空间站及火星环境中二氧化碳资源用于氧气制备研究进展

作者

  • 付强 电工材料电气绝缘全国重点实验室,电气工程学院,西安交通大学,西安 710049,陕西,中国
  • 叶子凡 电工材料电气绝缘全国重点实验室,电气工程学院,西安交通大学,西安 710049,陕西,中国
  • 罗嘉伦 电工材料电气绝缘全国重点实验室,电气工程学院,西安交通大学,西安 710049,陕西,中国
  • 郭泓霖 电工材料电气绝缘全国重点实验室,电气工程学院,西安交通大学,西安 710049,陕西,中国
  • 刘璐瑶 电工材料电气绝缘全国重点实验室,电气工程学院,西安交通大学,西安 710049,陕西,中国
  • 常正实 电工材料电气绝缘全国重点实验室,电气工程学院,西安交通大学,西安 710049,陕西,中国
Article ID: 384
234 Views

DOI:

https://doi.org/10.18686/cncest384

关键词:

载人航天;CO2-O2转化;热催化;电催化;等离子体催化

摘要

建立稳定的二氧化碳(CO2)与氧气(O2)循环体系,对于空间站及未来火星基地等地外环境中的环境控制与生命支持系统(Environmental Control and Life Support Systems,ECLSS)至关重要。开发具有高氧气回收率、高CO2转化性能及低能耗的CO2-O2转化技术,是实现物质闭环再生的关键。本文系统梳理了地外环境下CO2制氧技术发展现状,将新兴技术路径归纳为“两步法制氧”与“一步法制氧”两大框架:两步法涵盖热催化CO2加氢还原与电解水制氧,主要应用于空间站环境;一步法包括电催化CO2还原与等离子体催化CO2转化,更适用于火星环境。通过对比技术原理与运行特征,凝练出制约技术发展的三大核心挑战:(1)催化材料失活、积碳形成及催化机制不完善;(2)转化过程描述不清导致调控困难,副反应抑制难度大;(3)单一技术物质循环度偏低。发展高效、稳定、可靠的CO2-O2转化技术,将为降低发射成本、保障人类地外可持续生存提供重要支撑。

##submission.downloads##

已出版

2025-04-29

文章引用

付强, 叶子凡, 罗嘉伦, 郭泓霖, 刘璐瑶, & 常正实. (2025). 空间站及火星环境中二氧化碳资源用于氧气制备研究进展. 清洁能源科学与技术, 3(2), 384. https://doi.org/10.18686/cncest384

栏目

综述文章

参考

1. 吴志强, 高峰, 邓一兵, 等. 空间站再生生保关键技术研究. 航天医学与医学工程. 2018; 31(2): 105–111.

2. Wu Z, Gao F, Deng Y, et al. Key Technology Review of Research on Regenerative Environmental Control and Life Support System for Space Station (Chinese). Space Medicine & Medical Engineering. 2018; 31(2): 105–111.

3. 侯倩. 国外空间站环控生保分系统研究现状和发展趋势分析. 国际太空. 2015; (1): 51–57.

4. Hou Q. Research Status and Development Trend of Environmental Control and Life Support Subsystem on Foreign Space Stations (Chinese). Space International. 2015; (1): 51–57.

5. 李新刚. 空间站再生生保系统国外专利技术综述. 科技视界. 2024; 14(19): 1–4.

6. Li X. A Review of Foreign Patent Technologies for Regenerative Life Support Systems in Space Stations (Chinese). Science & Technology Vision. 2024; 14(19): 1–4.

7. 汤兰祥, 高峰, 邓一兵, 等. 中国载人航天器环境控制与生命保障技术研究. 航天医学与医学工程. 2008; (3): 167–174.

8. Tang L, Gao F, Deng Y, et al. Research on Environmental Control and Life Support System (ECLSS) of China’s Manned Spacecraft (Chinese). Space Medicine & Medical Engineering. 2008; (3): 167–174.

9. 王康, 高峰. 载人航天器环控生保系统50年研制回顾与展望. 航天医学与医学工程. 2011; 24(6): 435–443.

10. Wang K, Gao F. Review and Prospects of Fifty Years’ Development of Environment Control and Life Support System in Manned Spacecraft (Chinese). Space Medicine & Medical Engineering. 2011; 24(6): 435–443.

11. Ash RL, Dowler WL, Varsi G. Feasibility of Rocket Propellant Production on Mars. Acta Astronautica. 1978; 5(9): 705–724.

12. 欧阳自远, 肖福根. 火星及其环境. 航天器环境工程. 2012; 29(6): 591–601.

13. Ouyang Z, Xiao F. The Mars and its environment (Chinese). Spacecraft Environment Engineering. 2012; 29(6): 591–601.

14. Forsythe RK, Verostko CE, Cusick RJ, et al. A study of Sabatier reactor operation in zero ‘G’. In: Proceedings of the 14th Intersociety Conference on Environmental Systems; 16-19 July 1984; San Diego, California.

15. McKellar M, Stoots C, Sohal M, et al. The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration. In: Proceedings of the 40th International Conference on Environment Systems; 11–15 July 2010; Barcelona, Spain.

16. Strumpf HJ, Chin CY, Lester GR, et al. Sabatier Carbon Dioxide Reduction System for Long-Duration Manned Space Application. In: Proceedings of the 2lst International Conference on Environmental Systems; 15–18 July 1991; San Francisco, CA, USA. pp. 1541–1553.

17. Zhuang Y, Simakov DSA. Autothermal CO2 hydrogenation reactor for renewable natural gas generation: Experimental proof-of-concept. Reaction Chemistry & Engineering. 2022; 7(11): 2285–2297.

18. Sakurai M, Shima A, Sone Y, et al. Air Revitalization Demonstration on the JEM (KIBO) for Manned Space Exploration. In: Proceedings of the 43rd International Conference on Environmental Systems; 14–18 July 2013; Vail, CO, USA.

19. Crawford JM, Petel BE, Rasmussen MJ, et al. Influence of residual chlorine on Ru/TiO2 active sites during CO2 methanation. Applied Catalysis A-General. 2023; 663.

20. Canales R, Gil-Calvo M, Barrio VL. UV and visible-light photocatalysis using Ni-Co bimetallic and monometallic hydrotalcite-like materials for enhanced CO2 methanation in sabatier reaction. Heliyon. 2023; 9(8): e18456.

21. Kruchinin R, Dieguez O. Carbon Dioxide Reduction on Transition Metal Dichalcogenides with Ni and Cu Edge Doping: A Density-Functional Theory Study. ChemPhysChem. 2023; 24(10): e202200765.

22. Trevisan SVC, Oliveira LG, de Andrade Schaffner R, et al. Performance of Ni/Si-MCM-41 catalysts in CO2 methanation. Canadian Journal of Chemical Engineering. 2024; 102(8): 2724–2738.

23. Liao W, Yue M, Chen J, et al. Decoupling the Interfacial Catalysis of CeO2-Supported Rh Catalysts Tuned by CeO2 Morphology and Rh Particle Size in CO2 Hydrogenation. ACS Catalysis. 2023; 13(8): 5767–5779.

24. Tashiro K, Konno H, Yanagita A, et al. Direct Catalytic Conversion of Carbon Dioxide to Liquid Hydrocarbons over Cobalt Catalyst Supported on Lanthanum (III) Ion-Doped Cerium (IV) Oxide. ChemCatChem. 2024; 16(17): e202400261.

25. Molinet-Chinaglia C, Shafiq S, Serp P. Low Temperature Sabatier CO2 Methanation. ChemCatChem. 2024; 16(24): e202401213.

26. Khan S, Dai X, Ali T, et al. Recent advances on photo-thermo-catalysis for carbon dioxide methanation. International Journal of Hydrogen Energy. 2023; 48(64): 24756–24787.

27. Ye R, Wang X, Lu Z, et al. Construction of robust Ni-based catalysts for low-temperature Sabatier reaction. Chemical Communications. 2024; 60(81): 11466–11482.

28. Sajjadi B, Chen WY. Catalytic non-thermal milli-pulse plasma for methanation of CO2 without carbon deposition and catalyst deactivation. Chemical Engineering Journal. 2023; 469: 143428.

29. Hasegawa T, Toko S, Kamataki K, et al. Improving the efficiency of Sabatier reaction through H2O removal with low-pressure plasma catalysis. Japanese Journal of Applied Physics. 2023; 62: 1028.

30. Luo Y, Huang H, Li C, et al. Highly Efficient and Selective Photothermal Catalytic CO2 Reduction to CH4 Using the CoNi Bimetallic-Modified Gd2O3 & Co3O4 Nanocomposite. ACS Sustainable Chemistry & Engineering. 2024; 12(42): 15682–15695.

31. Zhu XJ, Zong HB, Perez CJV, et al. Supercharged CO2 Photothermal Catalytic Methanation: High Conversion, Rate, and Selectivity. Angewandte Chemie-International Edition. 2023; 135(22): e202218694.

32. Holmes RF, King CD, Keller EE. Bosch CO2 Reduction System Development. Available online: https://ntrs.nasa.gov/citations/19750025653 (accessed on 15 December 2024).

33. Abney M, Mansell JM. The Bosch Process—Performance of a Developmental Reactor and Experimental Evaluation of Alternative Catalysts. In: Proceedings of the 40th International Conference on Environmental Systems; 11–15 July 2010; Barcelona, Spain.

34. Abney MB, Mansell JM, Atkins B, et al. Advanced Oxygen Recovery via Series-Bosch Technology. In: Proceedings of the 45th International Conference on Environmental Systems; 12–16 July 2015; Bellevue, WA, USA.

35. Wang J, Wang J, Feng J, et al. Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration. Joule. 2024; 8(11): 3126-3141.

36. 许思宇, 李海兵, 尹钊. “国际空间站”环境控制与生命保障系统技术升级分析. 中国航天. 2024; (4): 17–24.

37. Xu S, Li H, Yin Z. Analysis of technological upgrade of environmental control and life support system of International Space Station (Chinese). Aerospace China. 2024; (4): 17–24.

38. Samsonov NM, Bobe LS, Gavrilov LI, et al. Water Recovery and Oxygen Generation by Electrolysis Aboard the International Space Station. In: Proceedings of the 32nd International Conference on Environmental Systems; 15–18 July 2002; San Antonio, TX, USA.

39. Takada K, Velasquez LE, Van Keuren S, et al. Advanced Oxygen Generation Assembly for Exploration Missions. In: Proceedings of the 49th International Conference on Environmental Systems; 7–11 July 2019; Boston, MA, USA.

40. Takada K, Hornyak D, Garr J, et al. Status of the Advanced Oxygen Generation Assembly. In: Proceedings of the 52nd International Conference on Environmental Systems; 16–20 July 2023; Calgary, Canada.

41. Takada K, Ghariani AE, Van Keuren S, et al. Oxygen Generation Assembly Design for Exploration Missions. In: Proceedings of the 48th International Conference on Environmental Systems; 8–12 July 2018; Albuquerque, NM, USA.

42. 张正, 宋凌珺. 电解水制氢技术:进展、挑战与未来展望. 工程科学学报. 2025; 47(2): 1–15.

43. Zhang Z, Song L. Hydrogen production by water electrolysis: Advances, challenges and future prospects (Chinese). Chinese Journal of Engineering. 2025; 47(2): 1–15.

44. 霍苗苗, 刘小敏, 陈晓露, 等. 阴离子交换膜电解水制氢用非贵金属催化剂研究进展. 工业催化. 2024; 32(11): 34–42.

45. Huo M, Liu X, Chen X, et al. Research progress on non-precious metal catalysts for hydrogen production by anion exchange membrane electrolysis (Chinese). Industrial Catalysis. 2024; 32(11): 34–42.

46. 赵清锐, 冯英杰, 付晓玥, 等. 阴离子膜电解水非贵金属析氧催化剂研究进展. 石油化工. 2024; 53(10): 1491–1496.

47. Zhao Q, Feng Y, Fu X, et al. Research progress in non-noble metal catalysts for oxygen evolution in anionic membrane water electrolysis (Chinese). Petrochemical Technology. 2024; 53(10): 1491–1496.

48. Khan JB, Liang Y. Recent Progress in Non-Noble Metal Catalysts for Oxygen Evolution Reaction: A Focus on Transition and Rare-Earth Elements. Chemical Record. 2024; 24(12): e202400151.

49. Kwon CY, Jeong JY, Yang J, et al. Effect of Copper Cobalt Oxide Composition on Oxygen Evolution Electrocatalysts for Anion Exchange Membrane Water Electrolysis. Frontiers in Chemistry. 2020; 8: 600908.

50. Jang MJ, Yang J, Lee J, et al. Superior performance and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction. Journal of Materials Chemistry A. 2020; 8(8): 4290–4299.

51. Gupta G, Scott K, Mamlouk M. Performance of polyethylene based radiation grafted anion exchange membrane with polystyrene-b-poly (ethylene/butylene)-b-polystyrene based ionomer using NiCo2O4 catalyst for water electrolysis. Journal of Power Sources. 2018; 375: 387–396.

52. Yamada I, Fujii H, Takamatsu A, et al. Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Advanced Materials. 2017; 29(4): 1603004.

53. Miao X, Wu L, Lin Y, et al. The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: Are more better. Chemical Communications. 2019; 55(10): 1442–1445.

54. Li X, Walsh FC, Pletcher D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Physical Chemistry Chemical Physics. 2011; 13(3): 1162–1167.

55. Perez-Alonso FJ, Adan C, Rojas S, et al. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. International Journal of Hydrogen Energy. 2014; 39(10): 5204–5212.

56. Lin X, Li X, Shi L, et al. In Situ Electrochemical Restructuring B-Doped Metal-Organic Frameworks as Efficient OER Electrocatalysts for Stable Anion Exchange Membrane Water Electrolysis. Small. 2024; 20(22): 2308517.

57. Koshikawa H, Murase H, Hayashi T, et al. Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm−2. ACS Catalysis. 2020; 10(3): 1886–1893.

58. Guo DD, Yu HM, Chi J. Self-Supporting NiFe LDHs@Co-OH-CO3 Nanorod Array Electrode for Alkaline Anion Exchange Membrane Water Electrolyzer. Journal of Electrochemistry. 2022; 28(9): 2214003.

59. Stancati ML, Niehoff JC, Wells WC, et al. In situ propellant production—A new potential for round-trip spacecraft. In: Proceedings of the Conference on Advanced Technology for Future Space Systems; 8–10 May 1979; Hampton, VA, USA.

60. Kaplan D, Baird R, Flynn H, et al. The 2001 Mars In-situ-propellant-production Precursor (MIP) Flight Demonstration—Project objectives and qualification test results. In: Proceedings of the Space 2000 Conference and Exposition; 19–21 September 2000; Long Beach, CA, USA.

61. Hecht M, Hoffman J, Rapp D, et al. Mars Oxygen ISRU Experiment (MOXIE). Space Science Reviews. 2021; 217: 1-76.

62. Tao G, Sridhar KR, Chan CL. Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part I. Pt/YSZ interface. Solid State Ionics. 2004; 175(1–4): 615–619.

63. Wang S, Inoishi A, Hong J, et al. Ni-Fe bimetallic cathodes for intermediate temperature CO2 electrolyzers using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. Journal Of Materials Chemistry A. 2013; 1(40): 12455–12461.

64. Jiang Y, Chen F, Xia C. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. Journal of Power Sources. 2021; 493: 229713.

65. Mogensen M, Skaarup S. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics. 1996; 86–88(Part 2): 1151–1160.

66. Rabuni MF, Vatcharasuwan N, Li T, et al. High performance micro-monolithic reversible solid oxide electrochemical reactor. Journal of Power Sources. 2020; 458: 228026.

67. Zheng M, Wang S, Yang Y, et al. Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni-yttria stabilized zirconia cathodes for solid oxide electrolysis cells. Journal of Materials Chemistry A. 2018; 6(6): 2721–2729.

68. Kumari N, Haider MA, Tiwari PK, et al. Carbon dioxide reduction on the composite of copper and praseodymium-doped ceria electrode in a solid oxide electrolysis cells. Ionics. 2019; 25(7): 3165–3177.

69. Song Y, Min J, Guo Y, et al. Surface Activation by Single Ru Atoms for Enhanced High -Temperature CO2 Electrolysis. Angewandte Chemie International Edition. 2024; 63(5): e202313361.

70. Tao Y, Ebbesen SD, Mogensen MB. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities. Journal of Power Sources. 2016; 331: 569.

71. Yan J, Chen H, Dogdibegovic E, et al. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels. Journal of Power Sources. 2014; 252: 79–84.

72. He X, Huang X, Sun H, et al. Enhanced CO2 electrolysis with in situ exsolved nanoparticles in the perovskite cathode. New Journal of Chemistry. 2024; 48(13): 5834–5839.

73. He S, He X, Gan L. In situ exsolved Fe nanoparticles enhance the catalytic performance of perovskite cathode materials in solid oxide electrolytic cells. New Journal of Chemistry. 2024; 48(44): 18739–18745.

74. Gao X, Ye L, Xie K. In situ exsolved Ni-Cu alloy nanoparticles for optimization of perovskite electrodes in solid oxide electrolysis cell. Fuel. 2024; 371: 131959.

75. Gao X, Ye L, Xie K. Voltage-driven reduction method to optimize in-situ exsolution of Fe nanoparticles at Sr2Fe1.5+xMo0.5O6 interface. Journal of Power Sources. 2023; 561: 232740.

76. Qiu P, Li C, Liu B, et al. Materials of solid oxide electrolysis cells for H2O and CO2 electrolysis: A review. Journal of Advanced Ceramics. 2023; 12(8): 1463–1510.

77. Kwon OH, Choi GM. Electrical conductivity of thick film YSZ. Solid State Ionics. 2006; 177(35–36): 3057–3062.

78. Shi H, Su C, Ran R, et al. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Progress in Natural Science-Materials International. 2020; 30(6): 764–774.

79. Li Y, Ye L, Xie K. Enhanced Carbon Dioxide Electrolysis in Zr-Doped Ceria. Energy & Fuels. 2024; 38(18): 18018–18025.

80. Jung DW, Lee KT, Wachsman ED. Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells. Journal of the Korean Ceramic Society. 2014; 51(4): 260–264.

81. Aguadero A, Fawcett L, Taub S, et al. Materials development for intermediate-temperature solid oxide electrochemical devices. Journal of Materials Science. 2012; 47(9): 3925–3948.

82. Peng X, Tian Y, Liu Y, et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2. Journal of CO2 Utilization. 2020; 36: 18–24.

83. Song Y, Zhang X, Zhou Y, et al. Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. Energy Storage Materials. 2018; 13: 207–214.

84. Feng WC, Yu JC, Yang YL, et al. Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. ACTA Physico-Chimica Sinica. 2024; 40(6): 2306013.

85. Zhang B, Zhang S, Zhang Z, et al. Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode. Journal of Power Sources. 2023; 556: 232467.

86. 冯德强, 张策, 姜文君, 等. 地外人工光合成装置研制与试验. 中国空间科学技术. 2020; 40(6): 13–22.

87. Feng D, Zhang C, Jiang WJ, et al. Design and trial of extraterrestrial artificial photosynthesis device (Chinese). Chinese Space Science and Technology. 2020; 40(6): 13–22.

88. George A, Shen B, Craven M, et al. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renewable & Sustainable Energy Reviews. 2021; 135: 109702.

89. Ashford B, Tu X. Non-thermal plasma technology for the conversion of CO2. Current Opinion in Green and Sustainable Chemistry. 2017; 3: 45–49.

90. Bogaerts A, Neyts EC. Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Letters. 2018; 3(4): 1013–1027.

91. Outlaw RA. O2 and CO2 glow-discharge-assisted oxygen transport through Ag. Journal of Applied Physics. 1990; 68(3): 1002–1004.

92. Ash RL, Wu D, Outlaw RA. A Study of Glow-Discharge and Permeation Techniques for Extraterrestrial Oxygen Beneficiation. Astronomy and Space Science from The Moon. 1994; 14(6): 259–263.

93. Wu D, Outlaw RA, Ash RL. Extraction of oxygen from CO2 using glow-discharge and permeation techniques. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films. 1996; 14(2): 408–414.

94. Shi Z, Wu D, Ash RL. An Investigation of Radio Frequency Enhanced Glow Discharge Production of Oxygen. In: Proceedings of the 26th International Conference on Environmental Systems; 8–11 July 1996; Monterey, CA, USA.

95. VuSkoviC L, Ash RL, Shi Z, et al. Radio-Frequency-Discharge Reaction Cell for Oxygen Extraction from Martian Atmosphere. In: Proceedings of the 27th International Conference on Environmental Systems; 14–17 July 1997; Lake Tahoe, NV, USA.

96. Zhang T, Wang X, Zhang Y. Numerical study on simplified reaction set of ground state species in CO2 discharges under Martian atmospheric conditions. Acta Physica Sinica. 2021; 70(21): 228–247.

97. Capezzuto P, Cramarossa F, D’Agostino R, et al. Contribution of vibrational excitation to the rate of carbon dioxide dissociation in electrical discharges. Journal of Physical Chemistry. 1976; 80(8): 882–888.

98. Ogloblina P, Morillo-Candas AS, Silva AF, et al. Mars in situ oxygen and propellant production by non-equilibrium plasmas. Plasma Sources Science & Technology. 2021; 30(6): 065005.

99. Wang WZ, Berthelot A, Kolev S, et al. CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model. Plasma Sources Science & Technology. 2016; 25(6): 065012.

100. Wang WZ, Bogaerts A. Effective ionisation coefficients and critical breakdown electric field of CO2 at elevated temperature: Effect of excited states and ion kinetics. Plasma Sources Science & Technology. 2016; 25(5): 055025.

101. Wang W, Mei D, Tu X, et al. Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach. Chemical Engineering Journal. 2017; 330: 11–25.

102. Pietanza LD, Guaitella O, Aquilanti V, et al. Advances in non-equilibrium CO2 plasma kinetics: A theoretical and experimental review. European Physical Journal D. 2021; 75(9): 237.

103. Guerra V, Silva T, Ogloblina P, et al. The case for in situ resource utilisation for oxygen production on Mars by nonequilibrium plasmas. Plasma Sources Science & Technology. 2017; 26(11): 11LT01.

104. Wang X, Gao S, Zhang Y. Frequency Effects on the Vibrational States and Conversion of CO2 in Radio Frequency Discharges Under Martian Pressure. IEEE Transactions on Plasma Science. 2023; 51(1): 49–59.

105. Duan X, Li Y, Ge W, et al. Degradation of CO2 through dielectric barrier discharge microplasma. Greenhouse Gases-Science and Technology. 2015; 5(2): 131–140.

106. Mei D, Zhu X, Wu C, et al. Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis. Applied Catalysis B-Environmental. 2016; 182: 525–532.

107. Snoeckx R, Zeng YX, Tu X, et al. Plasma-based dry reforming: Improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Advances. 2015; 5(38): 29799–29808.

108. Aerts R, Somers W, Bogaerts A. Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study. Chemsuschem. 2015; 8(4): 702–716.

109. Wang C, Fu Q, Chang Z, et al. Investigation on the products distribution, reaction pathway, and discharge mechanism of low-pressure CO2 discharge by employing a 1D simulation model. Plasma Processes and Polymers. 2021; 18(6): 2000228.

110. Fu Q, Wang Y, Chang Z. Study on the conversion mechanism of CO2 to O2 in pulse voltage dielectric barrier discharge at Martian pressure. Journal of CO2 Utilization. 2023; 70: 102430.

111. Fu Q, Ye Z, Guo H, et al. Generation and migration of CO in CO2 DBD glow plasma under Martian pressure. Plasma Processes and Polymers. 2024; 21(11): e2400085.

112. Wang XC, Bai JX, Zhang TH, et al. Comprehensive study on plasma chemistry and products in CO2 pulsed discharges under Martian pressure. Vacuum. 2022; 203: 111200.

113. Ashford B, Wang Y, Wang L, et al. Plasma-Catalytic Conversion of Carbon Dioxide. In: Tu X, Whitehead JC, Nozaki T (editors). Plasma Catalysis: Fundamentals and Applications. Springer Cham; 2019.

114. Snoeckx R, Bogaerts A. Plasma technology—a novel solution for CO2 conversion. Chemical Society Reviews. 2017; 46(19): 5805–5863.

115. Sun SR, Wang HX, Mei DH, et al. CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling. Journal of CO2 Utilization. 2017; 17: 220–234.

116. Devid EJ, Ronda-Lloret M, Zhang D, et al. Enhancing CO2 plasma conversion using metal grid catalysts. Journal of Applied Physics. 2021; 129(5): 053306.

117. Kelly S, Mercer E, Gorbanev Y, et al. Plasma-based conversion of Martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure. Journal of CO2 Utilization. 2024; 80: 102668.

118. Fu Q, Ye Z, Wang Y, et al. Effect of Dielectric Barrier Materials on Conversion Characteristics of Low Pressure CO2 Dielectric Barrier Discharge. Acta Petrolei Sinica (Petroleum Processing Section). 2023; 39(5): 1003–1012.

119. Qian M. Study of reaction products and emission spectra of CO2 glow discharge under simulated Mars conditions [Master’s thesis]. Shandong University; 2021.

120. Qian M, Yan F, Zhang P, et al. The Generation of O2 and CO by CO2 Glow Discharge for In-Situ Martian Atmospheric Utilization. Solar System Research. 2024; 58(4): 419–426.

121. Fridman A. Plasma Chemistry. Cambridge University Press; 2008.

122. Mei D, Tu X. Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design. Journal of CO2 Utilization. 2017; 19: 68–78.

123. Zhu X, Liu J, Li X, et al. Enhanced effect of plasma on catalytic reduction of CO2 to CO with hydrogen over Au/CeO2 at low temperature. Journal of Energy Chemistry. 2017; 3(26): 488–493.

124. Nunnally T, Gutsol K, Rabinovich A, et al. Dissociation of CO2 in a low current gliding arc plasmatron. Journal of Physics D-Applied Physics. 2011; 44(27): 274009.

125. Indarto A, Yang DR, Choi J, et al. Gliding arc plasma processing of CO2 conversion. Journal of Hazardous Materials. 2007; 146(1–2): 309–315.

126. Lazarova S, Paunska T, Vasilev V, et al. Gliding Arc/Glow Discharge for CO2 Conversion: The Role of Discharge Configuration and Gas Channel Thickness. Plasma. 2024; 7(4): 877–890.

127. Xu Y, Gao Y, Xi D, et al. Spark Discharge Plasma-Enabled CO2 Conversion Sustained by a Compact, Energy-Efficient, and Low-Cost Power Supply. Industrial & Engineering Chemistry Research. 2023; 62(39): 15872–15883.

128. Qiao J, Liu Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews. 2014; 43(2): 631–675.

129. Spencer LF, Gallimore AD. Efficiency of CO2 Dissociation in a Radio-Frequency Discharge. Plasma Chemistry and Plasma Processing. 2011; 31(1): 79–89.

130. Stewig C, Schuettler S, Urbanietz T, et al. Excitation and dissociation of CO2 heavily diluted in noble gas atmospheric pressure plasma. Journal of Physics D-Applied Physics. 2020; 53(12): 125205.

131. Spencer LF, Gallimore AD. CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency. Plasma Sources Science & Technology. 2013; 22(1): 015019.

132. Kiefer CK, Antunes R, Hecimovic A, et al. CO2 dissociation using a lab-scale microwave plasma torch: An experimental study in view of industrial application. Chemical Engineering Journal. 2024; 481: 148326.

133. Chen G, Britun N, Godfroid T, et al. An overview of CO2 conversion in a microwave discharge: The role of plasma-catalysis. Journal of Physics D-Applied Physics. 2017; 50(8): 084001.

134. Chen G, Georgieva V, Godfroid T, et al. Plasma assisted catalytic decomposition of CO2. Applied Catalysis B-Environmental. 2016; 190: 115–124.

135. Mei D, Zhu X, He Y, et al. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: Understanding the effect of packing materials. Plasma Sources Science & Technology. 2015; 24(1). 015011.

136. Yap D, Tatibouet JM, Batiot-Dupeyrat C. Carbon dioxide dissociation to carbon monoxide by non-thermal plasma. Journal of CO2 Utilization. 2015; 12: 54–61.

137. Lu N, Sun D, Zhang C, et al. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes. Journal of Physics D-Applied Physics. 2018; 51(9): 094001.

138. Wang K, Ceulemans S, Zhang H, et al. Inhibiting recombination to improve the performance of plasma-based CO2 conversion. Chemical Engineering Journal. 2024; 481: 148648.

139. Mei D, Tu X. Atmospheric Pressure Non‐Thermal Plasma Activation of CO2 in a Packed‐Bed Dielectric Barrier Discharge Reactor. ChemPhysChem. 2017; 18(22): 3253–3259.

140. Rao MU, Bhargavi KVSS, Chawdhury P, et al. Non-thermal plasma assisted CO2 conversion to CO: Influence of non-catalytic glass packing materials. Chemical Engineering Science. 2023; 267: 118376.

141. He L, Yue X, Liu X, et al. Performance of CO2 decomposition in water-cooling DBD plasma reactor. Journal of Physics D-Applied Physics. 2025; 58(10): 105204.

142. Yong T, Zhong H, Pannier E, et al. High-pressure CO2 dissociation with nanosecond pulsed discharges. plasma sources science & technology. 2023; 32(11): 115012.

143. Zhu S, Zhou A, Yu F, et al. Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Science & Technology. 2019; 21(8): 085504.

144. Lu N, Liu N, Zhang C, et al. CO2 conversion promoted by potassium intercalated g-C3N4 catalyst in DBD plasma system. Chemical Engineering Journal. 2021; 417: 129183.

145. Golubev O, Maximov A. Hybrid Plasma-Catalytic CO2 Dissociation over Basic Metal Oxides Combined with CeO2. Processes. 2023; 11(5): 1553.

146. Ashford B, Wang Y, Poh C, et al. Plasma-catalytic conversion of CO2 to CO over binary metal oxide catalysts at low temperatures. Applied Catalysis B-Environmental. 2020; 276: 119110.

147. Wang L, Du X, Yi Y, et al. Plasma-enhanced direct conversion of CO2 to CO over oxygen-deficient Mo-doped CeO2. Chemical Communications. 2020; 56(94): 14801–14804.

148. Hatami H, Khani M, Rad SAR, et al. CO2 conversion in a dielectric barrier discharge plasma by argon dilution over MgO/HKUST-1 catalyst using response surface methodology. Heliyon. 2024; 10(4): e26280.