基于原位显微拉曼光谱的热解和富燃条件下的局部焦炭演化研究
DOI:
https://doi.org/10.18686/cncest413关键词:
焦炭;热解;原位拉曼;焦炭演化机理摘要
焦炭是化工设备和超音速飞机再生冷却管道上形成的一种有害含碳物质,会降低传热效率和整体性能。本工作在乙炔热解过程中,利用原位显微拉曼光谱仪研究了焦炭在石英流动反应器内表面特定局部位置上的结构演变。通过将显微拉曼光谱仪和石英流动反应器相结合,提出了焦炭的原位拉曼检测方法。连续采集焦炭的拉曼光谱,定量分析积分强度、谱带比例和晶粒尺寸,以揭示焦炭结构变化规律。提出了焦炭在局部位置演化的机理,包括四个阶段,即物理沉积、表面反应、内部反应和内部成熟阶段。研究了温度、氧气对焦炭的影响,高温和一定量氧气的存在可促进焦炭的演化进程,表现为转变时间提前,焦炭晶粒尺寸增大。本工作实现了焦炭的原位诊断,为揭示焦炭的局部演化提供了一个新的视角;后续工作中,需要进一步揭示焦炭局部演化的机理,特别是物理沉积和内部反应阶段的机理。
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##参考
1. Li XG, Zhang LH, Zhang RY, et al. CFD modeling of phase change and coke formation in petroleum refining heaters. Fuel Processing Technology. 2015; 134: 18-25. doi: 10.1016/j.fuproc.2015.03.005
2. Valus MG, Fontoura DVR, Serfaty R, et al. Computational fluid dynamic model for the estimation of coke formation and gas generation inside petrochemical furnace pipes with the use of a kinetic net. The Canadian Journal of Chemical Engineering. 2017; 95(12): 2286-2292. doi: 10.1002/cjce.23007
3. Mahulkar AV, Heynderickx GJ, Marin GB. Simulation of the coking phenomenon in the superheater of a steam cracker. Chemical Engineering Science. 2014; 110: 31-43. doi: 10.1016/j.ces.2013.08.021
4. Li X, Zhang L, Li Q, et al. Steam reforming of sugars: Roles of hydroxyl group and carbonyl group in coke formation. Fuel. 2021; 292: 120282. doi: 10.1016/j.fuel.2021.120282
5. Bkangmo Kontchouo FM, Shao Y, Zhang S, et al. Steam reforming of ethanol, acetaldehyde, acetone and acetic acid: Understanding the reaction intermediates and nature of coke. Chemical Engineering Science. 2023; 265: 118257. doi: 10.1016/j.ces.2022.118257
6. van Heerden ASJ, Judt DM, Jafari S, et al. Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities. Progress in Aerospace Sciences. 2022; 128: 100767. doi: 10.1016/j.paerosci.2021.100767
7. Zhang C, Zhou J, Zhao J, et al. Three-dimensional CFD model for the coking of supercritical n-decane in circular and elliptical tubes. Chemical Engineering Science. 2024; 290: 119888. doi: 10.1016/j.ces.2024.119888
8. Mendiara T, Domene MP, Millera A, et al. An experimental study of the soot formed in the pyrolysis of acetylene. Journal of Analytical and Applied Pyrolysis. 2005; 74(1-2): 486-493. doi: 10.1016/j.jaap.2004.11.019
9. Wang X, Song Q, Wu Y, et al. Modelling and numerical simulation of n-heptane pyrolysis coking characteristics in a millimetre-sized tube reactor. Combustion and Flame. 2019; 201: 44-56. doi: 10.1016/j.combustflame.2018.12.006
10. Bao Z, Ye T, Wang R, et al. Experiment and modelling of supercritical pyrolysis and coking of RP-3 aviation kerosene in a U-bend tube. Chemical Engineering Journal. 2023; 454: 140234. doi: 10.1016/j.cej.2022.140234
11. Xiao G, Xiong Z, Syed-Hassan SSA, et al. Coke formation during the pyrolysis of bio-oil: Further understanding on the evolution of radicals. Applications in Energy and Combustion Science. 2022; 9: 100050. doi: 10.1016/j.jaecs.2021.100050
12. Tang S, Xu Q, Liu K, et al. Pyrolysis and coking behavior of CxHy with different structures in microchannel continuous flow reactor. Journal of Analytical and Applied Pyrolysis. 2022; 167: 105640. doi: 10.1016/j.jaap.2022.105640
13. Liu G, Wang X, Zhang X. Pyrolytic depositions of hydrocarbon aviation fuels in regenerative cooling channels. Journal of Analytical and Applied Pyrolysis. 2013; 104: 384-395. doi: 10.1016/j.jaap.2013.06.007
14. Wang X, Lin Y, Zhang C. Carbon Deposition on the Venturi of a Gas Turbine Combustor Using Ethanol-Kerosene Blends. Journal of Thermal Science. 2022; 31(6): 2216-2224. doi: 10.1007/s11630-022-1628-3
15. Zhang C, Gao H, Zhao J, et al. Dynamic coking simulation of supercritical n-decane in circular tubes. Fuel. 2023; 331: 125859. doi: 10.1016/j.fuel.2022.125859
16. Zhu M, Han H, Gao R, et al. Numerical investigation of pyrolysis coking characteristics of supercritical hydrocarbon fuels in sinusoidal cooling channels. Fuel. 2023; 344: 127881. doi: 10.1016/j.fuel.2023.127881
17. Li H, Wang X, Li T, et al. A transient coking model of hydrocarbon pyrolysis in hot pipe based on RPM analogy. Chemical Engineering Science. 2023; 269: 118495. doi: 10.1016/j.ces.2023.118495
18. Tian K, Tang Z, Wang J, et al. Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel. Energy. 2022; 260: 125160. doi: 10.1016/j.energy.2022.125160
19. Bernard S, Beyssac O, Benzerara K, et al. XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon. 2010; 48(9): 2506-2516. doi: 10.1016/j.carbon.2010.03.024
20. Wang B, Gong X, Zhang Z, et al. Modelling and understanding deposit formation of hydrocarbon fuels from the coke characteristics. Fuel. 2022; 319: 123745. doi: 10.1016/j.fuel.2022.123745
21. Le KC, Pino T, Pham VT, et al. Raman spectroscopy of mini-CAST soot with various fractions of organic compounds: Structural characterization during heating treatment from 25 °C to 1000 °C. Combustion and Flame. 2019; 209: 291-302. doi: 10.1016/j.combustflame.2019.07.037
22. Tian ZY, Jin KR, Kuang JJ. An in situ combustion carbon deposit diagnostic instrument based on Raman microscopy. Review of Scientific Instruments. 2024; 95(10). doi: 10.1063/5.0207120
23. Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon. 2005; 43(8): 1731-1742. doi: 10.1016/j.carbon.2005.02.018
24. Jäger C, Henning T, Schlögl R, et al., Spectral properties of carbon black. Journal of Non-Crystalline Solids. 1999; 258(1): 161-179. doi: 10.1016/S0022-3093(99)00436-6
25. Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Ferrari AC, Robertson J, eds. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 2004; 362(1824): 2477-2512. doi: 10.1098/rsta.2004.1452
26. Ess MN, Ferry D, Kireeva ED, et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating. Carbon. 2016; 105: 572-585. doi: 10.1016/j.carbon.2016.04.056
27. Parent P, Laffon C, Marhaba I, et al. Nanoscale characterization of aircraft soot: A high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon. 2016; 101: 86-100. doi: 10.1016/j.carbon.2016.01.040
28. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095-14107. doi: 10.1103/physrevb.61.14095
29. Cançado LG, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters. 2006; 88(16). doi: 10.1063/1.2196057
30. Yang C, Tang H, Magnotti G. Picosecond Kerr-gated Raman spectroscopy for measurements in sooty and PAH rich hydrocarbon flames. Proceedings of the Combustion Institute. 2021; 38(1): 1797-1804. doi: 10.1016/j.proci.2020.07.101
31. Cabo-Fernandez L, Neale AR, Braga F, et al. Kerr gated Raman spectroscopy of LiPF6salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries. Physical Chemistry Chemical Physics. 2019; 21(43): 23833-23842. doi: 10.1039/c9cp02430a
32. Mallet-Ladeira P, Puech P, Weisbecker P, et al. Behavior of Raman D band for pyrocarbons with crystallite size in the 2–5 nm range. Applied Physics A. 2013; 114(3): 759-763. doi: 10.1007/s00339-013-7671-x
33. Seong HJ, Boehman AL. Evaluation of Raman Parameters Using Visible Raman Microscopy for Soot Oxidative Reactivity. Energy & Fuels. 2013; 27(3): 1613-1624. doi: 10.1021/ef301520y
34. Le KC, Lefumeux C, Bengtsson PE, et al. Direct observation of aliphatic structures in soot particles produced in low-pressure premixed ethylene flames via online Raman spectroscopy. Proceedings of the Combustion Institute. 2019; 37(1): 869-876. doi: 10.1016/j.proci.2018.08.003
35. Andrésen JM, Strohm JJ, Sun L, et al. Relationship between the Formation of Aromatic Compounds and Solid Deposition during Thermal Degradation of Jet Fuels in the Pyrolytic Regime. Energy & Fuels. 2001; 15(3): 714-723. doi: 10.1021/ef000256q
36. Commodo M, Joo PH, De Falco G, et al. Raman Spectroscopy of Soot Sampled in High-Pressure Diffusion Flames. Energy & Fuels. 2017; 31(9): 10158-10164. doi: 10.1021/acs.energyfuels.7b01674
37. Le KC, Lefumeux C, Pino T. Watching soot inception via online Raman spectroscopy. Combustion and Flame. 2022; 236: 111817. doi: 10.1016/j.combustflame.2021.111817
38. Shu G, Dong L, Liang X. A review of experimental studies on deposits in the combustion chambers of internal combustion engines. International Journal of Engine Research. 2012; 13(4): 357-369. doi: 10.1177/1468087411427661
39. Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion. 1991; 23(1): 1559-1566. doi: 10.1016/S0082-0784(06)80426-1
40. Deng Z, Chen Y, Hu X, et al. Investigation on bio-oil pyrolysis with Ni/Al2O3 blending: Influence of the blended catalyst on coke formation. Fuel. 2024; 358: 130274. doi: 10.1016/j.fuel.2023.130274
41. Han ZX. Deposition characteristics of thermal oxidation deposition of kerosene and the effects on heat transfer in cooling channels, in School of Energy Science and Engineering. Harbin Institute of Technology: Heilongjiang, China; 2022.



