非均匀磁场中多匝螺旋天线耦合的螺旋波等离子体蓝芯放电特性
DOI:
https://doi.org/10.18686/cncest368关键词:
螺旋波等离子体;放电模式;蓝芯;耦合天线;功率沉积摘要
本研究采用四匝螺旋天线在非均匀磁场中产生高密度螺旋波等离子体。通过调整天线的轴向位置(6 cm、12 cm 和 18 cm),可分别实现7.69 G、30.77 G和123.08 G的磁场强度。实验发现,在300 W射频功率和18 cm天线位置条件下出现了蓝芯现象。蓝芯模式下,600 W时等离子体密度可达2 × 1019 m−3,天线耦合效率达90%。基于放电诊断结果,本文进一步讨论了功率耦合机制。
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##参考
1. Miao X, Zhang H, Wang Q, et al. Optimum design of nuclear electric propulsion spacecraft for deep space exploration. Energy Reports. 2022; 8: 9629–9641. doi: 10.1016/j.egyr.2022.07.146
2. Jing D, Chang L, Yang X, et al. Exploration on the possible bump-on-tail instability in VASIMR. Space: Science & Technology. 2024; 4: 107. doi: 10.34133/space.0107
3. Takahashi K. Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency. Scientific Reports. 2021; 11(1): 2768. doi: 10.1038/s41598-021-82471-2
4. Chang L, Boswell R, Scime E, et al. Research progress and remarks on helicon plasma: A report on the Second Helicon Plasma Physics and Applications Workshop. Reviews of Modern Plasma Physics. 2024; 8(1): 32. doi: 10.1007/s41614-024-00171-6
5. Shinohara S, Kuwahara D, Furukawa T, et al. Development of featured high-density helicon sources and their application to electrodeless plasma thruster. Plasma Physics and Controlled Fusion. 2019; 61(1): 014017. doi: 10.1088/1361-6587/aadd67
6. Boswell RW. Plasma production using a standing helicon wave. Physics Letters. 1970; 33(7): 457–458. doi: 10.1016/0375-9601(70)90606-7
7. Cui R, Zhang T, He F, et al. The wave mode transition of argon helicon plasma. Plasma Sources Science and Technology. 2024; 33(2): 025021. doi: 10.1088/1361-6595/ad27eb
8. Xia Z, Zhang T, Cui Y, et al. Characteristics and mechanism of low-field peak in argon helicon plasma of single loop antenna. Physics of Plasmas. 2024; 31(8): 083504. doi: 10.1063/5.0213521
9. Boswell RW. Very efficient plasma generation by whistler waves near the lower hybrid frequency. Plasma Physics and Controlled Fusion. 1984; 26(10): 1147–1162. doi: 10.1088/0741-3335/26/10/001
10. Takahashi K, Takayama S, Komuro A, et al. Standing helicon wave induced by a rapidly bent magnetic field in plasmas. Physical Review Letters. 2016; 116(13): 135001. doi: 10.1103/PhysRevLett.116.135001
11. Zhang T, Jiang K, Liu Z, et al. Characteristics of inductively coupled plasma (ICP) and helicon plasma in a single-loop antenna. Plasma Science & Technology. 2020; 22(8): 085405. doi: 10.1088/2058-6272/ab8551
12. Lu Z, Xu G, Yip CS, et al. Development of a compact high-density blue core helicon plasma device under 2000 G magnetic field of ring permanent magnets. Plasma Science and Technology. 2022; 24(9): 095403. doi: 10.1088/2058-6272/ac6aa8
13. Wang C, Liu J, Chang L, et al. Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies. Chinese Physics B. 2024; 33(3): 035201. doi: 10.1088/1674-1056/ad1486
14. Takahashi K, Motomura T, Ando A, et al. Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching. Journal of Physics D: Applied Physics. 2014; 47(42): 425201. doi: 10.1088/0022-3727/47/42/425201
15. Wang C, Liu Y, Sun M, et al. Effect of inhomogeneous magnetic field on blue core in Ar helicon plasma. Physics of Plasmas. 2021; 28(12): 123519. doi: 10.1063/5.0070479
16. Antar G, Younes J, Darwish M, et al. The polaris linear plasma device. IEEE Transactions on Plasma Science. 2021; 49(5): 1706–1713. doi: 10.1109/tps.2021.3070638
17. Cui R, Zhang T, Yuan Q, et al. Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core. Plasma Science and Technology. 2023; 25(1): 015403. doi: 10.1088/2058-6272/ac8510
18. Blackwell BD, Caneses JF, Samuell CM, et al. Design and characterization of the Magnetized Plasma Interaction Experiment (MAGPIE): A new source for plasma–material interaction studies. Plasma Sources Science and Technology. 2012; 21(5): 055033. doi: 10.1088/0963-0252/21/5/055033
19. Bennet A, Charles C, Boswell R. Non-local plasma generation in a magnetic nozzle. Physics of Plasmas. 2019; 26(7): 072107. doi: 10.1063/1.5098484
20. Sun M, Xu X, Wang C, et al. Effect of antenna helicity on discharge characteristics of helicon plasma under a divergent magnetic field. Plasma Science and Technology. 2024; 26(6): 064006. doi: 10.1088/2058-6272/ad2b37
21. Zhang T, Cui Y, Xia Z, et al. Effects of cavity resonance and antenna resonance on mode transitions in helicon plasma. Plasma Sources Science and Technology. 2024; 33(4): 045016. doi: 10.1088/1361-6595/ad3bea
22. Wang H, Zhang Z, Yang K, et al. Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe. Plasma Science and Technology. 2019; 21(7): 074009. doi: 10.1088/2058-6272/ab175b
23. Sharma N, Chakraborty M, Saha PK, et al. Effect of argon and oxygen gas concentration on mode transition and negative ion production in helicon discharge. Journal of Applied Physics. 2020; 128(18): 183303. doi: 10.1063/5.0025127
24. Cui R, Han R, Yang K, et al. Diagnosis of helicon plasma by local OES. Plasma Sources Science and Technology. 2020; 29(1): 015018. doi: 10.1088/1361-6595/ab56dc
25. Zhang T, Cui R, Zhu W, et al. Influence of neutral depletion on blue core in argon helicon plasma. Physics of Plasmas. 2021; 28(7): 073505. doi: 10.1063/5.0050180
26. Celik M. Spectral measurements of inductively coupled and helicon discharge modes of a laboratory argon plasma source. Spectrochimica Acta Part B: Atomic Spectroscopy. 2011; 66(2): 149–155. doi: 10.1016/j.sab.2011.01.003
27. Ellingboe AR, Boswell RW. Capacitive, inductive and helicon‐wave modes of operation of a helicon plasma source. Physics of Plasmas. 1996; 3(7): 2797–2804. doi: 10.1063/1.871713
28. Kuwahara D, Mishio A, Nakagawa T, et al. Development of very small-diameter, inductively coupled magnetized plasma device. Review of Scientific Instruments. 2013; 84(10): 103502. doi: 10.1063/1.4823524
29. Ghosh S, Yadav S, Barada KK, et al. Formation of annular plasma downstream by magnetic aperture in the helicon experimental device. Physics of Plasmas. 2017; 24(2): 020703. doi: 10.1063/1.4975665
30. Sun M, Yin X, Zhang H. Comparison of blue core discharge characteristics in a nonhomogeneous helicon plasma coupled by Nagoya III antenna and double-saddle antenna. Physics of Plasmas. 2025; 32(1): 013509. doi: 10.1063/5.0236372
31. Niu C, Zhao G, Wang Y, et al. Correlation of wave propagation modes in helicon plasma with source tube lengths. Physics of Plasmas. 2017; 24: 013518. doi: 10.1063/1.4975008
32. Zhao G, Wang H, Si X, et al. The discharge characteristics in nitrogen helicon plasma. Physics of Plasmas. 2017; 24(12): 123507. doi: 10.1063/1.5002725
33. Isayama S, Shinohara S, Hada, T. Review of helicon high-density plasma: Production mechanism and plasma/wave characteristics. Plasma and Fusion Research. 2018; 13: 1101014. doi: 10.1585/pfr.13.1101014
34. Shamrai KP, Taranov VB. Volume and surface rf power absorption in a helicon plasma source. Plasma Sources Science and Technology. 1996; 5(3): 474–491. doi: 10.1088/0963-0252/5/3/015
35. Isayama S, Shinohara S, Hada T, et al. Underlying competition mechanisms in the dynamic profile formation of high-density helicon plasma. Physics of Plasmas. 2019; 26(2): 023517. doi: 10.1063/1.5063506
36. Wang C, Liu Y, Sun M, et al. Effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field. Plasma Science and Technology. 2023; 25(4): 045403. doi: 10.1088/2058-6272/aca1fa
37. Shamrai KP, Taranov VB. Resonances and anti-resonances of a plasma column in a helicon plasma source. Physics Letters A. 1995; 204(2): 139–145. doi: 10.1016/0375-9601(95)00435-6
38. Li W, Zhao B, Wang G, et al. Landau and collisional damping induced power deposition for the m = 0 mode of helicon and Trivelpiece–Gould waves in high density helicon plasmas. AIP Advances. 2020; 10(8): 085008. doi: 10.1063/1.5143627



