入口二氧化碳对 AEMFC 性能的影响: 机理认识和缓解策略
DOI:
https://doi.org/10.18686/cncest411关键词:
AEMFC;CO2;AEM;运行条件;预处理系统摘要
与质子交换膜燃料电池 (PEMFC) 相比,阴离子交换膜燃料电池 (AEMFC) 的组装成本更低,因为其碱性环境允许使用廉价的催化剂和双极板。目前,大多数 AEMFC 的性能评估都是以氧气 (O2) 作为阴极气体进行的。然而,AEMFC 的最终目标是以环境空气作为阴极进料。空气中的二氧化碳通常会对 AEMFC 的性能产生显著的负面影响,特别是通过降低碱性电解质的电导率并降低电池的整体效率。这一挑战已成为 AEMFC 技术广泛应用和优化的主要障碍之一。本研究回顾了先前研究人员的相关研究,并确定了二氧化碳对 AEMFC 性能产生不利影响的三种主要机制:(1) 碳酸根离子的形成,从而降低膜的有效电导率;(2) 阳极电位的升高,导致电压损失;以及 (3) 碳酸盐的积累,从而增加电荷转移阻力。此外,本文总结了缓解或预防AEMFC碳化的策略,重点关注膜性能调节、运行条件优化以及进气预处理系统的设计。本综述旨在为学术界和工业界的利益相关者提供一个全面的框架,促进AEMFC技术的进步。
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##参考
1. Mao X, Li Y, Hu X, et al. Expanded graphite (EG)/Ni@Melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability. Applied Energy. 2023; 338: 120929. doi: 10.1016/j.apenergy.2023.120929
2. Guilbert D, Vitale G. Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon. Clean Technologies. 2021; 3(4): 881-909. doi: 10.3390/cleantechnol3040051
3. Fortin P, Holdcroft S. Hydrogen Evolution at Conjugated Polymer Nanoparticle Electrodes. ECS Meeting Abstracts. 2018; MA2018-01(31): 1909-1909. doi: 10.1149/ma2018-01/31/1909
4. AlHumaidan FS, Absi Halabi M, Rana MS, et al. Blue hydrogen: Current status and future technologies. Energy Conversion and Management. 2023; 283: 116840. doi: 10.1016/j.enconman.2023.116840
5. Gencoglu MT, Ural Z. Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy. 2009; 34(12): 5242-5248. doi: 10.1016/j.ijhydene.2008.09.038
6. O’Connell M, Kolb G, Schelhaas KP, et al. Towards mass production of microstructured fuel processors for application in future distributed energy generation systems: A review of recent progress at IMM. Chemical Engineering Research and Design. 2012; 90(1): 11-18. doi: 10.1016/j.cherd.2011.08.002
7. Mao X, Li Y, Li Y, et al. Simultaneous electrical and mechanical properties improvement for composite expanded graphite bipolar plate by incorporating surface-activated carbon black paving on the carbonized melamine foam skeleton. Composites Science and Technology. 2024; 257: 110822. doi: 10.1016/j.compscitech.2024.110822
8. Kartha S, Grimes P. Fuel Cells: Energy Conversion for the Next Century. Physics Today. 1994; 47(11): 54-61. doi: 10.1063/1.881426
9. Gutru R, Turtayeva Z, Xu F, et al. A comprehensive review on water management strategies and developments in anion exchange membrane fuel cells. International Journal of Hydrogen Energy. 2020; 45(38): 19642-19663. doi: 10.1016/j.ijhydene.2020.05.026
10. Dekel DR, Rasin IG, Brandon S. Predicting performance stability of anion exchange membrane fuel cells. Journal of Power Sources. 2019; 420: 118-123. doi: 10.1016/j.jpowsour.2019.02.069
11. Dekel DR. Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources. 2018; 375: 158-169. doi: 10.1016/j.jpowsour.2017.07.117
12. Peng X, Omasta TJ, Rigdon WA, et al. Catalyst and Electrode Advances for High Performing PEM and AEM Fuel Cells. ECS Meeting Abstracts. 2017; MA2017-01(43): 1968-1968. doi: 10.1149/ma2017-01/43/1968
13. Lilloja J, Mooste M, Kibena-Põldsepp E, et al. Cobalt-, iron- and nitrogen-containing ordered mesoporous carbon-based catalysts for anion-exchange membrane fuel cell cathode. Electrochimica Acta. 2023; 439: 141676. doi: 10.1016/j.electacta.2022.141676
14. Firouzjaie HA, Mustain WE. Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catalysis. 2019; 10(1): 225-234. doi: 10.1021/acscatal.9b03892
15. Yassin K, Rasin IG, Willdorf-Cohen S, et al. A surprising relation between operating temperature and stability of anion exchange membrane fuel cells. Journal of Power Sources Advances. 2021; 11: 100066. doi: 10.1016/j.powera.2021.100066
16. Gottesfeld S, Dekel DR, Page M, et al. Anion exchange membrane fuel cells: Current status and remaining challenges. Journal of Power Sources. 2018; 375: 170-184. doi: 10.1016/j.jpowsour.2017.08.010
17. Ng W, Wong W, Rosli N, et al. Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement. Separations. 2023; 10(8): 424. doi: 10.3390/separations10080424
18. Omasta TJ, Wang L, Peng X, et al. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. Journal of Power Sources. 2018; 375: 205-213. doi: 10.1016/j.jpowsour.2017.05.006
19. Wang L, Brink JJ, Varcoe JR. The first anion-exchange membrane fuel cell to exceed 1 W cm−2 at 70 °C with a non-Pt-group (O2) cathode. Chem Commun. 2017; 53(86): 11771-11773. doi: 10.1039/c7cc06392j
20. Mustain WE, Chatenet M, Page M, et al. Durability challenges of anion exchange membrane fuel cells. Energy & Environmental Science. 2020; 13(9): 2805-2838. doi: 10.1039/d0ee01133a
21. Yang W, Zhang Q, Yan Y. Membrane Electrode Assembly Preparation for Anion Exchange Membrane Fuel Cell (AEMFC): Selection of Ionomers and How to Avoid CO2 Poisoning. In: Alkaline Anion Exchange Membranes for Fuel Cells. Wiley-Vch; 2024.
22. Kizewski J, Mudri N, Zeng R, et al. T. Slade R, Varcoe JR. Alkaline Electrolytes and Reference Electrodes for Alkaline Polymer Electrolyte Membrane Fuel Cells. ECS Transactions. 2010; 33(1): 27-35. doi: 10.1149/1.3484498
23. Suzuki S, Muroyama H, Matsui T, et al. Influence of CO2 dissolution into anion exchange membrane on fuel cell performance. Electrochimica Acta. 2013; 88: 552-558.
24. Ziv N, Mustain WE, Dekel DR. The Effect of Ambient Carbon Dioxide on Anion‐Exchange Membrane Fuel Cells. ChemSusChem. 2018; 11(7): 1136-1150. doi: 10.1002/cssc.201702330
25. Kiss AM, Myles TD, Grew KN, et al. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes. Journal of The Electrochemical Society. 2013; 160(9): F994-F999. doi: 10.1149/2.037309jes
26. Matsui Y, Saito M, Tasaka A, et al. Influence of Carbon Dioxide on the Performance of Anion-Exchange Membrane Fuel Cells. ECS Transactions. 2010; 25(13): 105-110. doi: 10.1149/1.3315177
27. Krewer U, Weinzierl C, Ziv N, et al. Impact of carbonation processes in anion exchange membrane fuel cells. Electrochimica Acta. 2018; 263: 433-446. doi: 10.1016/j.electacta.2017.12.093
28. Balliet RJ, Newman J. Cold Start of a Polymer-Electrolyte Fuel Cell I. Development of a Two-Dimensional Model. Journal of The Electrochemical Society. 2011; 158(8): B927. doi: 10.1149/1.3592430
29. Zenyuk IV, Das PK, Weber AZ. Understanding Impacts of Catalyst-Layer Thickness on Fuel-Cell Performance via Mathematical Modeling. Journal of The Electrochemical Society. 2016; 163(7): F691-F703. doi: 10.1149/2.1161607jes
30. Weber AZ. Effective diffusion-medium thickness for simplified polymer-electrolyte-fuel-cell modeling. Electrochimica Acta. 2008; 54(2): 311-315. doi: 10.1016/j.electacta.2008.07.084
31. Weber AZ, Newman J. Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society. 2006; 153(12): A2205. doi: 10.1149/1.2352039
32. Gerhardt MR, Pant LM, Weber AZ. Along-the-Channel Impacts of Water Management and Carbon-Dioxide Contamination in Hydroxide-Exchange-Membrane Fuel Cells: A Modeling Study. Journal of The Electrochemical Society. 2019; 166(7): F3180-F3192. doi: 10.1149/2.0171907jes
33. Inaba M, Matsui Y, Saito M, et al. Effects of Carbon Dioxide on the Performance of Anion-Exchange Membrane Fuel Cells. Electrochemistry. 2011; 79(5): 322-325. doi: 10.5796/electrochemistry.79.322
34. Hyun J, Kim HT. Powering the hydrogen future: current status and challenges of anion exchange membrane fuel cells. Energy & Environmental Science. 2023; 16(12): 5633-5662. doi: 10.1039/d3ee01768k
35. Li Q, Krumov MR, Hu M, et al. Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells. Journal of the American Chemical Society. 2024; 146(49): 33587-33594. doi: 10.1021/jacs.4c11188
36. Luo X, Rojas-Carbonell S, Yan Y, et al. Structure-transport relationships of poly(aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration. Journal of Membrane Science. 2020; 598: 117680. doi: 10.1016/j.memsci.2019.117680
37. Zelovich T, Simari C, Nicotera I, et al. The impact of carbonation on hydroxide diffusion in nano-confined anion exchange membranes. Journal of Materials Chemistry A. 2022; 10(20): 11137-11149. doi: 10.1039/d2ta00830k
38. Divekar AG, Yang-Neyerlin AC, Antunes CM, et al. In-depth understanding of the CO2 limitation of air fed anion exchange membrane fuel cells. Sustainable Energy & Fuels. 2020; 4(4): 1801-1811. doi: 10.1039/c9se01212e
39. Zheng Y, Irizarry Colón LN, Ul Hassan N, et al. Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells. Membranes. 2021; 11(2): 102. doi: 10.3390/membranes11020102
40. Simari C, Lufrano E, Rehman MHU, et al. Effect of LDH platelets on the transport properties and carbonation of anion exchange membranes. Electrochimica Acta. 2022; 403: 139713. doi: 10.1016/j.electacta.2021.139713
41. Mandal M, Huang G, Hassan NU, et al. The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells. Journal of The Electrochemical Society. 2019; 167(5): 054501. doi: 10.1149/2.0022005jes
42. Adams LA, Poynton SD, Tamain C, et al. A Carbon Dioxide Tolerant Aqueous‐Electrolyte‐Free Anion‐Exchange Membrane Alkaline Fuel Cell. ChemSusChem. 2008; 1(1-2): 79-81. doi: 10.1002/cssc.200700013
43. Yanagi H, Fukuta K. Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Transactions. 2008; 16(2): 257-262. doi: 10.1149/1.2981860
44. Siroma Z, Watanabe S, Yasuda K, et al. Mathematical Modeling of the Concentration Profile of Carbonate Ions in an Anion Exchange Membrane Fuel Cell. Journal of The Electrochemical Society. 2011; 158(6): B682-B689. doi: 10.1149/1.3576120
45. Shiau HS, Zenyuk IV, Weber AZ. Elucidating Performance Limitations in Alkaline-Exchange- Membrane Fuel Cells. Journal of The Electrochemical Society. 2017; 164(11): E3583-E3591. doi: 10.1149/2.0531711jes
46. Wrubel JA, Peracchio AA, Cassenti BN, et al. Anion Exchange Membrane Fuel Cell Performance in the Presence of Carbon Dioxide: An Investigation into the Self-Purging Mechanism. Journal of The Electrochemical Society. 2019; 166(12): F810-F820. doi: 10.1149/2.0801912jes
47. Zheng Y, Huang G, Wang L, et al. Effect of reacting gas flowrates and hydration on the carbonation of anion exchange membrane fuel cells in the presence of CO2. Journal of Power Sources. 2020; 467: 228350. doi: 10.1016/j.jpowsour.2020.228350
48. Katayama Y, Yamauchi K, Hayashi K, et al. Anion-Exchange Membrane Fuel Cells with Improved CO2 Tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption. ACS Applied Materials & Interfaces. 2017; 9(34): 28650-28658. doi: 10.1021/acsami.7b09877
49. Grew KN, Ren X, Chu D. Effects of Temperature and Carbon Dioxide on Anion Exchange Membrane Conductivity. Electrochemical and Solid-State Letters. 2011; 14(12): B127. doi: 10.1149/2.011112esl
50. Zheng Y, Omasta TJ, Peng X, et al. Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs. Energy & Environmental Science. 2019; 12(9): 2806-2819. doi: 10.1039/c9ee01334b
51. Merel J, Clausse M, Meunier F. Experimental Investigation on CO2 Post−Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites. Industrial & Engineering Chemistry Research. 2007; 47(1): 209-215. doi: 10.1021/ie071012x
52. Shekhah O, Belmabkhout Y, Chen Z, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nature Communications. 2014; 5(1). doi: 10.1038/ncomms5228
53. Shi S, Li S, Liu X. Mechanism Study of Imidazole-Type Deep Eutectic Solvents for Efficient Absorption of CO2. ACS Omega. 2022; 7(51): 48272-48281. doi: 10.1021/acsomega.2c06437
54. Li Y, Kong X, Zhu D, et al. Development of the DES-contained reduced graphene oxide system with efficient CO2 adsorption and photothermal desorption for pre-gas purification in AEMFCs. Separation and Purification Technology. 2025; 360: 131193. doi: 10.1016/j.seppur.2024.131193
55. Shao P, Dal-Cin MM, Guiver MD, et al. Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science. 2013; 427: 451-459. doi: 10.1016/j.memsci.2012.09.044
56. Liang Z, Yang F, Li Y, et al. Designing the feasible membrane systems for CO2 removal from Air-fed Anion-Exchange membrane fuel cells. Separation and Purification Technology. 2022; 289: 120713. doi: 10.1016/j.seppur.2022.120713
57. Zhang S, Geng X, Niu C, et al. Novel mixed matrix membranes containing calixarene for enhanced CO2/N2 separation. Separation and Purification Technology. 2025; 356: 129792. doi: 10.1016/j.seppur.2024.129792
58. Wang T, Zhang Q, Lian K, et al. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO2 electrolysis. Journal of Colloid and Interface Science. 2024; 655: 176-186. doi: 10.1016/j.jcis.2023.10.157
59. Peng B, She H, Wei Z, et al. Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate. Nature Communications. 2025; 16(1). doi: 10.1038/s41467-025-57573-4
60. Zheng Y, Huang G, Mandal M, et al. Editors’ Choice—Power-Generating Electrochemical CO2 Scrubbing from Air Enabling Practical AEMFC Application. Journal of The Electrochemical Society. 2021; 168(2): 024504. doi: 10.1149/1945-7111/abe08a
61. Shi L, Zhao Y, Matz S, et al. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nature Energy. 2022; 7(3): 238-247. doi: 10.1038/s41560-021-00969-5



