基于电池储能独立光伏系统的优化设计:突尼斯博里塞德里亚案例研究
DOI:
https://doi.org/10.18686/cncest.v1i1.55关键词:
光伏;系统地址;最佳倾角;独立光伏系统;光伏地理信息系统;光伏系统软件;技术性能;实验设置摘要
本研究涉及基于电池储能系统的独立光伏系统优化设计,并通过使用光伏系统评估其技术性能。实际上,此项研究旨在确定太阳能电池板的最佳朝向和倾角,以实现对太阳辐射的最大利用率。本研究以博里塞德里亚作为案例研究地点,通过光伏系统确定最佳倾角。光伏地理信息系统则用于估算全球太阳辐照度。所提出的系统可以为负荷产生1314 kWh的能量,考虑到性能比为58.3%和高效率发电,以及太阳能保证率约为92.5%,因此该技术被认为在这个地区上是合适的。从经济角度来看,独立光伏系统每年可以节省超过44,000 Dt的购电费用,同时从可持续性角度考虑,利用太阳能可以每年减少66.24 kg的二氧化碳排放。此外,为了能有效利用太阳能电池板,需要在各种条件下确定其特性。在LPV实验室进行了原始的实验设置,以确定光伏特性。在PSIM软件下进行的实验和模拟结果吻合良好,显示了实验设置的有效性。
参考
Schmidt J, Cancellaa R, Pereira AO. An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil. Renewable Energy, 2016; 85(C): 137–147.
Juliana AM, Henrique MC, Fabianna ST, et al . Performance of photovoltaic systems: Green office’s case study approach. International Journal Of Energy And Environment 2016; 7(2): 123–136.
Liu Z, Li Y, Xie J, et al. Optimum design for fixed grid connected photovoltaic array. Journal of Yunnan Normal University (Natural Sciences Edition) 2000; 20(6): 24–28.
Yang J, Mao J, Chen Z. Calculation of solar radiation on variously oriented tilted surface and optimum tilt angle. Journal of Shanghai Jiao Tong University 2002; 36(7): 1032–1036.
Yang G, Chen M, Chen Z. CAD method used in determining the optimum tilt angle of fixed PV arrays. Acta Scientiarum Naturalium Universitatis Sunyatseni 2008; 47(S2): 165–169.
Sun Y, Du X, Wang X, et al . Calculation of solar radiation and optimum tilted angle of fixed grid connected solar PV array. Acta Energiae Solaris Sinica 2009; 30(12): 1597–1601.
Li F, Zhao J, Duan S, et al. Evaluation of three models of monthly average total radiation on inclined surfaces and investigation of optimum tilt angle for array. Acta Energiae Solaris Sinica 2015; 36(2): 502–509.
Wang B, Shen Y. Discussion on the optimal tilt angle of solar installations from the perspective of resources. Solar Energy 2010; 159(7): 17–20.
Bouzguenda M, Al Omair A, Al Naeem A, et al. Design of an off-grid 2 kW solar PV system. In: Proceedings of the Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER) 2014; Monaco. pp. 1–6.
Sharma V, Chandel SS. Performance analysis of a 190kWp grid interactive solar photovoltaic power plant in India. Energy 2013; 55: 476–485.
Mansur TMNT, Baharudin NH, Ali R. Performance analysis of self-consumed solar PV system for a fully DC residential house. Indonesian Journal of Electrical Engineering and Computer Science. 2017; 8(2): 391–398. doi: 10.11591/ijeecs.v8.i2.pp391-398
Mansur TMNT, Baharudin NH, Ali R. A comparative study for different sizing of solar PV system under net energy metering scheme at university buildings. Bulleyin Electrical Engineering and Informatics 2018; 7(3): 450–457. doi: https://doi.org/10.11591/eei.v7i3.1277
Nalini A, Sheeba PE, Rama ST, et al. Experimental setup for investigating the PV cells with distinctive aspects. In: Proceedings of the 4th International Conference on Electrical Energy Systems (ICEES) 2018; pp. 369–374.
Van Dyk EE., Gxasheka AR, Meyer EL. Monitoring current-voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy 2005; 30(3): 399-411. doi: 10.1016/j.renene.2004.04.016
Treble FC. On-site measurement of the performance of crystalline silicon PV arrays. Renewable Energy 1994; 5(1–4): 275–280.
Benzagmont A, Martire T, Beaufils G, et al. Measurement of the I(V) characteristics of photovoltaic array by the capacitve load method for fault detection. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT) 2018; pp. 1031–1036.
Mahmoud MM. Transient analysis of a PV power generator charging a capacitor for measurement of the I–V characteristics. Renewable Energy 2006; 31: 2198–2206.
Muñoz J, Lorenzo E. Capacitive load based on IGBTs for on-site characterization of PV arrays. Solar Energy 2006; 80: 1489–1497.
Spertino F, Ahmad J, Ciocia A, et al. Capacitor charging method for I–V curve tracer and MPPT in photovoltaic systems. Solar Energy 2015; 119: 461–473.
Kuai Y, Yuvarajan S. An electronic load for testing photovoltaic panels. Power Sources 2006; 154: 308–313.
Meyer HS, de Souza Soares ÁM, de Araújo Neto OS, et al. An experimental setup to seek for maximum power point tracking of photovoltaic panels. Academic Journals 2013; 8(47): 2294–2297.
Hailu G, Fung AS. Optimum tilt angle and orientation of photovoltaic thermal system for application in greater Toronto area, Canada. Sustainability 2019; 11(22):6443. doi: 10.3390/su11226443
Bouabdallah A, Bourguet S, Olivier JC, Machmoum M. Photovoltaic energy for the fixed and tracking system based on the modeling of solar radiation. In: Proceedings of the IEEE International Conference on Industrial Electronics Society (IES) 2013; pp. 1819–1824.
Diop D, Drame MS, Diallo M, et al.Modelling of photovoltaic modules optical losses due to saharan dust deposition in Dakar, Senegal, West Africa. Smart Grid and Renewable Energy 2020; 11(7): 89–102. doi: 10.4236/sgre.2020.117007
Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. John Wiley & Sons; 2006 described in the paper of Vengatesh RP, Rajan SE. Investigation of cloudless solar radiation with PV module employing Matlab–Simulink. Solar Energy 2011; 85( 9):1727–1734.
Iqbal M. An Introduction to Solar Radiation. Academic Press; 1983.
Slouma S, Baccar H. A control strategy for PV stand-alone applications. Journal of Physics Conference Series 2015; 596(1): 012010. doi: 10.1088/1742-6596/596/1/012010
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
CC BY-NC 4.0