专利申请视角下氧化还原液流电池技术的发展:综述

作者

  • 王仵洋 机械与精密仪器工程学院,西安理工大学
  • 穆安乐 机械与精密仪器工程学院,西安理工大学
  • 杨斌 机械与精密仪器工程学院,西安理工大学
  • 汪佳慧 机械与精密仪器工程学院,西安理工大学
  • 王宇鹏 机械与精密仪器工程学院,西安理工大学
Article ID: 63
114 Views, 20 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v1i1.63

摘要

随着全球能源消耗的不断增加,开发和利用可再生能源势在必行。然而,风能和太阳能发电的间歇性和波动性导致无法直接并网,造成了能源浪费。液流电池(RFBs)作为一种大规模电化学储能技术,可以有效地存储可再生能源并平稳输出。本文通过分析相关专利申请数据,总结了液流电池技术在中国的发展历程,详细阐述了各类液流电池的工作原理、优缺点及其最新研究进展。分析了当前液流电池研究中面临的技术挑战,并对液流电池商业化的应用前景进行了展望。结果表明,尽管液流电池技术在中国取得了重大进展,但仍面临电池成本高、循环寿命有限等问题。为实现可再生能源的高效利用和绿色低碳发展,液流电池技术需要不断优化升级。本文可为液流电池技术的发展提供参考。

参考

Mu A, Liu H, Zhang M, Wang J. Theory and kinematics analysis of a novel variable speed constant frequency wind energy conversion system (Chinese). Journal of Mechanical Engineering 2008; (1): 195–198, 204.

Emmett RK, Roberts ME. Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage. Journal of Power Sources 2021; 506: 230087. doi: 10.1016/j.jpowsour.2021.230087

Huang Z, Mu A, Wu L, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery. ACS Sustainable Chemistry & Engineering 2022; 10(24): 7786–7810. doi: 10.1021/acssuschemeng.2c01372

Kangro W. Method for Storing Electrical Energy. DE Patent 914,264, 28 June 1954.

Thaller LH. Electrically Rechargeable REDOX Flow Cell. U.S. Patent 3,996,064, 7 December 1976.

Xiao Y, Xiao K. High-Energy Static Vanadium Battery. CN Patent 1,507,103, 23 June 2004.

Li L. A 250 kWh long-duration advanced iron-chromium redox flow battery. In: The Electrochemical Society Meeting Abstracts, Proceedings of the 29th ECS Meeting with the 18th International Meeting on Chemical Sensors (IMCS); 30 May–3 June 2021; Online meeting. doi: 10.1149/MA2021-013222mtgabs

Flox C, Zhang C, Li Y. Redox flow battery as an emerging technology: Current status and research trends. Current Opinion in Chemical Engineering 2023; 39: 100880. doi: 10.1016/j.coche.2022.100880

Yao C, Zhang H, Liu T, et al. Cell architecture upswing based on catalyst coated membrane (CCM) for vanadium flow battery. Journal of Power Sources 2013; 237: 19–25. doi: 10.1016/j.jpowsour.2013.03.014

Sumitomo Corporation. Available online: https://www.sumitomocorp.com/en/jp ,(2023年3月20访问).

LG Chem. Available online: https://www.lgchem.com/main/index, (2023年3月20访问).

Lotte Chemical. Homepage. Available online: https://www.lottechem.com/cn/index.do (2023年3月21访问).

Division of Energy Storage. Available online: http://www.energystorage.dicp.ac.cn/ (accessed on 4 May 2023).

Rongke Energy Storage. Available online: http://www.rongkepower.com/?about/5.html (accessed on 25 March 2023).

State Grid. Available online: http://www.sgepri.sgcc.com.cn/ (accessed on 4 April 2023).

China Dongfang Electric Group Co., Ltd. Available online: https://www.dongfang.com/ (accessed on 4 April 2023).

100-megawatt Dalian liquid flow battery energy storage peak-shaving power station connected to the grid for power generation. Available online: https://www.cas.cn/zkyzs/2022/11/369/kyjz/202211/t20221108_4854124.shtml (accessed on 8 April 2023).

Transcript of the press conference of the National Energy Administration in the first quarter of 2023. Available online: http://www.nea.gov.cn/2023-02/13/c_1310697149.htm (accessed on 11 September 2023).

Sánchez-Díez E, Ventosa E, Guarnieri M, et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. Journal of Power Sources 2021; 481: 228804 doi: 10.1016/j.jpowsour.2020.228804

Fu H, Bao X, He M, et al. Defect-rich graphene skin modified carbon felt as a highly enhanced electrode for vanadium redox flow batteries. Journal of Power Sources 2023; 556: 232443. doi: 10.1016/j.jpowsour.2022.232443

Polaris wind power grid, Liaoning’s first all-vanadium flow battery energy storage power station connected to the grid. Available online: https://news.bjx.com.cn/html/20130304/420483.shtml (accessed on 2 May 2023).

The Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and the all-vanadium redox flow battery energy storage technology research collective of our institute won the 2014 Chinese Academy of Sciences Outstanding Scientific and Technological Achievement Award. Available online: http://www.dicp.cas.cn/xwdt/zhxws/2015/201809/t20180930_5117290.html (accessed on 5 May 2023).

Liu T, Ge L, Zhang Y. Key technology progress and development trend of all-vanadium redox flow battery (Chinese). China Metallurgy 2023; 33(4): 1–8, 133. doi: 10.13228/j.boyuan.issn1006-9356.20221005

Gao L, Li Z, Zou Y, et al. A high-performance aqueous zinc-bromine static battery. Iscience 2020; 23(8): 101348. doi: 10.1016/j.isci.2020.101348

Shin K, Lee JH, Heo J, et al. Current status and challenges for practical flowless Zn-Br batteries. Current Opinion in Electrochemistry 2022; 32: 100898. doi: 10.1016/j.coelec.2021.100898

Lee Y, Yun D, Park J, et al. An organic imidazolium derivative additive inducing fast and highly reversible redox reactions in zinc-bromine flow batteries. Journal of Power Sources 2022; 547: 232007. doi: 10.1016/j.jpowsour.2022.232007

Dalian Institute of Chemical Physics. Chinse Academy of Sciences. At the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, our institute developed a 30KWh zinc-bromine flow battery system for the user side (Chinese). Available online: http://dicp.cas.cn/xwdt/kyjz/202201/t20220117_6344516.html (accessed on 8 May 2023).

Wenzhou Zinc Era Energy Co., Ltd. Available online: http://www.zinc-times.com/About.aspx?ClassID=11 (accessed on 5 September 2023).

Zeng YK, Zhao TS, An L, et al. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources 2015; 300: 438–443. doi: 10.1016/j.jpowsour.2015.09.100

Wan CTC, Rodby KE, Perry ML, et al. Hydrogen evolution mitigation in iron-chromium redox flow batteries via electrochemical purification of the electrolyte. Journal of Power Sources 2023; 554: 232248. doi: 10.1016/j.jpowsour.2022.232248

National Development and Reform Commission. The National Development and Reform Commission of the People’s Republic of China has accelerated the development of renewable energy and added impetus to green development (Chinese). Available online: https://www.ndrc.gov.cn/fggz/hjyzy/tdftzh/202305/t20230531_1356885.html (accessed on 10 May 2023).

Zhang Y, Zhou C, Yang J, et al. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review. Journal of Power Sources 2022; 520: 230800. doi: 10.1016/j.jpowsour.2021.230800

Hazza A, Pletcher D, Wills R. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead (II) Part I. Preliminary studies. Physical Chemistry Chemical Physics 2004; 6(8): 1773–1778. doi: 10.1039/B401115E

Roberts D, Fraser EJ, Cruden A, et al. Predicting the cost of a 24 V soluble lead flow battery optimised for PV applications. Journal of Power Sources 2023; 570: 233058. doi: 10.1016/j.jpowsour.2023.233058

Na Z, Xu S, Yin D, et al. A cerium-lead redox flow battery system employing supporting electrolyte of methanesulfonic acid. Journal of Power Sources 2015; 295: 28–32. doi: 10.1016/j.jpowsour.2015.06.115

Bates A, Mukerjee S, Lee SC, et al. An analytical study of a lead-acid flow battery as an energy storage system. Journal of Power Sources 2014; 249: 207–218. doi: 10.1016/j.jpowsour.2013.10.090

Chang Z, Lu F, Chen R. Research on organic/inorganic redox flow batteries. In: Proceedings of the 4th National Conference on New Energy and Chemical New Materials and the National Symposium on Energy Conversion and Storage Materials; 19–21 April 2019; Dalian, China. p. 102.

Esser B, Dolhem F, Becuwe M, et al. A perspective on organic electrode materials and technologies for next generation batteries. Journal of Power Sources 2021; 482: 228814. doi: 10.1016/j.jpowsour.2020.228814

Park G, Eun S, Lee W, et al. Polybenzimidazole membrane based aqueous redox flow batteries using anthraquinone-2, 7-disulfonic acid and vanadium as redox couple. Journal of Power Sources 2023; 569: 233015. doi: 10.1016/j.jpowsour.2023.233015

McCormack PM, Luo H, Geise GM, et al. Conductivity, permeability, and stability properties of chemically tailored poly (phenylene oxide) membranes for Li+ conductive non-aqueous redox flow battery separators. Journal of Power Sources 2020; 460: 228107. doi: 10.1016/j.jpowsour.2020.228107

Pang B, Cui F, Chen W, et al. Construction of hierarchical proton sieving-conductive channels in sulfated UIO-66 grafted polybenzimidazole ion conductive membrane for vanadium redox flow battery. Journal of Power Sources 2022; 526: 231132. doi: 10.1016/j.jpowsour.2022.231132

Ramar A, Wang FM, Foeng R, et al. Organic redox flow battery: Are organic redox materials suited to aqueous solvents or organic solvents? Journal of Power Sources 2023; 558: 232611. doi: 10.1016/j.jpowsour.2022.232611

Pahlevaninezhad M, Leung P, Velasco PQ, et al. A nonaqueous organic redox flow battery using multi-electron quinone molecules. Journal of Power Sources 2021; 500: 229942. doi: 10.1016/j.jpowsour.2021.229942

Liu B, Tang CW, Jiang H, et al. An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte. Journal of Power Sources 2020; 477: 228985. doi: 10.1016/j.jpowsour.2020.228985

Guiheneuf S, Godet-Bar T, Fontmorin JM, et al. A new hydroxyanthraquinone derivative with a low and reversible capacity fading process as negolyte in alkaline aqueous redox flow batteries. Journal of Power Sources 2022; 539: 231600. doi: 10.1016/j.jpowsour.2022.231600

Tan A, Wen Y, Huang J, et al. Multiredox tripyridine-triazine molecular cathode for lithium-organic battery. Journal of Power Sources 2023; 567: 232963. doi: 10.1016/j.jpowsour.2023.232963

Zhu Y, Li Y, Qian Y, et al. Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere. Journal of Power Sources 2021; 501: 229984. doi: 10.1016/j.jpowsour.2021.229984

Lei Z, Yang Q, Xu Y, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications 2018; 9(1): 576. doi: 10.1038/s41467-018-02889-7

Park H, Park G, Kumar S, et al. Synergistic effect of electrolyte additives on the suppression of dendrite growth in a flowless membraneless Zn-Br2 battery. Journal of Power Sources 2023; 580: 233212. doi: 10.1016/j.jpowsour.2023.233212

Zhang Z, Shen Y, Zhao Z, et al. Organic additives in alkaline electrolyte to improve cycling life of aqueous Zn-Ni batteries. Journal of Power Sources 2022; 542: 231815. doi: 10.1016/j.jpowsour.2022.231815

McArdle S, Marshall AT. Why electrode orientation and carbon felt heterogeneity can influence the performance of flow batteries. Journal of Power Sources 2023; 562: 232755. doi: 10.1016/j.jpowsour.2023.232755

Fu H, Bao X, He M, et al. Defect-rich graphene skin modified carbon felt as a highly enhanced electrode for vanadium redox flow batteries. Journal of Power Sources 2023; 556: 232443. doi: 10.1016/j.jpowsour.2022.232443

Duduta M, Ho B, Wood V C, et al. Semi-solid lithium rechargeable flow battery. Advanced Energy Materials 2011; 1(4): 511–516. doi: 10.1002/aenm.201100152

Borlaf M, Moreno R, Ventosa E. A new shape-conformable battery concept: The 3D printed injectable battery filled with semi-solid electrodes. Journal of Power Sources 2023; 570: 233063. doi: 10.1016/j.jpowsour.2023.233063.

Chen X, Zhan Y, Tang J, et al. Advances in high performance anion exchange membranes: Molecular design, preparation methods, and ion transport dynamics. Journal of Environmental Chemical Engineering 2023; 11(5): 110749. doi: 10.1016/j.jece.2023.110749

Cheng J, Zhou W, Zhu M, et al. Optimizing microstructure of polyelectrolyte ion exchange membrane for electrodialysis. Chemical Engineering Journal 2023; 468: 143669. doi: 10.1016/j.cej.2023.143669

Chen Y, Paredes-Navia SA, Romo-De-La-Cruz CO, et al. Coating internal surface of porous electrode for decreasing the ohmic resistance and shifting oxygen reduction reaction pathways in solid oxide fuel cells. Journal of Power Sources 2021; 499: 229854. doi: 10.1016/j.jpowsour.2021.229854

Yuan J, Pan ZZ, Jin Y, et al. Membranes in non-aqueous redox flow battery: A review. Journal of Power Sources 2021; 500: 229983. doi: 10.1016/j.jpowsour.2021.229983

Fang M, Qiao L, Wu M, et al. Hydrogen-bond-rich composite membrane with improved conductivity and selectivity for flow battery. Journal of Power Sources 2023; 563: 232815. doi: 10.1016/j.jpowsour.2023.232815

Gautam RK, Kumar A. A review of bipolar plate materials and flow field designs in the all-vanadium redox flow battery. Journal of Energy Storage 2022; 48: 104003. doi: 10.1016/j.est.2022.104003

Jiang F, Liao W, Ayukawa T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers. Journal of Power Sources 2021; 482: 228903. doi: 10.1016/j.jpowsour.2020.228903

Messaggi M, Gambaro C, Casalegno A, et al. Development of innovative flow fields in a vanadium redox flow battery: Design of channel obstructions with the aid of 3D computational fluid dynamic model and experimental validation through locally-resolved polarization curves. Journal of Power Sources 2022; 526: 231155. doi: 10.1016/j.jpowsour.2022.231155

Pan L, Sun J, Qi H, et al. Along-flow-path gradient flow field enabling uniform distributions of reactants for redox flow batteries. Journal of Power Sources 2023; 570: 233012. doi: 10.1016/j.jpowsour.2023.233012

Gundlapalli R, Bhattarai A, Ranjan R, et al. Characterization and scale-up of serpentine and interdigitated flow fields for application in commercial vanadium redox flow batteries. Journal of Power Sources 2022; 542: 231812. doi: 10.1016/j.jpowsour.2022.231812

Huang Z, Mu A, Wu L, et al. Vanadium redox flow batteries: Flow field design and flow rate optimization. Journal of Energy Storage 2022; 45: 103526. doi: 10.1016/j.est.2021.103526

Chen H, Liu Y, Zhang X, et al. Single-component slurry based lithium-ion flow battery with 3D current collectors. Journal of Power Sources 2021; 485: 229319. doi: 10.1016/j.jpowsour.2020.229319

Zhang Y, Park JS, Senthilkumar ST, et al. A novel rechargeable hybrid Na-seawater flow battery using bifunctional electrocatalytic carbon sponge as cathode current collector. Journal of Power Sources 2018; 400: 478–484. doi: 10.1016/j.jpowsour.2018.08.044

Tekaligne TM, Merso SK, Yang SC, et al. Corrosion inhibition of aluminum current collector by a newly synthesized 5-formyl-8-hydroxyquinoline for aqueous-based battery. Journal of Power Sources 2022; 550: 23214. doi: 10.1016/j.jpowsour.2022.232142

现代液流电池的基本结构

##submission.downloads##

已出版

2023-09-25

文章引用

王仵洋, 穆安乐, 杨斌, 汪佳慧, & 王宇鹏. (2023). 专利申请视角下氧化还原液流电池技术的发展:综述. 清洁能源科学与技术, 1(1), 63. https://doi.org/10.18686/cncest.v1i1.63

栏目

综述文章