Impact of germination and hydrothermal treatment on nutrient profiles and color characteristics of minor millets (kodo millet, little millet, and barnyard millet)

Authors

  • Rutuja Iralepatil Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur 613005, India
  • R. Surya Priyadharshini Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur 613005, India
  • Dekka Srenuja Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur 613005, India
  • Vincent Hema Department of Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur 613005, India
  • V.R. Sinija Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur 613005, India
  • Rajagopal Vidyalakshmi Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur 613005, India
Ariticle ID: 130
39 Views, 23 PDF Downloads

DOI:

https://doi.org/10.18686/fnc.v2i1.130

Keywords:

millet; germination; hydrothermal; proximate; physiochemical properties

Abstract

The impact of different pre-treatment methods, namely germination and hydrothermal treatment, on the proximate and physiochemical properties of kodo millet, barnyard millet, and little millet were investigated in this study. This study involved subjecting these millet varieties to various conditions in each pre-treatment method. In germination, the soaking time was varied with three time periods, which were 4 h, 6 h, and 8 h, followed by germination for 48 h. For hydrothermal treatment, the soaking time and temperature were constant, but the steaming times were 10 min, 15 min, and 20 min. In germination, the protein, moisture, and energy contents increased, while the fat, ash, and carbohydrate contents decreased. In hydrothermal treatment, the protein, fat, and ash contents decreased, while the moisture, energy, and carbohydrate contents increased. In germination, the L values increased and the a and b values decreased, while in hydrothermal treatment, the L values decreased and the a and b values increased. These findings shed light on the effects of these pre-treatment methods on the nutritional and physiochemical composition of millet varieties, providing valuable insights for further research and potential applications in the food industry.

Downloads

Download data is not yet available.

References

Singh RB, Khan S, Chauhan AK, et al. Millets as Functional Food, a Gift From Asia to Western World. The Role of Functional Food Security in Global Health. Published online 2019: 457-468. doi: 10.1016/b978-0-12-813148-0.00027-x DOI: https://doi.org/10.1016/B978-0-12-813148-0.00027-X

Bunkar DS, Bharti P, Meena KK, et al. Studies on the Optimization and Development of Functional Instant Kodo Millet Based Porridge Mix. International Journal of Current Microbiology and Applied Sciences. 2020; 9(9): 1462-1480. doi: 10.20546/ijcmas.2020.909.186 DOI: https://doi.org/10.20546/ijcmas.2020.909.186

Shahidi F, Chandrasekara A. Processing of Millet Grains and Effects on Non-Nutrient Antioxidant Compounds. Processing and Impact on Active Components in Food. Published online 2015: 345-352. doi: 10.1016/b978-0-12-404699-3.00041-x DOI: https://doi.org/10.1016/B978-0-12-404699-3.00041-X

Rao MV, KG A, CK S, et al. Effect of microwave treatment on physical and functional properties of foxtail millet flour. International Journal of Chemical Studies. 2021; 9(1): 2762-2767. doi: 10.22271/chemi.2021.v9.i1am.11641 DOI: https://doi.org/10.22271/chemi.2021.v9.i1am.11641

Dey S, Saxena A, Kumar Y, et al. Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). Sadiq B, ed. Journal of Food Quality. 2022; 2022: 1-19. doi: 10.1155/2022/1578448 DOI: https://doi.org/10.1155/2022/1578448

Sharma N, Niranjan K. Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International. 2017; 34(4): 329-363. doi: 10.1080/87559129.2017.1290103 DOI: https://doi.org/10.1080/87559129.2017.1290103

Chandraprabha S, C. L. Sharon. Optimisation of conditions for barnyard millet germination. Plant Archives. 2021; 21(1). doi: 10.51470/plantarchives.2021.v21.no1.230 DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.230

Naveen AK, Sontakke M. A review on implication of conventional and novel processing methods for improving storage stability of millet flour. Search In. 2023.

De Lima CA. Characterization, Propagation and Improvement Commercial and Native Pitaya Genetics from the Cerrado (Portuguese) [PhD thesis]. Universidade de Brasilia; 2013.

Marero LM, Payumo EM, Librando EC, et al. Technology of Weaning Food Formulations Prepared from Germinated Cereals and Legumes. Journal of Food Science. 1988; 53(5): 1391-1395. doi: 10.1111/j.1365-2621.1988.tb09284.x DOI: https://doi.org/10.1111/j.1365-2621.1988.tb09284.x

Hassan AB, Mohamed Ahmed IA, Osman NM, et al. Effect of Processing Treatments Followed by Fermentation on Protein Content and Digestibility of Pearl Millet (Pennisetum typhoideum) Cultivars. Pakistan Journal of Nutrition. 2005; 5(1): 86-89. doi: 10.3923/pjn.2006.86.89 DOI: https://doi.org/10.3923/pjn.2006.86.89

Sheikh MA, Saini CS, Sharma HK. Computation of design-related engineering properties and fracture resistance of plum (Prunus domestica) kernels to compressive loading. Journal of Agriculture and Food Research. 2021; 3: 100101. doi: 10.1016/j.jafr.2021.100101 DOI: https://doi.org/10.1016/j.jafr.2021.100101

Saleh ASM, Zhang Q, Chen J, et al. Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety. 2013; 12(3): 281-295. doi: 10.1111/1541-4337.12012 DOI: https://doi.org/10.1111/1541-4337.12012

Sharma S, Saxena DC, Riar CS. Antioxidant activity, total phenolics, flavonoids and antinutritional characteristics of germinated foxtail millet (Setaria italica). Yildiz F, ed. Cogent Food & Agriculture. 2015; 1(1): 1081728. doi: 10.1080/23311932.2015.1081728 DOI: https://doi.org/10.1080/23311932.2015.1081728

Yenasew A, Urga K. Effect of germination period on physiochemical properties of elite finger millet varieties. Cogent Food & Agriculture. 2022; 8(1). doi: 10.1080/23311932.2022.2093045 DOI: https://doi.org/10.1080/23311932.2022.2093045

Parnsakhorn S, Langkapin J. Effects of drying temperatures on physicochemical properties of germinated brown rice. Songklanakarin Journal of Science and Technology. 2018; 40: 127. doi: 10.14456/SJST-PSU.2018.11

Chaudhary N, Vyas S. Effect of germination on proximate composition and anti nutritional factor of millet (ragi) based premixes. International Journal of Food and Nutritional Sciences. 2014, 3(4): 72-77.

Kumar A, Kaur A, Gupta K, et al. Assessment Of Germination Time of Finger Millet for Value Addition in Functional Foods. Current Science. 2021; 120(2): 406. doi: 10.18520/cs/v120/i2/406-413 DOI: https://doi.org/10.18520/cs/v120/i2/406-413

Rajasekhar M, Edukondalu L, Smith DD, et al. Effect of Hydrothermal Treatment on Milling Characteristics of Finger Millet. International Journal of Current Microbiology and Applied Sciences. 2018; 7(10): 1804-1811. doi: 10.20546/ijcmas.2018.710.206 DOI: https://doi.org/10.20546/ijcmas.2018.710.206

Hussein T, Abd El-Shafea Y, El-Behairy U, et al. Effect of soaking and sprouting using saline water on chemical composition of wheat grains. Arab Universities Journal of Agricultural Sciences. 2019; 27(1): 707-715. doi: 10.21608/ajs.2019.43688 DOI: https://doi.org/10.21608/ajs.2019.43688

Banusha S, Vasantharuba S. Effect of malting on nutritional contents of finger millet and mung bean. American-Eurasian Journal of Agriculture and Environmental Science. 2013; 13(12): 1642-1646. doi: 10.5829/idosi.aejaes.2013.13.12.12285 DOI: https://doi.org/10.1016/S1642-431X(13)00190-3

Ramashia SE, Anyasi TA, Gwata ET, et al. Processing, nutritional composition and health benefits of finger millet in Sub-Saharan Africa. Food Science and Technology. 2019; 39(2): 253-266. doi: 10.1590/fst.25017 DOI: https://doi.org/10.1590/fst.25017

Maldaner V, Coradi PC, Nunes MT, et al. Effects of intermittent drying on physicochemical and morphological quality of rice and endosperm of milled brown rice. LWT. 2021; 152: 112334. doi: 10.1016/j.lwt.2021.112334 DOI: https://doi.org/10.1016/j.lwt.2021.112334

Sheela P, Kanchana S, Maheswari TU, Hemalatha G. Optimization of parameters for the extraction of millet milk for product development. Research Journal of Agricultural Sciences. 2018; 9(6): 1345-1349.

Derbew H, Moges D. Effect of germination duration on nutritional and functional properties of sorghum (Sorghum bicolor): The case of Girana and Miskr varieties. Ethiopian Journal of Science and Technology. 2017; 10(3): 165. doi: 10.4314/ejst.v10i3.2 DOI: https://doi.org/10.4314/ejst.v10i3.2

Sharma S, Saxena DC, Riar CS. Analysing the effect of germination on phenolics, dietary fibres, minerals and γ-amino butyric acid contents of barnyard millet (Echinochloa frumentaceae). Food Bioscience. 2016; 13: 60-68. doi: 10.1016/j.fbio.2015.12.007 DOI: https://doi.org/10.1016/j.fbio.2015.12.007

Ocheme OB, Chinma CE. Effects of soaking and germination on some physicochemical properties of millet flour for porridge production. Journal of food Technology. 2008; 6(5): 185-188.

Santa Senhofa TĶ, Galoburda R, Cinkmanis I, et al. Effects of germination on chemical composition of hull-less spring cereals. Research for Rural Development. 2016; 1: 91-97.

Hejazi SN, Orsat V. Malting process optimization for protein digestibility enhancement in finger millet grain. Journal of Food Science and Technology. 2016; 53(4): 1929-1938. doi: 10.1007/s13197-016-2188-x DOI: https://doi.org/10.1007/s13197-016-2188-x

Nefale FE, Mashau ME. Effect of Germination Period on the Physicochemical, Functional and Sensory Properties of Finger Millet Flour and Porridge. Asian Journal of Applied Sciences. 2018; 6(5). doi: 10.24203/ajas.v6i5.5466 DOI: https://doi.org/10.24203/ajas.v6i5.5466

Mannuramath M, Yenagi N. Optimization of hydrothermal treatment for little millet grains (Panicum miliare). Journal of Food Science and Technology. 2015; 52(11): 7281-7288. doi: 10.1007/s13197-015-1798-z DOI: https://doi.org/10.1007/s13197-015-1798-z

Lamberts L, De Bie E, Derycke V, et al. Effect of Processing Conditions on Color Change of Brown and Milled Parboiled Rice. Cereal Chemistry. 2006; 83(1): 80-85. doi: 10.1094/cc-83-0080 DOI: https://doi.org/10.1094/CC-83-0080

Dharmaraj U, Meera MS, Reddy SY, et al. Influence of hydrothermal processing on functional properties and grain morphology of finger millet. Journal of Food Science and Technology. 2013; 52(3): 1361-1371. doi: 10.1007/s13197-013-1159-8 DOI: https://doi.org/10.1007/s13197-013-1159-8

Downloads

Published

2024-03-30

How to Cite

Iralepatil, R., Priyadharshini, R. S., Srenuja, D., Hema, V., Sinija, V., & Vidyalakshmi, R. (2024). Impact of germination and hydrothermal treatment on nutrient profiles and color characteristics of minor millets (kodo millet, little millet, and barnyard millet). Food Nutrition Chemistry, 2(1), 130. https://doi.org/10.18686/fnc.v2i1.130

Issue

Section

Original Research Article