Original Research Article

High-sensitivity pesticide detection on mango skins by terahertz spectroscopy with graphene oxide sensors

Xizu Wang*,†, Reuben J. Yeo†, Nan Zhang, Zhen Xiang Xing, Qiang Zhu, Karen Lin Ke*,†

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore

* Corresponding author: Xizu Wang, wangxz@imre.a-star.edu.sg; Karen Lin Ke, karen-kl@imre.a-star.edu.sg
† These authors contributed equally to this manuscript.

Abstract: Regular monitoring of pesticides in agricultural farmland is essential to prevent the misuse of toxic pesticide chemicals. As crop samples are typically disintegrated to extract the pesticide residue for chromatographic analysis, non-destructive techniques for pesticide monitoring are ideal for preventing the unwanted destruction of crops. This, however, requires analytical techniques that can detect trace pesticide amounts. Here, we show that terahertz (THz) spectroscopy in attenuated total reflection mode, combined with low-cost graphene oxide (GO) plasmonic sensor, can be used for sensitive, fast, and non-destructive pesticide detection on mango skin. After the application of pesticide solution onto the mango skin, the dried pesticide residue was transferred to the GO sensor by pressing it in contact with the mango skin surface. Due to the adsorption of the pesticide molecules onto the oxygen-rich GO surface, a signal in the THz range was obtained corresponding to the pesticide’s chemical fingerprint. With this technique, pesticide surface concentrations of approximately 1 µg/cm² on mango skins can be detected.

Keywords: THz spectroscopy; pesticide monitoring; plasmonic sensors; agricultural crops; attenuated total reflectance

1. Introduction

The use of chemical pesticides is a modern agricultural practice to prevent the destruction of valuable food crops by pests, thereby improving the crop’s yield and quality. Chemical pesticides are sprayed across large areas of plantations as aerosols that land on the crops or soil. Eventually, the pesticide can remain on the crop’s surface as residue, can be absorbed by the plants themselves, or can be leached into groundwater beneath the soil. By their nature, chemical pesticides are poisonous to the organisms they are intended to eradicate. Pesticides are regulated by environmental and health authorities around the world, and in small amounts typically do not pose a risk to humans and the wider ecological habitat. However, excess dosages or the use of pesticides with high toxicities could lead to detrimental effects. For example, pesticides containing organochlorine compounds such as lindane and dichlorodiphenyltrichloroethane (DDT) are carcinogenic and have largely been banned since the 1960s[1]. Nevertheless, because the high toxicity of organochlorine-based pesticides makes them highly effective in pest elimination, there have been reports as recent as 2019 that these pesticides are still being used in some parts of the world[2].

To prevent the misuse of pesticides, it is crucial for authorities to periodically monitor the dosage and use of restricted pesticides in agricultural regions. Conventionally, crop samples collected at random locations within an agricultural area are analysed for their pesticide content by liquid or gas chromatography, where the crop is broken down with a solvent to extract the pesticide[3]. Alternatively, non-destructive analytical methods exist that do not require harvesting and destruction of crops. This is done by analysing the dried pesticide residue that remains on the crop’s surface as a benchmark of the pesticide content. A disadvantage of this approach is that the pesticide residue gradually gets removed from the crop’s surface over time, due to exposure
to weather elements. Therefore, the analytical techniques used in non-destructive pesticide monitoring need to be sensitive enough to detect trace amounts of the pesticide.

In recent years, terahertz time-domain spectroscopy (THz-TDS) has been explored for chemical pesticide detection and analysis,[4,5] in addition to its other applications in medical imaging and detection of biomolecules and toxic gases[6–8]. While the sensitivity of THz-TDS can be increased by using metamaterial sensor that can detect the pesticide’s chemical fingerprint,[9–11] they are expensive to fabricate. A more attractive alternative is to use sensors that can be fabricated into thin films. Previously, Xu et al.[5] have successfully used covalent organic framework (COF) thin films for THz sensing of pesticides. However, in their work the pesticide was not studied in its dried residue state on the crop’s surface but instead in its solution form that was left to dry on the sensor itself. Furthermore, the use of hazardous and flammable organic solvents such as acetonitrile and benzaldehyde to prepare the COF thin films restricts their scalability for mass production. On the other hand, graphene-based thin film sensors can be prepared by liquid phase exfoliation of graphite in aqueous solutions, which makes their production cheap, safe and easily scalable[12–14]. Graphene-based materials support the propagation of surface plasmon polaritons that induce a strong plasmonic response in the THz range, thus contributing to their high detection sensitivity.[15–20] Furthermore, they also exhibit a high loading capacity for a variety of molecules due to the large surface area and conjugated 2D aromatic structure of graphene sheets that act as chemically active sites. This not only broadens the range of molecular species that can be detected but also enhances the responsiveness of the sensor to tiny changes in molecular concentrations[21,22]. Considering these advantages, graphene-based sensors have previously been explored for chemical pesticide detection in solution form using electrochemical cells[23,24] and with the use of spectroscopic techniques like Raman or IR spectroscopy[25,26]. Among the various derivatives of graphene, graphene oxide (GO) can be synthesized in large volumes by simultaneous oxidation and exfoliation of graphite in water, commonly known as Hummers method[13,14]. More importantly, the polar surface of GO is beneficial for the adsorption of organic pesticide molecules, especially those with polar moieties, onto the GO surface.

In this work, we demonstrate that pesticide residue on mango skins can be detected non-destructively and with high sensitivity by THz-TDS in an attenuated total reflectance (ATR) configuration, with the aid of a GO sensor fabricated in our lab. Lidocaine (Figure 1a) was used as the pesticide chemical in this work[27,28]. To simulate pesticide application and adsorption onto mango skins, lidocaine solutions prepared at different concentrations were dropped cast onto the mango skin and left to dry. A portion of the dried lidocaine residue on the mango skin surface was then transferred onto the GO sensor for THz-TDS measurement. With the GO sensor, lidocaine surface concentrations down to 1 µg/cm² could be detected. The sensitivity of the GO sensor is attributed to the oxygen-rich GO surface that enhances the chemical adsorption of lidocaine to GO.

2. Materials and methods

2.1. Materials

Lab-synthesized GO (hereon labelled as S-GO) was prepared by the simultaneous exfoliation and oxidation of commercial graphite powder (7782-42-5, Alfa Aesar, 99.9% assay), according to the modified Hummers method with a pre-oxidation step to increase number of oxygen-rich functionalities onto the GO[13]. Oxidation of the graphite powder was carried out in a solution of potassium permanganate (KMnO₄; 7722-64-7, Junsei, Japan, 99.3%) acidified with sulfuric acid (H₂SO₄; 7664-93-9, Junsei, Japan, 95% assay) to a pH of 4–5, which is a comparably less acidic and hence more environmentally-friendly condition than commercial GO synthesis. Continued mixing of the graphite powder resulted in the formation of exfoliated S-GO flakes in the solution. The warm solution of S-GO was then filtered, washed with water and obtain the S-GO solution. Commercial GO (1034343-98-0, Graphenea SA, Spain), synthesized at pH 1.8–2.0, was used as a reference
Figure 1. (a) Chemical formula of lidocaine. (b–f) Photographs and illustrations showing the procedure of lidocaine application on mango peels and transfer of lidocaine residue onto the GO sensor. (b,c) The mango peels were removed from the mango fruits and diced into smaller pieces of 1 × 1 cm²; the mango peel pieces were then cleaned with soap and water. (d) A solution of lidocaine was dropped on the cleaned mango skins. (e) The mango skins were left in a closed box to allow the solvent to evaporate and prevent dust accumulation. (f) Dried lidocaine residue was transferred from the mango skin surface to the GO sensor surface by a press-transfer technique, which involved placing the GO sensor in contact with the mango skin surface and applying a 1 kg weight on the back of the GO sensor.

for the characterization of S-GO. Undoped double-side polished silicon (Si) wafers were diced into smaller pieces of 1 × 1 cm² and 2 × 2 cm² and these Si wafer pieces were used as the substrates for the GO sensor. The diced Si pieces were sonicated cleaned by a sequential sonication process in the following cleaning agents: commercial detergent solution (Hellmanex® III, Hellma; 30 min), followed by de-ionized (DI) water (30 min), acetone (67-64-1, Sigma-Aldrich; 10 min) and isopropanol (67-63-0, Sigma-Aldrich; 10 min). After the final sonication step in isopropanol, the Si pieces were removed and dried under a flow of N₂. Solutions of lidocaine (137-58-6, Sigma-Aldrich) were prepared in ethanol (64-17-5, Sigma-Aldrich, 95% assay) to concentrations of 10–3000 mg/L. Fresh mangoes were purchased from the local supermarket. The skins were removed from the mangoes (Figure 1b) and diced into smaller pieces of approximately 1 × 1 cm² (Figure 1c). The mango skin pieces were thoroughly cleaned with soap and water to remove surface oils and contaminants, and then dried with a paper towel.

2.2. Fabrication of the GO sensor

The GO sensor was prepared by spin-coating an aqueous colloidal S-GO solution onto one side of the clean Si substrate. To prepare the colloidal S-GO solution, the S-GO powder was dispersed in water using mild sonication, as described in previous reports[13,29–31]. The concentration of the colloidal S-GO solution was ~2 g L⁻¹. Prior to spin-coating, the Si surface on which the S-GO film was to be deposited was treated with UV-ozone for 10 min. Spin-coating was carried out at 2000 rpm. Subsequently, the S-GO film was dried on a hot plate at 110 °C for 10 min to obtain the GO sensor.

2.3. GO sensor characterization

All characterizations on the GO sensor were carried out on the spin-coated and dried S-GO film on Si. The morphology of the GO sensor was characterized by bright field scanning electron microscopy (SEM; JEOL JSM-7001F) with a maximum electron beam accelerating voltage of 5 kV. The GO sensor was imaged as-is without depositing an additional conductive coating. The carbon bonding states of the GO sensor were characterized by X-ray photoelectron spectroscopy (XPS; Thermo Fisher Scientific VG ESCALab) equipped with a monochromatic Al Kα source (1486.81 eV)[32]. Shirley background subtraction was performed on the
XPS C 1s spectrum followed by peak fitting and quantification using Origin software (OriginPro 2017, OriginLab, MA, USA). The carbon microstructure of the GO sensor was characterized by Raman spectroscopy in a confocal Raman microscope (WITec Alpha 300R) at room temperature, using a 532 nm laser with an excitation power of ~1 mW. The laser beam was focused onto the sample using a 100× objective lens. A dispersive grating with 600 grooves/mm (BLZ = 500 nm) was used to collect the Raman signals. The measured spectrum was baseline corrected by subtracting the dark (background) spectrum from the measured spectrum. Peak fitting and quantification of the baseline-corrected spectrum was performed using Origin software.

2.4. Transfer of lidocaine from mango skin surface onto the GO sensor

To simulate the detection of dried pesticide residue from the agricultural crop surface, lidocaine solution was applied to the mango skin surface and left to evaporate before the lidocaine residue was transferred to the GO sensor. 100 µL of each concentration of lidocaine solution were drop-cast directly onto separate clean mango skin surfaces (Figure 1d) and stored in a closed box at ambient conditions for 1 h. This allowed the solvent to evaporate while preventing dust accumulation on the mango skin surface during this time (Figure 1e). To transfer the dried lidocaine residue from the mango skin to the GO sensor, the GO sensor surface was placed in contact with the mango skin surface. A weight of 1 kg was then used to press the GO sensor down onto the mango skin surface (Figure 1f). The weight was left in this position for at least 12 h.

2.5. Lidocaine measurement by gas chromatography mass spectrometry (GCMS)

Gas chromatography mass spectrometry (GCMS; Agilent 7890A) was used to verify the amount of lidocaine that was drop-cast on the mango skins. Mango skins that had been drop-cast with 10–380 mg/L ethanolic lidocaine solutions were cut into tiny pieces and immersed in 1.5 mL of dichloromethane (DCM; 75-09-2, Sigma Aldrich) for at least 12 h to completely dissolve the adsorbed lidocaine. The solution was then filtered before the GCMS measurement to remove any mango skin pulp. 1 mL of the filtrate was used for GCMS analysis. The GCMS instrument parameters and oven temperature program for the lidocaine analysis are presented in Table 1. Based on the GCMS settings, the peak corresponding to the species of the lidocaine molecule appeared at 26.42 min retention time, and this was used as the primary measure of the amount of lidocaine present in the DCM solution. To determine the amount of lidocaine residue remaining on the mango skin surface after press transfer, mango skins after press transfer were dissolved in DCM and the filtered solution (without any mango skin pulp) was analyzed by GCMS.

<table>
<thead>
<tr>
<th>GCMS settings</th>
<th>Parametric values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumentation</td>
<td>Agilent 7890A chromatograph equipped with a 7693A auto-injector and a 5975C MSD mass detector</td>
</tr>
<tr>
<td>Column</td>
<td>HP-5, (5% Phenyl)-methylpolysiloxane, non-polar</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>280 °C</td>
</tr>
<tr>
<td>Injection volume</td>
<td>2 µL</td>
</tr>
<tr>
<td>Injection mode</td>
<td>Split</td>
</tr>
<tr>
<td>Column flow rate</td>
<td>1 mL/min</td>
</tr>
<tr>
<td>Split ratio</td>
<td>10:1</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Helium</td>
</tr>
<tr>
<td>Mass spectrometer mode</td>
<td>Electron impact positive ionization (EI+)</td>
</tr>
<tr>
<td>Scanning mass range</td>
<td>50 to 550 m/z</td>
</tr>
<tr>
<td>Oven temperature program</td>
<td>50 °C for 1 min, then 5 °C/min ramp to 300 °C, hold at 300 °C for 5 min</td>
</tr>
</tbody>
</table>
2.6. Terahertz time-domain spectroscopy (THz-TDS) measurements

THz radiation is an effective probe for pharmaceutical compounds such as lidocaine, as the frequency range of THz radiation corresponds to the characteristic energies of their intermolecular and intramolecular vibrations. All THz-TDS measurements were performed in the ATR configuration in a commercial THz-TDS spectrometer (TPS Spectra 3000, TeraView Limited, Cambridge). The THz-TDS measurement setup is schematically illustrated in Figure 2.

Spectral data were acquired from each GO sensor by pressing it in contact with the single-crystal silicon ATR prism surface using a clamp. During the THz-TDS measurement, a pulsed laser beam with broadband frequencies in the THz region was transmitted into the Si ATR prism. The incident angle of the THz beam to the prism-sample interface was set at 57°, which resulted in total internal reflection of the beam at the interface. A range of energies from the THz pulse is emitted as an evanescent electric field that penetrates the sample’s sub-surface (approximately tens to hundreds of micrometers deep) and the characteristic vibration energies are absorbed by the lidocaine present on the GO sensor. This in turn induces a change in the amplitude and phase of the reflected THz pulse, where the magnitude of the change in amplitude and phase can be used to determine the amount (concentration) of lidocaine present on the GO sensor. THz time-domain spectra were acquired for the bare GO sensor as a reference, then GO sensor with adsorbed lidocaine. Each spectrum comprised 1800 scans acquired at a rate of 30 scans per second for 60 s, with the frequency resolution set at \(7.6 \times 10^{-3}\) THz.

2.7. Terahertz time-domain spectroscopy (THz-TDS) data processing

Background subtraction of the measured ATR spectra was first performed on the measured THz time-domain spectrum by subtracting the signal obtained in the absence of a GO sensor. The background-subtracted spectrum was then normalized to the incident THz pulse to account for variations in the incident pulse intensity. Through a fast Fourier transform (FFT) of the time-domain spectrum, the corresponding frequency-domain ATR spectrum could be derived. Assuming that all the reflectance loss is absorbed by the GO sensor and...
adsorbed lidocaine, the absorption coefficients at different frequencies could be calculated from the ATR data using established formulae (Figure A1)[34–36]. From this plot, it was revealed that the fingerprint absorption of lidocaine was in the 1.5–2.5 THz range.

The ATR intensity for a GO sensor with adsorbed lidocaine was derived by dividing the maximum ATR signal of the GO sensor with lidocaine in the 1.5–2.5 THz range by the magnitude of the ATR signal of pristine GO at the same frequency, then subtracting the result from unity. A total of eight different positions per sample were measured and the ATR reflection intensity is determined as the average intensity value measured from these eight positions.

2.8. Calibration of lidocaine concentrations by THz-TDS

Prior to the THz-TDS measurements of transferred lidocaine from mango skins, the GO sensors had to be calibrated with known amounts of lidocaine concentrations to correlate the ATR intensity to lidocaine concentration. 100 µL of different concentrations of lidocaine in DCM solutions ranging from 10 mg/L to 3000 mg/L were drop-cast directly onto separate fresh GO sensor surfaces. The GO sensors were left to dry in a closed box at ambient conditions to allow for solvent evaporation, leaving behind only adsorbed lidocaine residue on the GO sensor. Subsequently, THz-TDS measurements were performed on these GO sensors. From THz-TDS frequency-domain spectra, the ATR intensity was determined for each lidocaine solution concentration to plot a calibration curve.

3. Results and discussion

3.1. Characterization of the GO sensor

Before drop-cast and press transfer, experiments were carried out with lidocaine, the pristine GO sensor was characterized to determine its quality after fabrication. The fabrication of macroscopic GO films and membranes from GO dispersions in solvents is well documented[37]. SEM imaging was performed to visualize the morphology of the GO sensor. It was evident from the low magnification image that the S-GO film had a smooth morphology which conformed to the surface of the silicon substrate (Figure 3a). Closer observation of the SEM image also revealed the presence of wrinkles in the film that span tens of micrometers across the surface. The wrinkling was more obvious in a magnified image of the S-GO film covering a particle sitting on the silicon surface (Figure 3b). This showed that the GO film was continuous and exhibited some elastic properties. The occurrence of wrinkling in a GO film formed from an aqueous GO dispersion had been observed previously and was attributed to the uncontrolled drying process of the film[38]. In addition, the morphology of S-GO thin films was found to be similar to commercial GO thin films formed from spin-coating aqueous dispersions of commercial GO powder on Si wafer substrates, as shown in side-by-side comparisons of their SEM images (Figure A2). Overall, these observations indicated the macroscopic uniformity and continuity of both the S-GO and commercial GO films across a large area of up to hundreds of square microns.

Figure 3. (a,b) Scanning electron microscopy images of S-GO after having been spin-coated onto a silicon substrate and dried on a hot plate to be made into the GO sensor. Image (b) is a magnified image of the area bounded by the white rectangle in image (a).
XPS was performed primarily to investigate the degree of oxidation of the GO sensor. We deconvoluted the XPS C 1s spectrum of the S-GO film into three constituent peaks of sp²/sp³ C-C (284.8 eV), C-O (286.9 eV) and O-C = O (288.4 eV) fitted with Gaussian components (Figure 4a)\(^\text{[30]}\). Integration of the peak areas show that the S-GO film was highly oxidized, with a C-O fraction of 42.7%, O-C = O fraction of 9.3% and sp²/sp³ C-C fraction of 48.0%. C-O groups typically arise from hydroxyl functions on the surface, whereas O-C = O groups mainly arise from carboxyl functions. Hence, we can conclude that the majority of the oxygen-rich functionalities are hydroxyl groups. From the C 1s spectra, the degree of oxidation for S-GO was determined to be ~52.0% based on the ratio of the C-O and O-C = O peak areas to the total C 1s area. This was comparable to but slightly lower than the degree of oxidation of 55.2% for commercial GO as measured by XPS C 1s in the same manner (Figure 4b). A summary of the constituent peak areas and degree of oxidation for S-GO and commercial GO is presented in Table 2.

Table 2. Summary of key data extracted from the XPS spectra of S-GO and commercial GO films on silicon.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak areas (a.u.)</th>
<th>Deg. of oxidation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sp²/sp³ C-C</td>
<td>C-O</td>
</tr>
<tr>
<td>S-GO</td>
<td>2527.2</td>
<td>2244.1</td>
</tr>
<tr>
<td>Commercial</td>
<td>2471.4</td>
<td>2591.1</td>
</tr>
</tbody>
</table>

Next, the microstructure of the GO sensor was characterized by Raman spectroscopy. The Raman spectrum of GO film in the 1150–1850 cm\(^{-1}\) wavenumber region was deconvoluted into four constituent peaks fitted with Lorentzian components ascribed to the G, D, D' and D'' bands (Figure 5a)\(^\text{[40]}\). The G band at 1350 cm\(^{-1}\) arises from the Raman-active zone center phonon E\(_{2g}\) mode of sp²-bonded carbon. On the other hand, the D band at 1580 cm\(^{-1}\) is a defect-activated band ascribed to the presence of defects in the sp² carbon microstructure. The D' band at 1613 cm\(^{-1}\), like the D band, is another defect-activated band in sp² carbon materials which becomes more obvious when the defect concentration is at a moderate level\(^\text{[41]}\). Finally, the D'' band at 1524 cm\(^{-1}\) is related to the fraction of amorphous phase of sp² carbon in the material\(^\text{[42]}\). In comparison with typical commercial GO and graphite oxide materials (Figure 5b), the Raman spectrum of S-GO has a similar shape and D to G peak intensity ratio (I\(_D\)/I\(_G\)) of ~1.6\(^\text{[43]}\), which leads us to conclude that the carbon microstructure of the S-GO film is similar to commercial GO. It should be noted that many papers reporting on the I\(_D\)/I\(_G\) ratio of GO give a value of close to 1. However, in these works the authors had regarded the broad peak at ~1600 cm\(^{-1}\) to be a single G peak, instead of it being the sum of the G and D' peak components, and
had therefore calculated the I_D/I_G ratio based on the raw (unfitted) spectra$^{[42, 44]}$. A summary of the Raman peak positions and I_D/I_G ratios for S-GO and commercial GO is presented in Table 3.

![Figure 5](image)

Figure 5. Raman spectra of (a) S-GO and (b) commercial GO films on silicon, fitted with four Lorentzian components that represent the D, D”, G and D’ peaks.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak positions (cm$^{-1}$)</th>
<th>I_D/I_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-GO</td>
<td>1349.9 1521.6 1587.1 1617.3</td>
<td>1.59</td>
</tr>
<tr>
<td>Commercial GO</td>
<td>1351.3 1527.7 1586.2 1615.7</td>
<td>1.55</td>
</tr>
</tbody>
</table>

3.2. Measurement of lidocaine residue content on mango skins

GCMS was used as a benchmark to determine the amount of drop-cast lidocaine on the mango skin, before and after press-transfer onto the GO sensor. Lidocaine concentrations of 10–380 mg/L were used for this experiment. During the drop-cast process, the area of the drop on the mango skin surface was approximately 1 cm2. Knowing this allowed us to estimate the surface concentration of lidocaine on the mango skin surface. Within this concentration range, we performed a linear regression for both sets of data with a best fit line that passes through the origin (Figure 6). After applying the press transfer procedure, a significant decrease in GCMS intensity is observed, demonstrating that a significant amount of lidocaine has been successfully transferred to the GO sensor. The slopes of the two linear fits thus allow us to extrapolate the approximate proportion of lidocaine transferred by the press-transfer procedure, which was calculated to be approximately 68% of the original amount of lidocaine dropped onto the mango skin.

To study the ATR intensity response with lidocaine concentration, we determined the ATR intensities from THz-TDS spectra measured on GO sensors with different concentrations of drop-cast lidocaine solutions ranging from 10 mg/L to 3000 mg/L (Figure 7a). We observed two distinct regimes in the trend of ATR intensity depending on the concentration of drop-cast lidocaine: one low concentration regime for concentrations $<$350 mg/L (<35 µg/cm2), and one high concentration regime for concentrations \geq350 mg/L (\geq35 µg/cm2). The difference in the ATR intensity response in these two regimes can be attributed to the availability of the oxygen-bearing functionalities on GO in the presence of different loadings of lidocaine molecules (Figure 7b). The plasmonic response of GO is sensitive to the chemical adsorption of molecules at the GO surface. At low concentrations ($<$350 mg/L), the abundance of adsorption sites on GO allows almost all lidocaine molecules to be chemically adsorbed onto the GO surface, resulting in a highly sensitive ATR
Figure 6. Relationship between the concentration of drop-cast lidocaine solution on mango skins and the peak intensity of lidocaine measured by gas chromatography-mass spectrometry (GCMS), before and after press-transfer onto a GO sensor. Linear regression was performed on both data sets to obtain a best fit-line for each data set that passes through the origin.

Figure 7. (a) Variation of ATR intensity with lidocaine solution concentration for drop-cast lidocaine on the GO sensor. Two different regimes were observed, one at low lidocaine concentrations (< 350 mg/L) and one at high lidocaine concentrations (≥ 350 mg/L). The inset shows a clearer view of the data points in the low-concentration regime (10–350 mg/L). (b) Schematic illustrations showing the degree of saturation of the GO sensor surface by the lidocaine molecules at (1) low concentration, (2) intermediate concentration, and (3) high concentration as observed in (a). (c) Comparison of ATR intensities for lidocaine solutions drop-cast directly onto the GO sensor versus lidocaine solutions drop-cast on mango skins then press-transferred onto the GO sensor for concentrations up to 200 mg/L.
response with lidocaine concentration. This regime extends up to an intermediate concentration of 350 mg/L, where most of the adsorption sites on GO are fully occupied. As the lidocaine concentration increases above 350 mg/L, the first layer of adsorbed lidocaine molecules starts to hinder the migration and attachment of subsequent molecules to the underlying GO adsorption sites. Since the lidocaine molecules on the upper layers that are not bound to the GO surface do not contribute to the plasmonic response observed in the ATR signal, hence in this regime we see a smaller rise in the ATR intensity with lidocaine concentration.

For studying press-transferred lidocaine molecules from mango skins, we focus on the low concentration regime (10–200 mg/L) to probe the sensitivity of the THz-TDS technique for lidocaine detection. We fitted the ATR intensity data of drop-cast and press-transferred lidocaine to linear trendlines (Figure 7c). ATR peak intensities for press-transferred lidocaine samples were consistently lower than drop-cast lidocaine. This trend is unsurprising since some lidocaine residue is expected to remain on the mango skin surface after the press-transfer process; this was also proven by GCMS measurements. However, it can be observed that the ratio of the ATR intensities between the two trendlines does not correspond to the ratio of 68% of lidocaine residue transfer to the GO sensor as determined from GCMS in Figure 6. This discrepancy can be attributed to the different ATR signal baselines for ethanolic lidocaine solutions directly drop-cast on the GO sensor versus press-transferred lidocaine from the mango skin. The difference in ATR signal baselines could be due to different surface concentration profiles of lidocaine developed on the two different surfaces after solvent drying, as well as the possibility of ethanol molecules from the drop-cast lidocaine solution that remain chemically adsorbed to the GO after drying. Still, at these low lidocaine concentrations, we could observe a variation in the ATR intensity as the lidocaine concentration was varied by tens of mg/L, which is an indication of the sensor’s responsiveness. Furthermore, minute amounts of press-transferred lidocaine could still be detected on the GO sensor by THz-TDS ATR even for the lowest lidocaine solution concentration of 10 mg/L (surface concentration of 1 µg/cm²) that was drop-cast on the mango skin[42]. These results show that the THz-TDS ATR technique in combination with a GO sensor is sensitive towards the detection of lidocaine detection at low concentrations, and could therefore be translated to a high sensitivity for detection of other pesticide chemicals.

4. Conclusions

We have successfully shown that THz-TDS in ATR mode, in combination with a plasmonic GO sensor, can be used as a non-destructive method to measure low surface concentrations of pesticides of down to 1 µg/cm² on mango skins. GO was synthesized in our lab by simultaneous exfoliation and oxidation of commercial graphite in aqueous medium under conditions that are less acidic than commercial GO synthesis, making the process more environmentally-friendly and less hazardous while maintaining its low cost and scalability of synthesis. The GO sensor was fabricated by spin-coating an aqueous dispersion of GO onto a polished silicon wafer surface to form a continuous and uniform GO thin film. Despite being synthesized non-commercially, the GO thin film was found to be comparable in quality to commercial GO thin films, with a similar carbon microstructure, degree of surface oxidation and film uniformity. To simulate the application of pesticide onto a fruit skin surface, lidocaine solutions of different concentrations were drop-cast onto mango skins and left to dry. Subsequently, the dried pesticide residue was transferred onto the GO sensor by a press-transfer technique without having to destroy the mango skin. Due to the plasmonic enhancement offered by the GO sensor, THz-TDS in ATR mode was found to be sensitive enough to detect press-transferred lidocaine adsorbed on the GO sensor even at the lowest lidocaine solution concentration of 10 mg/L, which corresponds to a lidocaine surface concentration of ~1 µg/cm² on the mango skin. Nevertheless, a high resolution of the GO sensor could be realized only in the low lidocaine solution concentration regime of <350 mg/L (surface concentrations <35 µg/cm²), above which the resolution degrades due to saturation of the GO sensor at higher
licodaine amounts. This study demonstrates that GO thin film THz sensors can potentially be used for non-destructive detection of trace amounts of pesticides on agricultural food crops for the purpose of pesticide monitoring and regulation. Future investigations on such GO thin film THz sensors may include applying these GO thin films onto flexible substrates that could better conform to the crop’s surface, as well as studying their sensitivities to other types of pesticide chemicals (subject to license approval).

Author contributions

Conceptualization, KLK and XW; methodology, NZ and ZXX; software, KLK; validation, KLK and QZ; formal analysis, XW; data curation, KLK; writing—original draft preparation, RJY; writing—review and editing, RJY and XW; supervision, QZ. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

Appendix

Figure A1. Variation of absorption coefficients with frequency obtained from ATR spectra measured on pristine GO and GO with drop-cast lidocaine (concentration 150 ppm). The fingerprint region of lidocaine on GO was found to be within the frequency range of 1.5–2.5 THz based on the larger absorption coefficients than pristine GO in this range.

Figure A2. SEM images of (a) S-GO spin-coated thin film and (b) commercial GO spin-coated thin film on Si wafer substrates. The wrinkling of the GO films is a result of the uncontrolled drying process of the films on a hot plate after spin-coating. Nevertheless, the wrinkling clearly reveals the macroscopic continuity of both GO films in the SEM images.