Role of charge exchange collision on generation of active species for cold plasma food processing

Authors

  • M. Perumal Department of Physics, Pondicherry University, Pondicherry 605014, India
  • A. Saravanan Sikkim Manipal Institute of Technology, Sikkim 737136, India
  • B. Muthukumar Department of Physics, Pondicherry University, Pondicherry 605014, India
  • Suraj Kumar Sinha Department of Physics, Pondicherry University, Pondicherry 605014, India
Article ID: 154
98 Views, 61 PDF Downloads

DOI:

https://doi.org/10.18686/fnc.v2i2.154

Keywords:

glow discharge plasma; food processing; charge exchange collisions; high energy efficiency and plasma processing

Abstract

Charge exchange collision (CXC) is well known in solar and space plasmas. In this work, we present how the CXC between N2+ and N2 can be exploited to overcome major challenges in cold plasma food processing (CPFP). CPFP is an emerging application of glow discharge plasmas for physicochemical modifications to achieve shelf-life enhancement, preservation, surface activation for germination, antimicrobial treatment, surface cleaning, etc. The commercial application of CPFP is in its infancy and it faces two major challenges. The first challenge is the difficulty in generating the desired active species for the required modification, and the second is the very high processing cost. In this paper, with the help of numerical modeling for nitrogen discharge, we show that the CXC between N2+ and N2 can be utilized to generate active species selectively, enhance energy efficiency, and possibly eliminate the processing gas cost. The modeling is followed by experimental demonstration and validation of the proposed concept. This work may lead to a new direction of transdisciplinary research towards the commercial application of CPFP.

Downloads

Download data is not yet available.

References

Thirumdas R, Sarangapani C, Annapure US. Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophysics. 2014; 10(1): 1-11. doi: 10.1007/s11483-014-9382-z DOI: https://doi.org/10.1007/s11483-014-9382-z

Boeuf JP. Plasma display panels: physics, recent developments and key issues. Journal of Physics D: Applied Physics. 2003; 36(6): R53-R79. doi: 10.1088/0022-3727/36/6/201 DOI: https://doi.org/10.1088/0022-3727/36/6/201

Niemira BA. Cold Plasma Decontamination of Foods. Annual Review of Food Science and Technology. 2012; 3(1): 125-142. doi: 10.1146/annurev-food-022811-101132 DOI: https://doi.org/10.1146/annurev-food-022811-101132

López M, Calvo T, Prieto M, et al. A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Frontiers in Microbiology. 2019; 10. doi: 10.3389/fmicb.2019.00622 DOI: https://doi.org/10.3389/fmicb.2019.00622

Pankaj S, Wan Z, Keener K. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018; 7(1): 4. doi: 10.3390/foods7010004 DOI: https://doi.org/10.3390/foods7010004

Suraj KS, Mukherjee S. Power balance at cathode in glow discharges. Physics of Plasmas. 2005; 12(11). doi: 10.1063/1.2127929 DOI: https://doi.org/10.1063/1.2127929

Sudheesh C, Sunooj KV, Sinha SK, et al. Impact of energetic neutral nitrogen atoms created by glow discharge air plasma on the physico-chemical and rheological properties of kithul starch. Food Chemistry. 2019; 294: 194-202. doi: 10.1016/j.foodchem.2019.05.067 DOI: https://doi.org/10.1016/j.foodchem.2019.05.067

Sudheesh C, Sunooj KV, Sasidharan A, et al. Energetic neutral N2 atoms treatment on the kithul (Caryota urens) starch biodegradable film: Physico-chemical characterization. Food Hydrocolloids. 2020; 103: 105650. doi: 10.1016/j.foodhyd.2020.105650 DOI: https://doi.org/10.1016/j.foodhyd.2020.105650

Navaf M, Sunooj KV, Aaliya B, et al. Impact of Low‐Pressure Argon Plasma on Structural, Thermal, and Rheological Properties of Corypha umbraculifera L. Starch: A Non‐Conventional Source of Stem Pith Starch. Starch - Stärke. 2022; 75(1-2). doi: 10.1002/star.202200165 DOI: https://doi.org/10.1002/star.202200165

Raizer YPP. Gas Discharge Physics. Springer; 1997.

Chapman B. Glow Discharge Processes: Sputtering and Plasma Etching. John Wiley & Sons; 1980.

Lieberman MA, Lichtenberg AJ. Principle of Plasma Discharges and Material Processing. John Wiley & Sons; 1994.

Moisan M, Barbeau J, Crevier MC, et al. Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry. 2002; 74(3): 349-358. doi: 10.1351/pac200274030349 DOI: https://doi.org/10.1351/pac200274030349

Mir SA, Shah MA, Mir MM. Understanding the Role of Plasma Technology in Food Industry. Food and Bioprocess Technology. 2016; 9(5): 734-750. doi: 10.1007/s11947-016-1699-9 DOI: https://doi.org/10.1007/s11947-016-1699-9

Chizoba Ekezie FG, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology. 2017; 69: 46-58. doi: 10.1016/j.tifs.2017.08.007 DOI: https://doi.org/10.1016/j.tifs.2017.08.007

Muhammad AI, Liao X, Cullen PJ, et al. Effects of Nonthermal Plasma Technology on Functional Food Components. Comprehensive Reviews in Food Science and Food Safety. 2018; 17(5): 1379-1394. doi: 10.1111/1541-4337.12379 DOI: https://doi.org/10.1111/1541-4337.12379

Prakash R, Hossain AM, Pal UN, et al. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-17455-2 DOI: https://doi.org/10.1038/s41598-017-17455-2

Grzegorzewski F, Zietz M, Rohn S, et al. Modification of polyphenols and cuticular surface lipids of Kale (B. oleracea convar. sabellica) with non-thermal oxygen plasma gaseous species. In: Proceedings of the 11th International Congress on Engineering and Food; 22–26 May 2011; Athens, Greece.

Bursać Kovačević D, Gajdoš Kljusurić J, Putnik P, et al. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry. 2016; 212: 323-331. doi: 10.1016/j.foodchem.2016.05.192 DOI: https://doi.org/10.1016/j.foodchem.2016.05.192

Lassen KS, Nordby B, Grün R. The dependence of the sporicidal effects on the power and pressure of RF‐generated plasma processes. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2005; 74B(1): 553-559. doi: 10.1002/jbm.b.30239 DOI: https://doi.org/10.1002/jbm.b.30239

Lee KY, Joo Park B, Hee Lee D, et al. Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surface and Coatings Technology. 2005; 193(1-3): 35-38. doi: 10.1016/j.surfcoat.2004.07.034 DOI: https://doi.org/10.1016/j.surfcoat.2004.07.034

Lu X, Ye T, Cao Y, et al. The roles of the various plasma agents in the inactivation of bacteria. Journal of Applied Physics. 2008; 104(5). doi: 10.1063/1.2977674 DOI: https://doi.org/10.1063/1.2977674

Niemira BA, Sites J. Cold Plasma Inactivates Salmonella Stanley and Escherichia coli O157: H7 Inoculated on Golden Delicious Apples. Journal of Food Protection. 2008; 71(7): 1357-1365. doi: 10.4315/0362-028x-71.7.1357 DOI: https://doi.org/10.4315/0362-028X-71.7.1357

Lee KH, Kim HJ, Woo KS, et al. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT. 2016; 73: 442-447. doi: 10.1016/j.lwt.2016.06.055 DOI: https://doi.org/10.1016/j.lwt.2016.06.055

Ulbin-Figlewicz N, Brychcy E, Jarmoluk A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. Journal of Food Science and Technology. 2013; 52(2): 1228-1232. doi: 10.1007/s13197-013-1108-6 DOI: https://doi.org/10.1007/s13197-013-1108-6

Dixon D, J. Meenan B. Atmospheric Dielectric Barrier Discharge Treatments of Polyethylene, Polypropylene, Polystyrene and Poly(ethylene terephthalate) for Enhanced Adhesion. Journal of Adhesion Science and Technology. 2012; 26(20-21): 2325-2337. doi: 10.1163/156856111x599481 DOI: https://doi.org/10.1163/156856111X599481

Perumal M. Study of DC Glow Discharge Plasma for Selective Generation Active Species for Cold Plasma Processing [PhD thesis]. Pondicherry University; 2022.

Suraj KS, Mukherjee S. Effect of ion neutral collisions on the ion and neutral velocity distribution on negatively biased electrodes. Surface and Coatings Technology. 2005; 196(1-3): 267-270. doi: 10.1016/j.surfcoat.2004.08.101 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.101

Mukherjee S. Neutral velocity distribution at a negatively biased electrode in a collisional ion sheath. Physics of Plasmas. 2001; 8(1): 364-367. doi: 10.1063/1.1327619 DOI: https://doi.org/10.1063/1.1327619

Perumal M, Saravanan A, Sunooj KV, et al. Effect on Physical and Thermal Properties of Corn Starch Treated by Energetic N₂ Extracted From Glow Discharge Plasma. IEEE Transactions on Plasma Science. 2022; 50(4): 1122-1127. doi: 10.1109/tps.2022.3155663 DOI: https://doi.org/10.1109/TPS.2022.3155663

Perumal M, Saravanan A, Kommuguri SL, et al. Extraction of Energetic N2 Neutrals for Efficient Plasma Food Processing of Finger Millet Flour. Plasma Chemistry and Plasma Processing. 2023; 44(1): 471-485. doi: 10.1007/s11090-023-10383-2 DOI: https://doi.org/10.1007/s11090-023-10383-2

Downloads

Published

2024-06-28

How to Cite

M. Perumal, A. Saravanan, B. Muthukumar, & Sinha, S. K. (2024). Role of charge exchange collision on generation of active species for cold plasma food processing. Food Nutrition Chemistry, 2(2), 154. https://doi.org/10.18686/fnc.v2i2.154

Issue

Section

Article