近场辐射换热实验:综述
DOI:
https://doi.org/10.18686/cncest.v1i1.64关键词:
近场辐射换热;实验;板对板;针尖对板;球-板摘要
由于近场机制下倏逝波的耦合效应,近场辐射传热(Near-field radiation heat transfer, NFRHT)已被证明可以超过黑体极限,为主动热控制、热光伏和纳米级成像等应用开辟了新的道路。尽管对NFRHT的理论研究已经进行了详尽的研究,但由于在纳米尺度上控制间隙距离的挑战,NFRHT的实验测量一直停滞不前。直到21世纪,得益于微纳制造技术和材料科学的进步,NFRHT的纳米控制和测量才取得了显着进展。本综述对NFRHT的实验发展进行了深入讨论。根据发射器和接收器的结构,实验装置分为三种不同的类别:平板-平板结构、尖端-平板结构和球-平板结构。对金属、半导体、二维材料和双曲超材料之间的NFRHT现有实验装置和方法进行了彻底的探索和详细分析。最后,在NFRHT的测量中简要总结了纳米尺度的突出挑战和应用前景的进展。
参考
Wiatros-Motyka M. Global electricity review 2023. Available online: https://ember-climate.org/insights/research/global-electricity-review-2023/ (accessed on 22 September 2023).
Zhang ZM. Nano/Microscale Heat Transfer. Springer Nature; 2020.
Cuevas JC, García-Vidal FJ. Radiative heat transfer. ACS Photonics 2018; 5(10): 3896−3915. doi: 10.1021/acsphotonics.8b01031
Lucchesi C, Vaillon R, Chapuis PO. Radiative heat transfer at nanoscale: experimental trends and challenges. Nanoscale Horizons 2021; 6: 201−208. doi: 10.1039/D0NH00609B
Song B, Fiorino A, Meyhofer E, Reddy P. Near-field radiative thermal transport: From theory to experiment. AIP Advances 2015; 5(5): 053503. doi: 10.1063/1.4919048
Viloria MG, Guo Y, Merabia S, et al. Role of the Nottingham effect in heat transfer in the extreme near-field regime. Physical Review B 2023; 107(12): 125414. doi: 10.1103/PhysRevB.107.125414
Tokunaga T, Jarzembski A, Shiga T, et al. Extreme near-field heat transfer between gold surfaces. Physical Review B 2021; 104(12): 125404. doi: 10.1103/PhysRevB.104.125404
Ghashami M, Jarzembski A, Lim M, et al. Experimental exploration of near-field radiative heat transfer. Annual Review of Heat Transfer 2020; 23: 13–58. doi: 10.1615/AnnualRevHeatTransfer.2020032656
Sasihithlu K, Pendry JB, Craster RV. Van der Waals force assisted heat transfer. Zeitschrift für Naturforschung A 2017; 72(2): 181–188. doi: 10.1515/zna-2016-0361
Chiloyan V, Garg J, Esfarjani K, Chen G. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps. Nature Communications 2015; 6: 6755. doi: 10.1038/ncomms7755
Biehs SA, Messina R, Venkataram PS, et al. Near-field radiative heat transfer in many-body systems. Reviews of Modern Physics 2021; 93(2): 025009. doi: 10.1103/RevModPhys.93.025009
Fiorion A, Zhu L, Thompson D, et al. Nanogap near-field thermophotovoltaics. Nature Nanotechnology 13(9): 806–811. doi: 10.1038/s41565-018-0172-5
Bhatt GR, Zhao B, Roberts S, et al. Integrated near-field thermo-photovoltaics for heat recycling. Nature Communications 2020; 11(1): 2545. doi: 10.1038/s41467-020-16197-6
Mittapally R, Lee B, Zhu L, et al. Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density. Nature Communications 2021; 12(1): 4364. doi: 10.1038/s41467-021-24587-7
Yu X, Chan J, Chen C. Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 2021; 88: 106259. doi: 10.1016/j.nanoen.2021.106259
Zhu L, Fiorino A, Thompson D, et al. Near-field photonic cooling through control of the chemical potential of photons. Nature 2019; 566(7743): 239–244. doi: 10.1038/s41586-019-0918-8
Guha B, Otey C, Poitras CB, et al. Near-field radiative cooling of nanostructures. Nano letters 2012; 12(9): 4546–4550. doi: 10.1021/nl301708e
Ren J, Li B. Preface to special topic: Phononics: controlling thermal energy, information carried by phonons and beyond. AIP Advances 2015; 5(5): 053101. doi: 10.1063/1.4922168
Li Y, Li W, Han T, et al. Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials 2021; 6(6): 488–507. doi: 10.48550/arXiv.2008.07964
Yin H, Zhang J, Wang X, et al. Recent progress in near-field tip enhancement: Principles and applications. Physica Status Solid-Rapid Research Letters 2022; 16: 2100456. doi: 10.1002/pssr.202100456
Seo C, Kim TT. Terahertz near-field spectroscopy for various applications. Journal of the Korean Physical Society 2022; 81(6): 549–561. doi: 10.1007/s40042-022-00404-2
Cravalho E, Domoto G, Tien C. Measurements of thermal radiation of solids at liquid-helium temperatures. In: Proceedings of 3rd Thermophysics Conference; 24–26 June 1968; Los Angeles, CA, USA. doi: 10.2514/6.1968-774
Domoto GA, Boehm RF, Tien CL. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. Journal of Heat Transfer 1970; 92(3): 412–416 (1970). doi: 10.1115/1.3449677
Cravalho EG, Tien CL, Caren RP. Effect of small spacings on radiative transfer between two dielectrics. Journal of Heat Transfer 1967; 89(4): 351–358. doi: 10.1115/1.3614396
Hargreaves CM. Anomalous radiative transfer between closely-spaced bodies. Physics Letters A 30(9): 491–492. doi: 10.1016/0375-9601(69)90264-3
Polder D, Van Hove M. Theory of radiative heat transfer between closely spaced bodies. Physical Review B 1971; 4(10): 3303–3314. doi: 10.1103/PhysRevB.4.3303
Song J, Cheng Q, Zhang B, et al. Many-body near-field radiative heat transfer: methods, functionalities and applications. Reports on Progress in Physics 2021; 84(3): 036501. doi: 10.1088/1361-6633/abe52b
Lucchesi C, Vaillon R, Chapuis PO. Radiative heat transfer at the nanoscale: experimental trends and challenges. Nanoscale Horizons 2021; 6(3): 201–208. doi: 10.1039/D0NH00609B
Hu L, Narayanaswamy A, Chen X, Chen G. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Applied Physics Letters 2008; 92: 133106. doi: 10.1063/1.2905286
Ottens R S, Quetschke V, Wise S, et al. Near-field radiative heat transfer between macroscopic planar surfaces. Physical Review Letters 2011; 107: 014301. doi: 10.1103/PhysRevLett.107.014301
Kralik T, Hanzelka P, Zobac M, et al. Strong near-field enhancement of radiative heat transfer between metallic surfaces. Physical Review Letters 2012; 109: 224302. doi: 10.1103/PhysRevLett.109.224302
Kralik T, Hanzelka P, Musilova V, et al. Cryogenic apparatus for study of near-field heat transfer. Review of Scientific Instruments 2011; 82: 055106. doi: 10.1063/1.3585985
Feng C, Tang ZA, Yu J. A novel CMOS device capable of measuring near-field thermal radiation. Chinese Physics Letters 2012; 29(3): 038502. doi: 10.1088/0256-307X/29/3/038502
Feng C, Tang Z, Yu J, Sun C. A MEMS device capable of measuring near-field thermal radiation between membranes. Sensors 2013; 13(2): 1998–2010. doi: 10.3390/s130201998
St-Gelais R, Guha B, Zhu L, et al. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Letters 2014; 14(12): 6971–6975. doi: 10.1021/nl503236k
Lim M, Lee SS, Lee BJ. Near-field thermal radiation between doped silicon plates at nanoscale gaps. Physical Review B 2015; 91: 195136. doi: 10.1103/PhysRevB.91.195136
Song B, Thompson D, Fiorino A, et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nature Nanotechnology 2016; 11: 509–514. doi: 10.1038/nnano.2016.17
Bernardi MP, Milovich D, Francoeur M. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nature Communications 2016; 7: 12900. doi: 10.1038/ncomms12900
Ghashami M, Geng H, Kim T, et al. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Physical Review Letters 2018; 120: 175901. doi: 10.1103/PhysRevLett.120.175901
Ito K, Miura A, Iizuka H, Toshiyoshi H. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Applied Physics Letters 2015; 106(8): 083504. doi: 10.1063/1.4913692
Ito K, Nishikawa K, Miura A, et al. Dynamic modulation of radiative heat transfer beyond the blackbody limit. Nano Letters 2017; 17(7): 4347–4353. doi: 10.1021/acs.nanolett.7b01422
Watjen JI, Zhao B, Zhang ZM. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Applied Physics Letters 2016; 109: 203112. doi: 10.1063/1.4967384
DeSutter J, Tang L, Francoeur M. A near-field radiative heat transfer device. Nature Nanotechnology 2019; 14: 751–755. doi: 10.1038/s41565-019-0483-1
Ying X, Sabbaghi P, Sluder N, Wang L. Super-Planckian radiative heat transfer between Macroscale surfaces with vacuum gaps down to 190 nm directly created by SU 8 posts and characterized by capacitance method. ACS Photonics 2020; 7(1): 190–196. doi: 10.1021/acsphotonics.9b01360
St-Gelais R, Zhu L, Fan S, Lipson M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology 2016; 11: 515–519. doi: 10.1038/nnano.2016.20
Fiorino A, Thompson D, Zhu L, et al. Giant enhancement in radiative heat transfer in Sub-30 nm gaps of plane parallel surfaces. Nano Letters 2018; 18(6): 3711–3715. doi: 10.1021/acs.nanolett.8b00846
Salihoglu H, Nam W, Traverso L, et al. Near-Field thermal radiation between two plates with sub-10 nm vacuum separation. Nano letters 2020; 20(8): 6091–6096. doi: 10.1021/acs.nanolett.0c02137
Fiorino A, Thompson D, Zhu L, et al. A thermal diode based on nanoscale thermal radiation. ACS Nano 2018; 12(6): 5774–5779. doi: 10.1021/acsnano.8b01645
Thompson D, Zhu L, Meyhofer E, et al. Nanoscale radiative thermal switching via multi-body effects. Nature Nanotechnology 2020; 15: 99–104. doi: 10.1038/s41565-019-0595-7
Messina R, Ben-Abdallah P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Scientific Reports 2013; 3: 1383. doi: 10.1038/srep01383
Svetovoy VB, Palasantzas G. Graphene-on-silicon near-field thermophotovoltaic cell. Physical Review Applied 2014; 2: 034006. doi: 10.1103/PhysRevApplied.2.034006
Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 2008; 92(15): 151911. doi: 10.1063/1.2907977
Yang J, Du W, Su Y, et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nature Communications 2018; 9: 4033. doi: 10.1038/s41467-018-06163-8
Shi K, Sun Y, Chen Z, et al. Colossal enhancement of near-field thermal radiation across hundreds of nanometers between millimeter-scale plates through surface plasmon and phonon polaritons coupling. Nano Letters 2019; 19(11): 8082–8088. doi: 10.1021/acs.nanolett.9b03269
Shi K, Chen Z, Xu X, et al. Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry. Advanced Materials 2021; 33(52): 2106097. doi: 10.1002/adma.202106097
Shi K, Chen Z, Xing X, et al. Near-Field Radiative Heat Transfer Modulation with an Ultrahigh Dynamic Range through Mode Mismatching. Nano Letters 2022; 22(19): 7753–7760. doi: 10.1021/acs.nanolett.2c01286
Lu L, Zhang B, Ou H, et al. Enhanced near-field radiative heat transfer between graphene/hBN systems. Small 2022; 18(19): 2108032. doi: 10.1002/smll.202108032
Thomas NH, Sherrott MC, Broulliet J, et al. Electronic modulation of near-field radiative transfer in graphene field effect heterostructures. Nano Letters 2019; 19(6): 3898–3904. doi: 10.1021/acs.nanolett.9b01086
Shi J, Liu B, Li P, et al. Near-field energy extraction with hyperbolic metamaterials. Nano Letters 2015; 15(2): 1217–1221. doi: 10.1021/nl504332t
Du W, Yang J, Zhang S, et al. Super-Planckian near-field heat transfer between hyperbolic metamaterials. Nano Energy 2020; 78: 105264. doi: 10.1016/j.nanoen.2020.105264
Lim M, Song J, Lee SS, Lee BJ. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nature Communications 2018; 9: 4302. doi: 10.1038/s41467-018-06795-w
Sabbaghi P, Long L, Ying X, et al. Super-Planckian radiative heat transfer between macroscale metallic surfaces due to near-field and thin-film effects. Journal of Applied Physics 2020; 128(2): 025305. doi: 10.1063/5.0008259
Lim M, Son J. Surface-plasmon-enhanced near-field radiative heat transfer between planar surfaces with a thin-film plasmonic coupler. Physics Review Applied 2020; 14(1): 014070. doi: 10.1103/PhysRevApplied.14.014070
Tang L, DeSutter J, Francoeur M. Near-field radiative heat transfer between dissimilar materials mediated by coupled surface phonon- and plasmon-polaritons. ACS Photonics 2020; 7(5): 1304–1311. doi: 10.1021/acsphotonics.0c00404
Iqbal N, Zhang S, Wang S, et al. Near-field radiative heat transfer between hybrid polaritonic structures. arXiv 2022; arXiv:2202.13712. doi: 10.48550/arXiv.2202.13712
Williams CC, Wickramasinghe HK. Scanning thermal profiler. Microelectronic Engineering 1986; 5(1–4): 509–513. doi: 10.1016/0167-9317(86)90084-5
Dransfeld K, Xu J. The heat transfer between a heated tip and a substrate: Fast thermal microscopy. Journal of Microscopy 1988; 152(1): 35–42. doi: 10.1111/j.1365-2818.1988.tb01359.x
Müller-Hirsch W, Kraft A, Hirsch MT, et al. Heat transfer in ultrahigh vacuum scanning thermal microscopy. Journal of Vacuum Science & Technology A 1999; 17(4): 1205–1210. doi: 10.1116/1.581796
Kittel A, Müller-Hirsch W, Parisi J, et al. Near-field heat transfer in a scanning thermal microscope. Physical Review Letters 2005; 95(22): 224301. doi: 10.1103/PhysRevLett.95.224301
Kittel A, Wischnath UF, Welker J, et al. Near-field thermal imaging of nanostructured surfaces. Applied Physics Letters 2008; 93(19): 193109. doi: 10.1063/1.3025140
Wischnath UF, Welker J, Munzel M, Kittel A. The near-field scanning thermal microscope. Review of Scientific Instruments 2008; 79(7): 073708. doi: 10.1063/1.2955764
Worbes L, Hellmann D, Kittel A. Enhanced near-field heat flow of a monolayer dielectric island. Physical Review Letters 2013; 110(13): 134302. doi: 10.1103/PhysRevLett.110.134302
Kim K, Song B, Fernández-Hurtado V, Lee W. Radiative heat transfer in the extreme near field. Nature 2015; 528: 387–391. doi: 10.1038/nature16070
Kloppstech K, Konne N, Biehs S, et al. Giant heat transfer in the crossover regime between conduction and radiation. Nature Communications 2017; 8: 14475. doi: 10.1038/ncomms14475
Cui L, Jeong W, Fernández-Hurtado V, et al. Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nature Communications 2017; 8(1): 14479. doi: 10.1038/ncomms14479
Narayanaswamy A, Shen S, Chen G. Near-field radiative heat transfer between a sphere and a substrate. Physical Review B 2008; 79(11): 115303. doi: 10.1103/PhysRevB.78.115303
Shen S, Narayanaswamy A, Chen G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Letters 2009; 9(8): 2909–2913. doi: 10.1021/nl901208v
Shen S, Mavrokefalos A, Sambegoro P, Chen G. Nanoscale thermal radiation between two gold surfaces. Applied Physics Letters 2012; 100: 233114. doi: 10.1063/1.4723713
Shi J, Li P, Liu B, Shen S. Tuning near field radiation by doped silicon. Applied Physics Letters 2013; 102(18): 183114. doi: 10.1063/1.4804631
Rousseau E, Siria A, Jourdan G, et al. Radiative heat transfer at the nanoscale. Nature Photonics 2009; 3(9): 514–517. doi: 10.1038/nphoton.2009.144
van Zwol PJ, Ranno L, Chevrier J. Tuning near field radiative heat flux through surface excitations with a metal insulator transition. Physical Review Letters 2012; 108(23): 234301. doi: 10.1103/PhysRevLett.108.234301
van Zwol PJ, Thiele S, Berger C, et al. Nanoscale radiative heat flow due to surface plasmons in graphene and doped Silicon. Physical Review Letters 2012; 109(26): 264301. doi: 10.1103/PhysRevLett.109.264301
Cahill DG, Braun PV, Chen G, et al. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews 2014; 1(1): 011305. doi: 10.1063/1.4832615
Song B, Ganjeh Y, Sadat S, et al. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nature Nanotechnology 2015; 10(3): 253–258. doi: 10.1038/nnano.2015.6
Biehs SA, Ben-Abdallah P, Rosa FSS, et al. Nanoscale heat flux between nanoporous materials. Optics Express 2011; 19(S5): A1088–A1103. doi: 10.1364/OE.19.0A1088
Wu X, Fu C, Zhang Z. Near-field radiative heat transfer between two α-MoO3 biaxial crystals. Journal of Heat Transfer 2020; 142: 072802. doi: 10.1115/1.4046968
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
CC BY-NC 4.0