Exploring the biochemical potential of roselle seed (Hibiscus Sabdariffa L.) flour: Antioxidant and antinutrient responses to processing methods

Authors

  • Abosede Oduntan Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Titilope Fasuan Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Rabiat Ahmed Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Balikis Mustapha Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Onaolapo Olatunji Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Oluwayemisi Oni Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • David Raphael Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Adebisi Akinrinola Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria
  • Mohammed Attanda Product Development Programme, National Horticultural Research Institute, Ibadan 200272, Nigeria; Department of Agricultural and Environmental Engineering, Bayero University, Kano 700006, Nigeria
Article ID: 266
39 Views

DOI:

https://doi.org/10.18686/fnc266

Keywords:

roselle seed flour; proximate; anti-nutrient; antioxidant; functional properties

Abstract

Roselle seeds, rich in antioxidants, have anti-nutrients content, limiting their use in food applications. Processing methods can alter their composition and minimize these anti-nutrients. This study investigates the influence of processing methods on the antioxidant and antinutrient composition of roselle seed flour. Roselle seeds were fermented, germinated, and roasted, and a portion was left unprocessed to serve as a control. The samples were analyzed for antinutrients like tannins, phytate, saponins, oxalate and cyanide. Antioxidants such as anthocyanin, flavonoid and phenolic compounds were also analyzed using established analytical procedures. The data was subjected to linear regression analysis and t-test to reveal the influence of processing on the various phytochemicals. The treatment methods significantly (P = 0.05) influenced the concentration of all antioxidants, and antinutrients of the flour. The results show that the roasting method preserved the antioxidants more than all treatments but was not equally effective in depleting the antinutrients. This study recommends that the choice of processing method for roselle seeds should be tailored to the potential needs of the consumers. These deductions can help enhance the utilization of roselle seed flour to benefit both producers and consumers and enhance food security.

References

1. Auwal Balarabe M. Nutritional Analysis of Hibiscus sabdariffa L. (Roselle) Leaves and Calyces. Plant. 2019; 7(4): 62. doi: 10.11648/j.plant.20190704.11 DOI: https://doi.org/10.11648/j.plant.20190704.11

2. Salami S, Afolayan A. Evaluation of nutritional and elemental compositions of green and red cultivars of roselle: Hibiscus sabdariffa L. Scientific Reports; 2021. DOI: https://doi.org/10.1038/s41598-020-80433-8

3. Phewphong S, Roschat W, Namwongsa K, et al. Evaluation of the Nutritional, Minerals, and Antioxidant Potential of Roselle (Hibiscus sabdariffa Linn.) Seeds from Roi Et Province in the Northeastern Region of Thailand. Trends in Sciences. 2023; 20(6): 6664. doi: 10.48048/tis.2023.6664 DOI: https://doi.org/10.48048/tis.2023.6664

4. Mokhtari Z, Zarringhalami S, Ganjloo A. Evaluation of Chemical, Nutritional and Antioxidant Characteristics of Roselle (Hibiscus sabdariffa L.) Seed. Nutrition and Food Sciences Research. 2018; 5(1): 41-46. doi: 10.29252/nfsr.5.1.41 DOI: https://doi.org/10.29252/nfsr.5.1.41

5. Shaheen M, El-Nakhlawy F, Al-Shareef A. Roselle (Hibiscus sabdariffa L) seeds as unconventional nutritional source. African Journal of Biotechnology. 2016; 11(41): 9821-9824. doi: 10.5897/AJB11.4040 DOI: https://doi.org/10.5897/AJB11.4040

6. Angbulu AO, Duru S, Afolayan SB, Munza BM, Akinsola OM. Effect of Feeding Diets Containing Fermented Roselle Seeds Supplemented with Enzymes on Growth Performance, Nutrient Digestibility, Haematological and Carcass Characteristics of Broiler Chickens. Nigerian Journal of Animal Science and Technology; 2020.

7. Tran-Thi NY, Kasim NS, Yuliana M, et al. Polysaccharides-induced precipitation of protein from defatted roselle seed and its characterization: Antinutritional factors and functional properties. Journal of the Taiwan Institute of Chemical Engineers. 2013; 44(2): 152-155. doi: 10.1016/j.jtice.2012.09.010 DOI: https://doi.org/10.1016/j.jtice.2012.09.010

8. Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition. 2020; 2(1). doi: 10.1186/s43014-020-0020-5 DOI: https://doi.org/10.1186/s43014-020-0020-5

9. Cardador-Martínez A, Martínez-Tequitlalpan Y, Gallardo-Velazquez T, et al. Effect of Instant Controlled Pressure-Drop on the Non-Nutritional Compounds of Seeds and Sprouts of Common Black Bean (Phaseolus vulgaris L.). Molecules. 2020; 25(6): 1464. doi: 10.3390/molecules25061464 DOI: https://doi.org/10.3390/molecules25061464

10. Jan R, Saxena DC, Singh S. Analyzing the effect of optimization conditions of germination on the antioxidant activity, total phenolics, and antinutritional factors of Chenopodium (Chenopodium album). Journal of Food Measurement and Characterization. 2016; 11(1): 256-264. doi: 10.1007/s11694-016-9392-2 DOI: https://doi.org/10.1007/s11694-016-9392-2

11. Adebo OA, Gabriela Medina-Meza I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules. 2020; 25(4): 927. doi: 10.3390/molecules25040927 DOI: https://doi.org/10.3390/molecules25040927

12. Sulaiman I, Noviasari S, Lubis Y, et al. Analysis Types and Functions of Microbes and Duration of Fermentation in the Process of Reducing Levels of Concentration Oxalate Levels in Taro Kimpul. Systematic Reviews in Pharmacy; 2020.

13. Zannou O, Koca I, Aldawoud TMS, et al. Recovery and Stabilization of Anthocyanins and Phenolic Antioxidants of Roselle (Hibiscus sabdariffa L.) with Hydrophilic Deep Eutectic Solvents. Molecules. 2020; 25(16): 3715. doi: 10.3390/molecules25163715 DOI: https://doi.org/10.3390/molecules25163715

14. Mariod AA, Suryaputra S, Hanafi M, et al. Effect of different processing techniques on Indonesian Roselle seed constituents. Acta Scientiarum Polonorum, Technologia Alimentaria; 2013.

15. Rimamcwe KB, Chavan U. Antioxidant activity and nutritional value of Roselle seeds flour. International Journal of Current Microbiology and Applied Sciences. 2017; 6(4): 2654-2663. doi: 10.20546/ijcmas.2017.604.309 DOI: https://doi.org/10.20546/ijcmas.2017.604.309

16. Chukwu CN, Ogunka-Nnoka CU, Akaninwor JO. Phytochemical Composition, Anti-nutrient Properties and Antioxidant Potentials of Raw Hibiscus sabdariffa Seeds. Archives of Current Research International; 2019. DOI: https://doi.org/10.9734/acri/2019/v17i330113

17. Grace MH, Xiong J, Esposito D, et al. Simultaneous LC-MS quantification of anthocyanins and non-anthocyanin phenolics from blueberries with widely divergent profiles and biological activities. Food Chemistry. 2019; 277: 336-346. doi: 10.1016/j.foodchem.2018.10.101 DOI: https://doi.org/10.1016/j.foodchem.2018.10.101

18. Žilić S, Kocadağlı T, Vančetović J, et al. Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT. 2016; 65: 597-603. doi: 10.1016/j.lwt.2015.08.057 DOI: https://doi.org/10.1016/j.lwt.2015.08.057

19. AOAC. Official Methods of Analysis. Available online: https://www.aoac.org/wp-content/uploads/2020/11/SMPR202015_008.pdf (accessed on 5 May 2024).

20. Kregiel D, Berlowska J, Witonska I, et al. Saponin-Based, Biological-Active Surfactants from Plants. Application and Characterization of Surfactants; 2017. DOI: https://doi.org/10.5772/68062

21. Nguyen LT, Fărcaș AC, Socaci SA, Tofană M, et al. An Overview of Saponins—A Bioactive Group. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Food Science and Technology; 2020. DOI: https://doi.org/10.15835/buasvmcn-fst:2019.0036

22. Sharma S, Kataria A, Singh B. Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (Chenopodium quinoa). LWT. 2022; 160: 113256. doi: 10.1016/j.lwt.2022.113256 DOI: https://doi.org/10.1016/j.lwt.2022.113256

23. Hawashi M, Altway A, Widjaja T, et al. Optimization of process conditions for tannin content reduction in cassava leaves during solid state fermentation using Saccharomyces cerevisiae. Heliyon. 2019; 5(8): e02298. doi: 10.1016/j.heliyon.2019.e02298 DOI: https://doi.org/10.1016/j.heliyon.2019.e02298

24. Shang YF, Cao H, Ma YL, et al. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits. Food Chemistry. 2019; 274: 118-122. doi: 10.1016/j.foodchem.2018.08.120 DOI: https://doi.org/10.1016/j.foodchem.2018.08.120

25. Ojha P. Processing Effects On Anti-Nutritional Factors, Phytochemicals, And Functional Properties Of Horse Gram (Macrotyloma Uniflorum) Flour. Journal of Microbiology, Biotechnology and Food Sciences. 2020; 9(6): 1080-1086. doi: 10.15414/jmbfs.2020.9.6.1080-1086 DOI: https://doi.org/10.15414/jmbfs.2020.9.6.1080-1086

26. Sharma K, Kumar V, Kaur J, et al. Health effects, sources, utilization and safety of tannins: a critical review. Toxin Reviews. 2019; 40(4): 432-444. doi: 10.1080/15569543.2019.1662813 DOI: https://doi.org/10.1080/15569543.2019.1662813

27. Milman NT. A Review of Nutrients and Compounds, Which Promote or Inhibit Intestinal Iron Absorption: Making a Platform for Dietary Measures That Can Reduce Iron Uptake in Patients with Genetic Haemochromatosis. Journal of Nutrition and Metabolism. 2020; 2020: 1-15. doi: 10.1155/2020/7373498 DOI: https://doi.org/10.1155/2020/7373498

28. Hassan G, Yusuf L, Adebolu T, Onifade A. Effect of fermentation on mineral and anti-nutritional composition of cocoyam (Colocasia esculenta linn). Sky Journal of Food Science. 2015.

29. Gunun N, Wanapat M, Kaewpila C, et al. Effect of Heat Processing of Rubber Seed Kernel on In Vitro Rumen Biohydrogenation of Fatty Acids and Fermentation. Fermentation. 2023; 9(2): 143. doi: 10.3390/fermentation9020143 DOI: https://doi.org/10.3390/fermentation9020143

30. Kaushik G. Effect of Processing on Mycotoxin Content in Grains. Critical Reviews in Food Science and Nutrition. 2013; 55(12): 1672-1683. doi: 10.1080/10408398.2012.701254 DOI: https://doi.org/10.1080/10408398.2012.701254

31. Shen T, Wu Q, Xu Y. Biodegradation of cyanide with Saccharomyces cerevisiae in Baijiu fermentation. Food Control. 2021; 127: 108107. doi: 10.1016/j.foodcont.2021.108107 DOI: https://doi.org/10.1016/j.foodcont.2021.108107

32. Okoli I, Anunobi MO, Obua B, Enemuo V. Studies on selected browses of southeastern Nigeria with particular reference to their proximate and some endogenous anti-nutritional constituents. Livestock Research for Rural Development; 2003.

33. Sokrab AM, Mohamed Ahmed IA, Babiker EE. Effect of malting and fermentation on antinutrients, and total and extractable minerals of high and low phytate corn genotypes. International Journal of Food Science & Technology. 2012; 47(5): 1037-1043. doi: 10.1111/j.1365-2621.2012.02938.x DOI: https://doi.org/10.1111/j.1365-2621.2012.02938.x

34. Chude C, Amadi ER, Okoyeuzu C. Effect of bioprocess on nutritional quality and chemical properties of Bambara groundnut (Vigna Subterranean (L) Verdc.) Flour. Advances in Life Science and Technology; 2018.

35. Schlemmer U, Frølich W, Prieto RM, et al. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research. 2009; 53(S2). doi: 10.1002/mnfr.200900099 DOI: https://doi.org/10.1002/mnfr.200900099

36. Liu S, Wang W, Lu H, et al. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology. 2022; 123: 187-197. doi: 10.1016/j.tifs.2022.02.029 DOI: https://doi.org/10.1016/j.tifs.2022.02.029

37. Ijarotimi OS, Esho TR. Comparison of nutritional composition and anti‐nutrient status of fermented, germinated and roasted bambara groundnut seeds (vigna subterranea). British Food Journal. 2009.

38. Ojokoh A, Daramola M, Oluoti O. Effect of fermentation on nutrient and anti-nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours. African Journal of Agricultural Research. 2013, 8(27): 3566-3570. doi: 10.5897/AJAR12.1944 DOI: https://doi.org/10.5897/AJAR12.1944

39. Sanni T, Ogunbusola E, Araoye K. Effect of Processing on Chemical Composition, Functional Properties and Antinutritional Factors of Sorrel Seed (Hibiscus sabdariffa) Flour. FUOYE Journal of Pure and Applied Sciences. 2019.

40. Robertson WG. Dietary recommendations and treatment of patients with recurrent idiopathic calcium stone disease. Urolithiasis. 2015; 44(1): 9-26. doi: 10.1007/s00240-015-0849-2 DOI: https://doi.org/10.1007/s00240-015-0849-2

41. Barrita JLS, Benavides SM, Sánchez S. Antioxidants and Natural Compounds in Mexican Foods. Basic Principles and Clinical Significance of Oxidative Stress. Published online November 11, 2015. doi: 10.5772/61626 DOI: https://doi.org/10.5772/61626

42. Vanhanen LP. Oxalate content of green juices and strategies for reduction of soluble oxalate content [PhD thesis]. Lincoln University; 2018.

43. Ayo-Omogie HN, Osanbikan AA. Comparative Influence of Dehulling on the Composition, Antioxidative and Functional Properties of Sorrel (Hibiscus sabdariffa L.) Seed. Food and Nutrition Sciences. 2019; 10(02): 148-173. doi: 10.4236/fns.2019.102012 DOI: https://doi.org/10.4236/fns.2019.102012

44. Oduntan A, Arueya G. Evaluation of antioxidant and functional properties of orange pomace-based food. Croatian journal of food science and technology. 2022; 14(2): 210-223. doi: 10.17508/cjfst.2022.14.2.06 DOI: https://doi.org/10.17508/CJFST.2022.14.2.06

45. Xu J, Wang W, Li Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. Journal of Functional Foods. 2019; 52: 629-639. doi: 10.1016/j.jff.2018.11.052 DOI: https://doi.org/10.1016/j.jff.2018.11.052

46. Thakur P, Kumar K, Ahmed N, et al. Impact of diverse processing treatments on nutritional and anti-nutritional characteristics of soybean (Glycine max L.). Journal of Applied Biology & Biotechnology. 2022. DOI: https://doi.org/10.7324/JABB.2022.100313

47. Singh S, Ahuja A, Sharma H, et al. An Overview of Dietary Flavonoids as a Nutraceutical Nanoformulation Approach to Life-threatening Diseases. Current Pharmaceutical Biotechnology. 2023; 24(14): 1740-1773. doi: 10.2174/1389201024666230314101654 DOI: https://doi.org/10.2174/1389201024666230314101654

48. Consumi M, Tamasi G, Bonechi C, et al. Effect of Flaking and Precooking Procedures on Antioxidant Potential of Selected Ancient Cereal and Legume Flours. Foods. 2022; 11(11): 1592. doi: 10.3390/foods11111592 DOI: https://doi.org/10.3390/foods11111592

49. Slavu M, Aprodu I, Milea Ștefania A, et al. Thermal Degradation Kinetics of Anthocyanins Extracted from Purple Maize Flour Extract and the Effect of Heating on Selected Biological Functionality. Foods. 2020; 9(11): 1593. doi: 10.3390/foods9111593 DOI: https://doi.org/10.3390/foods9111593

50. Li M, He Z, He L, et al. Effect of Fermentation Parameters on the Anthocyanin Content, Sensory Properties, and Physicochemical Parameters of Potato Blueberry Yogurt. Fermentation. 2022; 8(10): 489. doi: 10.3390/fermentation8100489 DOI: https://doi.org/10.3390/fermentation8100489

51. Ruta LL, Farcasanu IC. Anthocyanins and Anthocyanin-Derived Products in Yeast-Fermented Beverages. Antioxidants. 2019; 8(6): 182. doi: 10.3390/antiox8060182 DOI: https://doi.org/10.3390/antiox8060182

52. Yamuangmorn S, Sreethong T, Saenchai C, et al. Effects of roasting conditions on anthocyanin, total phenolic content, and antioxidant capacity in pigmented and non-pigmented rice varieties. International Food Research Journal. 2021; 28(1): 73-82. doi: 10.47836/ifrj.28.1.07 DOI: https://doi.org/10.47836/ifrj.28.1.07

53. James S, Nwabueze TU, Ndife J, et al. Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria. Journal of Agriculture and Food Research. 2020; 2: 100086. doi: 10.1016/j.jafr.2020.100086 DOI: https://doi.org/10.1016/j.jafr.2020.100086

54. Ahles S, Joris PJ, Plat J. Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans. International Journal of Molecular Sciences. 2021; 22(12): 6482. doi: 10.3390/ijms22126482 DOI: https://doi.org/10.3390/ijms22126482

Downloads

Published

2024-09-16

How to Cite

Oduntan, A., Fasuan, T., Ahmed, R., Mustapha, B., Olatunji, O., Oni, O., Raphael, D., Akinrinola, A., & Attanda, M. (2024). Exploring the biochemical potential of roselle seed (Hibiscus Sabdariffa L.) flour: Antioxidant and antinutrient responses to processing methods. Food Nutrition Chemistry, 2(4), 266. https://doi.org/10.18686/fnc266

Issue

Section

Article