthy Human Microbiome. PLoS ONE. 2012; 7(6): e28742. doi: 10.1371/journal.pone.0028742
13. Hibberd MC, Wu M, Rodionov DA, et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Science Translational Medicine. 2017; 9(390). doi: 10.1126/scitranslmed.aal4069
14. Briguglio M, Dell’Osso B, Panzica G, et al. Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients. 2018; 10(5): 591. doi: 10.3390/nu10050591
15. Sarris J, Logan AC, Akbaraly TN, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015; 2(3): 271-274. doi: 10.1016/S2215-0366(14)00051-0
16. Deane KHO, Jimoh OF, Biswas P, et al. Omega-3 and polyunsaturated fat for prevention of depression and anxiety symptoms: systematic review and meta-analysis of randomised trials. The British Journal of Psychiatry. 2019; 218(3): 135-142. doi: 10.1192/bjp.2019.234
17. Su KP, Tseng PT, Lin PY, et al. Association of Use of Omega-3 Polyunsaturated Fatty Acids With Changes in Severity of Anxiety Symptoms. JAMA Network Open. 2018; 1(5): e182327. doi: 10.1001/jamanetworkopen.2018.2327
18. Sarris J, Mehta B, Óvári V, et al. Potential mental and physical benefits of supplementation with a high-dose, B-complex multivitamin/mineral supplement: What is the evidence?. Nutrición Hospitalaria. 2021; 38(6): 1277-1286. doi: 10.20960/nh.03631
19. Tardy AL, Pouteau E, Marquez D, et al. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients. 2020; 12(1): 228. doi: 10.3390/nu12010228
20. Borrego-Ruiz A, Borrego JJ. Influencia de la dieta vegetariana en el microbioma intestinal humano. Nutrición Clínica y Dietética Hospitalaria. 2024; 44(3): 149-157. doi: 10.12873/443borrego
21. Weikert C, Trefflich I, Menzel J, et al. Vitamin and mineral status in a vegan diet. Deutsches Arzteblatt International. 2020; 117(35-36): 575-582. doi: 10.3238/arztebl.2020.0575
22. Lane K, Derbyshire E, Li W, et al. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: A review of the literature. Critical Reviews in Food Science and Nutrition. 2014; 54(5): 572-579. doi: 10.1080/10408398.2011.596292
23. González-Rodríguez LG, Lozano-Estevan MC, Salas-González MD, et al. Beneficios y riesgos de las dietas vegetarianas. Nutrición Hospitalaria. 2022; 39(spe3): 26-29. doi: 10.20960/nh.04306
24. Craig WJ, Mangels AR, Fresán U, et al. The safe and effective use of plant-based diets with guidelines for health Professionals. Nutrients. 2021; 13(11): 4144. doi: 10.3390/nu13114144
25. Borrego-Ruiz A, Borrego JJ. Nutritional and Microbial Strategies for Treating Acne, Alopecia, and Atopic Dermatitis. Nutrients. 2024; 16(20): 3559. doi: 10.3390/nu16203559
26. Huang RY, Huang CC, Hu FB, et al. Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. Journal of General Internal Medicine. 2016; 31(1): 109-116. doi: 10.1007/s11606-015-3390-7
27. Norman K, Klaus S. Veganism, aging and longevity: New insight into old concepts. Current Opinion in Clinical Nutrition & Metabolic Care. 2020; 23(2): 145-150. doi: 10.1097/MCO.0000000000000625
28. Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. International Microbiology. 2025; 28: 1-15. doi: 10.1007/s10123-024-00518-6
29. Tomova A, Bukovsky I, Rembert E, et al. The effects of vegetarian and vegan diets on gut microbiota. Frontiers in Nutrition. 2019; 6: 47. doi: 10.3389/fnut.2019.00047
30. Xiao W, Zhang Q, Yu L, et al. Effects of vegetarian diet-associated nutrients on gut microbiota and intestinal physiology. Food Science and Human Wellness. 2022; 11(2): 208-217. doi: 10.1016/j.fshw.2021.11.002
31. Zhang C, Björkman A, Cai K, et al. Impact of a 3-months vegetarian diet on the gut microbiota and immune repertoire. Frontiers in Immunology. 2018; 9: 908. doi: 10.3389/fimmu.2018.00908
32. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome. 2019; 7(1): 91. doi: 10.1186/s40168-019-0704-8
33. den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 2013; 54(9): 2325-2340. doi: 10.1194/jlr.R036012
34. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480): 446-450. doi: 10.1038/nature12721
35. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013; 341(6145): 569-573. doi: 10.1126/science.1241165
36. Lukić I, Ivković S, Mitić M, et al. Tryptophan metabolites in depression: Modulation by gut microbiota. Frontiers in Behavioral Neuroscience. 2022; 16: 987697. doi: 10.3389/fnbeh.2022.987697
37. Lach G, Schellekens H, Dinan TG, et al. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics. 2018; 15(1): 36-59. doi: 10.1007/s13311-017-0585-0
38. Borrego-Ruiz A. Una revisión crítica sobre la influencia de la dieta vegetariana en la salud mental. Revista Española de Nutrición Comunitaria. 2024; 30(2). Available online: https://www.renc.es/imagenes/auxiliar/files/RENC-D-24-0027.pdf (accessed on 10 November 2024).
39. Fazelian S, Sadeghi E, Firouzi S, et al. Adherence to the vegetarian diet may increase the risk of depression: A systematic review and meta-analysis of observational studies. Nutrition Reviews. 2022; 80(2): 242-254. doi: 10.1093/nutrit/nuab013
40. Kohl IS, Luft VC, Patrão AL, et al. Association between meatless diet and depressive episodes: A cross-sectional analysis of baseline data from the longitudinal study of adult health (ELSA-Brasil). Journal of Affective Disorders. 2023; 320: 48-56. doi: 10.1016/j.jad.2022.09.059
41. Lavallee K, Zhang XC, Michalak J, et al. Vegetarian diet and mental health: Cross-sectional and longitudinal analyses in culturally diverse samples. Journal of Affective Disorders. 2019; 248: 147-154. doi: 10.1016/j.jad.2019.01.035
42. Askari M, Daneshzad E, Darooghegi-Mofrad M, et al. Vegetarian diet and the risk of depression, anxiety, and stress symptoms: A systematic review and meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition. 2022; 62(1): 261-271. doi: 10.1080/10408398.2020.1814991
43. Storz MA, Ronco AL. Adherence to a vegetarian diet is not associated with depression: Results from the National Health and Nutrition Examination surveys. Psychiatry Investigation. 2023; 20(4): 315-324. doi: 10.30773/pi.2022.0251
44. Beezhold B, Radnitz C, Rinne A, et al. Vegans report less stress and anxiety than omnivores. Nutritional Neuroscience. 2015; 18(7): 289-296. doi: 10.1179/1476830514Y.0000000164
45. Jin Y, Kandula NR, Kanaya AM, et al. Vegetarian diet is inversely associated with prevalence of depression in middle-older aged South Asians in the United States. Ethnicity & Health. 2021; 26(4): 504-511. doi: 10.1080/13557858.2019.1606166
46. Aucoin M, LaChance L, Cooley K, et al. Diet and psychosis: A scoping review. Neuropsychobiology. 2018; 79(1): 20-42. doi: 10.1159/000493399
47. Iguacel I, Huybrechts I, Moreno LA, et al. Vegetarianism and veganism compared with mental health and cognitive outcomes: A systematic review and meta-analysis. Nutrition Reviews. 2021; 79(4): 361-381. doi: 10.1093/nutrit/nuaa030
48. Jain R, Larsuphrom P, Degremont A, et al. Association between vegetarian and vegan diets and depression: A systematic review. Nutrition Bulletin. 2022; 47(1): 27-49. doi: 10.1111/nbu.12540
49. Matta J, Czernichow S, Kesse-Guyot E, et al. Depressive symptoms and vegetarian diets: Results from the Constances cohort. Nutrients. 2018; 10: 1695. doi: 10.3390/nu10111695
50. Mullins AP, Arjmandi BH. Health benefits of plant-based nutrition: Focus on beans in cardiometabolic diseases. Nutrients. 2021; 13(2): 519. doi: 10.3390/nu13020519
51. González-Herrera M, García-García M, Díez-Arroyo C, et al. Dietary patterns and factors and their association with anxiety in adult population: proposed recommendations based on a scoping review of systematic reviews and meta-analyses (Spanish). Nutrición Hospitalaria. 2023; 40(6): 1270-1289. doi: 10.20960/nh.04771
52. Saz-Peiró P, Del Ruste MM, Saz-Tejero S. Vegetarian diet and its therapeutic application (Spanish). Medicina Naturista. 2013; 7(1): 13-27.
53. Martínez A, Gaspar R, Nieto G. Exploratory study of vegetarianism in mass catering (Spanish). Nutrición Hospitalaria. 2019; 36(3): 681-690. doi: 10.20960/nh.2314
54. Saldivar B, Al-Turk B, Brown M, et al. Successful incorporation of a plant-based menu into a large academic hospital. American Journal of Lifestyle Medicine. 2021; 16(3): 311-317. doi: 10.1177/15598276211048788
55. Sebastiani G, Herranz-Barbero A, Borrás-Novell C, et al. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients. 2019; 11(3): 557. doi: 10.3390/nu11030557
56. Liu HW, Liu JS, Kuo KL. Vegetarian diet and blood pressure in a hospital-base study. Tzu Chi Medical Journal. 2018; 30(3): 176-180. doi: 10.4103/tcmj.tcmj_91_17
57. Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European Journal of Clinical Nutrition, 2013; 67(8): 789-796. doi: 10.1038/ejcn.2013.116
58. Attaye I, van Oppenraaij S, Warmbrunn MV, et al. The role of the gut microbiota on the beneficial effects of ketogenic diets. Nutrients. 2021; 14(1): 191. doi: 10.3390/nu14010191
59. Greco T, Glenn TC, Hovda DA, et al. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. Journal of Cerebral Blood Flow & Metabolism. 2016; 36(9): 1603-1613. doi: 10.1177/0271678X15610584
60. Bolla AM, Caretto A, Laurenzi A, et al. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients. 2019; 11(5): 962. doi: 10.3390/nu11050962
61. Bostock ECS, Kirkby KC, Taylor BVM. The current status of the ketogenic diet in psychiatry. Frontiers in Psychiatry. 2017; 8: 43. doi: 10.3389/fpsyt.2017.00043
62. O’Neill B, Raggi P. The ketogenic diet: Pros and cons. Atherosclerosis. 2020; 292: 119-126. doi: 10.1016/j.atherosclerosis.2019.11.021
63. Porta N, Vallée L, Boutry E, et al. The ketogenic diet and its variants: State of the art (French). Revue Neurologique. 2009; 165(5): 430-439. doi: 10.1016/j.neurol.2008.10.007
64. Krishnan D, Mehndiratta C, Agrawal T. Ketogenic diet as medical nutrition therapy. Journal of Social Health and Diabetes. 2019; 7(2): 73-76. doi: 10.1055/s-0039-3402528
65. Harb D, Abdullah L, Kurban M, Abbas O. Ketogenic diet and the skin. Skinmed. 2023; 21(5): 315-320.
66. Hunter N, Czina L, Murányi E, et al. Is a Meta-Analysis of Clinical Trial Outcomes for Ketogenic Diets Justifiable? A Critical Assessment Based on Systematic Research. Foods. 2024; 13(20): 3219. doi: 10.3390/foods13203219
67. Paoli A, Mancin L, Bianco A, et al. Ketogenic Diet and Microbiota: Friends or Enemies? Genes. 2019; 10(7): 534. doi: 10.3390/genes10070534
68. Rew L, Harris MD, Goldie J. The ketogenic diet: its impact on human gut microbiota and potential consequent health outcomes: a systematic literature review. Gastroenterology and Hepatology from Bed to Bench. 2022; 15(4). doi: 10.22037/ghfbb.v15i4.2600
69. Basciani S, Camajani E, Contini S, et al. Very-Low-Calorie Ketogenic Diets With Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. The Journal of Clinical Endocrinology & Metabolism. 2020; 105(9): 2939-2949. doi: 10.1210/clinem/dgaa336
70. Zhang Y, Zhou S, Zhou Y, et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Research. 2018; 145: 163-168. doi: 10.1016/j.eplepsyres.2018.06.015
71. Nagpal R, Neth BJ, Wang S, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019; 47: 529-542. doi: 10.1016/j.ebiom.2019.08.032
72. Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. npj Biofilms and Microbiomes. 2019; 5(1). doi: 10.1038/s41522-018-0073-2
73. Ang QY, Alexander M, Newman JC, et al. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell. 2020; 181(6): 1263-1275.e16. doi: 10.1016/j.cell.2020.04.027
74. Santangelo A, Corsello A, Spolidoro GCI, et al. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients. 2023; 15(17): 3680. doi: 10.3390/nu15173680
75. Arboleya S, Watkins C, Stanton C, et al. Gut Bifidobacteria Populations in Human Health and Aging. Frontiers in Microbiology. 2016; 7. doi: 10.3389/fmicb.2016.01204
76. Sampaio LP. Ketogenic diet for epilepsy treatment. Archives of Neuropsychiatry. 2016; 74(10): 842-848. doi: 10.1590/0004-282X20160116
77. Campbell I, Campbell H. Mechanisms of insulin resistance, mitochondrial dysfunction and the action of the ketogenic diet in bipolar disorder. Focus on the PI3K/AKT/HIF1-a pathway. Medical Hypotheses. 2020; 145: 110299. doi: 10.1016/j.mehy.2020.110299
78. Mujica-Parodi LR, Amgalan A, Sultan SF, et al. Diet modulates brain network stability, a biomarker for brain aging, in young adults. Proceedings of the National Academy of Sciences of the USA. 2020; 117(11): 6170-6177. doi: 10.1073/pnas.1913042117
79. Olson CA, Iñiguez AJ, Yang GE, et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia. Cell Host & Microbe. 2021; 29(9): 1378-1392.e6. doi: 10.1016/j.chom.2021.07.004
80. Shegelman A, Carson KA, McDonald TJW, et al. The psychiatric effects of ketogenic diet therapy on adults with chronic epilepsy. Epilepsy & Behavior. 2021; 117: 107807. doi: 10.1016/j.yebeh.2021.107807
81. Danan A, Westman EC, Saslow LR, et al. The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Frontiers in Psychiatry. 2022; 13. doi: 10.3389/fpsyt.2022.951376
82. Adams RN, Athinarayanan SJ, McKenzie AL, et al. Depressive symptoms improve over 2 years of type 2 diabetes treatment via a digital continuous remote care intervention focused on carbohydrate restriction. Journal of Behavioral Medicine. 2022; 45(3): 416-427. doi: 10.1007/s10865-021-00272-4
83. Calabrese L, Frase R, Ghaloo M. Complete remission of depression and anxiety using a ketogenic diet: case series. Frontiers in Nutrition. 2024; 11. doi: 10.3389/fnut.2024.1396685
84. Garner S, Davies E, Barkus E, et al. Ketogenic diet has a positive association with mental and emotional well-being in the general population. Nutrition. 2024; 124: 112420. doi: 10.1016/j.nut.2024.112420
85. Iacovides S, Goble D, Paterson B, et al. Three consecutive weeks of nutritional ketosis has no effect on cognitive function, sleep, and mood compared with a high-carbohydrate, low-fat diet in healthy individuals: a randomized, crossover, controlled trial. The American Journal of Clinical Nutrition. 2019; 110(2): 349-357. doi: 10.1093/ajcn/nqz073
86. Rostanzo E, Marchetti M, Casini I, et al. Very-Low-Calorie Ketogenic Diet: A Potential Treatment for Binge Eating and Food Addiction Symptoms in Women. A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(23): 12802. doi: 10.3390/ijerph182312802
87. Calabrese L, Scolnick B, Zupec-Kania B, et al. Ketogenic diet and ketamine infusion treatment to target chronic persistent eating disorder psychopathology in anorexia nervosa: a pilot study. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity. 2022; 27(8): 3751-3757. doi: 10.1007/s40519-022-01455-x
88. Schneider S, Biggerstaff DL, Barber TM. Helpful or harmful? The impact of the ketogenic diet on eating disorder outcomes in type 1 diabetes mellitus. Expert Review of Endocrinology & Metabolism. 2022; 17(4): 319-331. doi: 10.1080/17446651.2022.2089112
89. Grigolon RB, Gerchman F, Schöffel AC, et al. Mental, emotional, and behavioral effects of ketogenic diet for non-epileptic neuropsychiatric conditions. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2020; 102: 109947. doi: 10.1016/j.pnpbp.2020.109947
90. Mir A, Albaradie R, Alamri A, et al. Incidence of potential adverse events during hospital‐based ketogenic diet initiation among children with drug‐resistant epilepsy. Epilepsia Open. 2020; 5(4): 596-604. doi: 10.1002/epi4.12442
91. McDonald TJW, Cervenka MC. Ketogenic Diet Therapies for Seizures and Status Epilepticus. Seminars in Neurology. 2020; 40(06): 719-729. doi: 10.1055/s-0040-1719077
92. Schoeler NE. The role of ketogenic diets in the treatment of status epilepticus. Epilepsy & Behavior. 2024; 160: 110068. doi: 10.1016/j.yebeh.2024.110068
93. Baumeister FAM, Oberhoffer R, Liebhaber GM, et al. Fatal Propofol Infusion Syndrome in Association with Ketogenic Diet. Neuropediatrics. 2004; 35(4): 250-252. doi: 10.1055/s-2004-820992
94. Park EG, Lee J, Lee J. The ketogenic diet for super-refractory status epilepticus patients in intensive care units. Brain and Development. 2019; 41(5): 420-427. doi: 10.1016/j.braindev.2018.12.007
95. Zhu H, Bi D, Zhang Y, et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduction and Targeted Therapy. 2022; 7(1). doi: 10.1038/s41392-021-00831-w
96. Dowis K, Banga S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients. 2021; 13(5): 1654. doi: 10.3390/nu13051654
97. Taylor AM, Thompson SV, Edwards CG, et al. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutritional Neuroscience. 2019; 23(12): 983-992. doi: 10.1080/1028415x.2019.1582578
98. Chua KJ, Kwok WC, Aggarwal N, et al. Designer probiotics for the prevention and treatment of human diseases. Current Opinion in Chemical Biology. 2017; 40: 8-16. doi: 10.1016/j.cbpa.2017.04.011
99. Zeevi D, Korem T, Zmora N, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015; 163(5): 1079-1094. doi: 10.1016/j.cell.2015.11.001
100. Borrego-Ruiz A, Borrego García JJ. Psychobiotics: A new perspective on the treatment of stress, anxiety, and depression. Ansiedad y Estrés. 2024; 30(2): 79-93. doi: 10.5093/anyes2024a11
101. Aggarwal M, Grady A, Desai D, et al. Successful Implementation of Healthful Nutrition Initiatives into Hospitals. The American Journal of Medicine. 2020; 133(1): 19-25. doi: 10.1016/j.amjmed.2019.08.019
102. Szendi K, Murányi E, Hunter N, et al. Methodological Challenges and Confounders in Research on the Effects of Ketogenic Diets: A Literature Review of Meta-Analyses. Foods. 2024; 13(2): 248. doi: 10.3390/foods13020248
103. Lucke-Wold BP, Logsdon AF, Nguyen L, et al. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutritional Neuroscience. 2016; 21(2): 79-91. doi: 10.1080/1028415x.2016.1236174
104. Willman J, Lucke-Wold B. “Timing of percutaneous endoscopic gastrostomy tube placement in post-stroke patients does not impact mortality, complications, or outcomes”: Commentary. World Journal of Gastrointestinal Pharmacology and Therapeutics. 2023; 14(1): 1-3. doi: 10.4292/wjgpt.v14.i1.1
105. Borrego-Ruiz A, González-Domenech CM, Borrego JJ. The Role of Fermented Vegetables as a Sustainable and Health-Promoting Nutritional Resource. Applied Sciences. 2024; 14(23): 10853. doi: 10.3390/app142310853
106. Parker HW, Vadiveloo MK. Diet quality of vegetarian diets compared with nonvegetarian diets: a systematic review. Nutrition Reviews. 2019; 77(3): 144-160. doi: 10.1093/nutrit/nuy067
107. Głąbska D, Guzek D, Groele B, et al. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients. 2020; 12(1): 115. doi: 10.3390/nu12010115
108. Bowman GL, Silbert LC, Howieson D, et al. Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology. 2012; 78(4): 241-249. doi: 10.1212/wnl.0b013e3182436598
109. Scalbert A, Brennan L, Manach C, et al. The food metabolome: a window over dietary exposure. The American Journal of Clinical Nutrition. 2014; 99(6): 1286-1308. doi: 10.3945/ajcn.113.076133

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.