用于电解水制“绿氢”的过渡金属硫族化合物基催化剂设计原理与调控策略

作者

  • 张岱 东华大学物理学院,上海 201620,中国
  • 郭颖 东华大学物理学院,上海 201620,中国
Article ID: 357
121 Views

DOI:

https://doi.org/10.18686/cncest357

关键词:

电催化裂解水;氢气析出反应;氧气析出反应;过渡金属硫族化合物;电催化性能

摘要

发展可再生能源电解水制氢技术是实现氢能经济规模化应用的重要前提。目前,商用的电解水催化剂为铂族贵金属,但其储量稀少、价格高昂,严重限制了电解水制氢的实际应用。作为极具潜力的铂族贵金属替代材料,过渡金属硫族化合物(transition metal dichalcogenides, TMDs)因其本征催化活性高、成本低廉等特点,受到了科研工作者们的广泛关注。然而,TMDs的催化性能与铂族贵金属仍存在一定差距,为此,科研工作者们围绕其性能提升和催化机理开展了许多深入而系统的研究。本文结合电解水基本反应原理、电解水催化剂材料的设计思路以及TMDs的结构与电催化性能,全面总结了提升TMDs材料电解水催化性能的策略和方法。最后,对这一蓬勃发展的领域所面临的挑战和未来的研究方向进行了展望。

##submission.downloads##

已出版

2025-04-25

文章引用

张岱, & 郭颖. (2025). 用于电解水制“绿氢”的过渡金属硫族化合物基催化剂设计原理与调控策略. 清洁能源科学与技术, 3(2), 357. https://doi.org/10.18686/cncest357

栏目

综述文章

参考

1. Kment Š, Bakandritsos A, Tantis I, et al. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chemical Reviews. 2024; 124(21): 11767–11847.

2. Østergaard PA, Duic N, Noorollahi Y, et al. Renewable energy for sustainable development. Renewable Energy. 2022; 199: 1145–1152.

3. Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews. 2017; 67: 597–611.

4. Layton BE. A Comparison of Energy Densities of Prevalent Energy Sources in Units of Joules Per Cubic Meter. International Journal of Green Energy. 2008; 5(6): 438–455.

5. Yukesh Kannah R, S Kavitha, Preethi, et al. Techno-economic assessment of various hydrogen production methods—A review. Bioresource Technology. 2021; 319: 124175.

6. Shiva Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports. 2022; 8: 13793–13813.

7. Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews. 2022; 122(1): 385–441.

8. Mosca L, Medrano Jimenez JA, Wassie SA, et al. Process design for green hydrogen production. International Journal of Hydrogen Energy. 2020; 45(12): 7266–7277.

9. Germscheidt RL, Moreira DEB, Yoshimura RG, et al. Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Advanced Energy and Sustainability Research. 2021; 2(10): 2100093.

10. Shao Z, Yi B. Developing Trend and Present Status of Hydrogen Energy and Fuel Cell Development. Bulletin of the Chinese Academy of Sciences. 2019; 34(4): 469–477.

11. Gonzalez-Garay A, Bui M, Freire Ordóñez D, et al. Hydrogen Production and Its Applications to Mobility. Annual Review of Chemical and Biomolecular Engineering. 2022; 13(1): 501–528.

12. Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry. 2017; 1(1): 0003.

13. Kamaruddin H, Jianghong Z, Yu L, et al. A review of noble metal-free high entropy alloys for water splitting applications. Journal of Materials Chemistry A. 2024; 12(17): 9933–9961.

14. Kumaravel S, Karthick K, Sankar SS, et al. Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustainable Energy & Fuels. 2021; 5(24): 6215–6268.

15. Kim B, Kim T, Lee K, et al. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem. 2020; 7(17): 3578–3589.

16. Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta. 2002; 47(22–23): 3571–3594.

17. Yu ZY, Duan Y, Feng XY, et al. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials. 2021; 33(31): 2007100.

18. Sun H, Yan Z, Liu F, et al. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials. 2020; 32(3): 1806326.

19. Zhang XP, Chandra A, Lee YM, et al. Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chemical Society Reviews. 2021; 50(8): 4804–4811.

20. Wei C, Rao RR, Peng J, et al. Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Advanced Materials. 2019; 31(31): 1806296.

21. Greeley J, Jaramillo TF, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials. 2006; 5(11): 909–913.

22. Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nature Materials. 2004; 3(11): 810–815.

23. Medford AJ, Vojvodic A, Hummelshøj JS, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis. 2015; 328: 36–42.

24. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017; 355(6321).

25. Montoya JH, Seitz LC, Chakthranont P, et al. Materials for solar fuels and chemicals. Nature Materials. 2017; 16(1): 70–81.

26. Chia X, Eng AYS, Ambrosi A, et al. Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews. 2015; 115(21): 11941–11966.

27. Kong D, Cha JJ, Wang H, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science. 2013; 6(12): 3553–3558.

28. Wang Q, Lei Y, Wang Y, et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy & Environmental Science. 2020; 13(6): 1593–1616.

29. Wang X, Shen X, Wang Z, et al. Atomic-Scale Clarification of Structural Transition of MoS2 upon Sodium Intercalation. ACS Nano. 2014; 8(11): 11394–11400.

30. Hong Z, Hong W, Wang B, et al. Stable 1T –2H MoS2 heterostructures for efficient electrocatalytic hydrogen evolution. Chemical Engineering Journal. 2023; 460: 141858.

31. Enyashin AN, Yadgarov L, Houben L, et al. New Route for Stabilization of 1T-WS2 and MoS2 Phases. The Journal of Physical Chemistry C. 2011; 115(50): 24586–24591.

32. Huang Q, Li X, Sun M, et al. The Mechanistic Insights into the 2H-1T Phase Transition of MoS2 upon Alkali Metal Intercalation: From the Study of Dynamic Sodiation Processes of MoS2 Nanosheets. Advanced Materials Interfaces. 2017; 4(15): 1700171.

33. Hinnemann B, Moses PG, Bonde J, et al. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society. 2005; 127(15): 5308–5309.

34. Gu W, Milton RD. Natural and Engineered Electron Transfer of Nitrogenase. Chemistry. 2020; 2(2):322–346.

35. Hansen JN, Prats H, Toudahl KK, et al. Is There Anything Better than Pt for HER? ACS Energy Letters. 2021; 6(4): 1175–1180.

36. Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science. 2007; 317(5834): 100–102.

37. Lin L, Sherrell P, Liu Y, et al. Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials. 2020; 10(16): 1903870.

38. Dong S, Wang Z. Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2. Electrocatalysis. 2018; 9(6): 744–751.

39. Tsai C, Chan K, Nørskov JK, et al. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surface Science. 2015; 640: 133–140.

40. Sekar K, Raji G, Chen S, et al. Ultrathin VS2 nanosheets vertically aligned on NiCo2S4@C3N4 hybrid for asymmetric supercapacitor and alkaline hydrogen evolution reaction. Applied Surface Science. 2020; 527: 146856.

41. Zhang Y, Shi M, Wang C, et al. Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Science Bulletin. 2020; 65(5): 359–366.

42. Lee HJ, Lee S W, Hwang H, et al. Vertically oriented MoS2/WS2 heterostructures on reduced graphene oxide sheets as electrocatalysts for hydrogen evolution reaction. Materials Chemistry Frontiers. 2021; 5(8): 3396–3403.

43. Kibsgaard J, Chen Z, Reinecke BN, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials. 2012; 11(11): 963–969.

44. Wang J, Liu J, Chao D, et al. Self-Assembly of Honeycomb-like MoS2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium-Ion Storage. Advanced Materials. 2014; 26(42): 7162–7169.

45. Wang Y, Chen B, Seo DH, et al. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Materials. 2016; 8(5): e268–e268.

46. Kong D, Wang H, Cha JJ, et al. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters. 2013; 13(3): 1341–1347.

47. Gong Y, Liu Z, Lupini AR, et al. Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Letters. 2014; 14(2): 442–449.

48. Yang Y, Fei H, Ruan G, et al. Vertically Aligned WS2 Nanosheets for Water Splitting. Advanced Functional Materials. 2015; 25(39): 6199–6204.

49. Deng J, Li H, Wang S, et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nature Communications. 2017; 8(1): 14430.

50. Choi SH, Ko YN, Lee JK, et al. 3D MoS2–Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties. Advanced Functional Materials. 2015; 25(12): 1780–1788.

51. Zhang Z, Li W, Yuen MF, et al. Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy. 2015; 18: 196–204.

52. Dong H, Liu C, Ye H, et al. Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction. Scientific Reports. 2015; 5(1): 17542.

53. Zhao Y, Kuai L, Liu Y, et al. Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property. Scientific Reports. 2015; 5(1): 8722.

54. Zhou W, Zhou K, Hou D, et al. Three-Dimensional Hierarchical Frameworks Based on MoS2 Nanosheets Self-Assembled on Graphene Oxide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces. 2014; 6(23): 21534–21540.

55. Zhao Y, Xie X, Zhang J, et al. MoS2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry—A European Journal. 2015; 21(45): 15908–15913.

56. Tan Y, Liu P, Chen L, et al. Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production. Advanced Materials. 2014; 26(47): 8023–8028.

57. Chang YH, Lin CT, Chen TY, et al. Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams. Advanced Materials. 2013; 25(5): 756–760.

58. Novoselov KS, Geim AK, Morozov SV, et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004; 306(5696): 666.

59. Novoselov KS, Fal'ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012; 490(7419): 192–200.

60. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183–191.

61. Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Reviews of Modern Physics. 2009; 81(1): 109–162.

62. Mao S, Yu K, Chang J, et al. Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor. Scientific Reports. 2013; 3(1): 1696.

63. Bo Z, Yu K, Lu G, et al. Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon. 2011; 49(6): 1849–1858.

64. Lee JS, Kim SI, Yoon JC, et al. Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor. ACS Nano. 2013; 7(7): 6047–6055.

65. Sohn K, Joo Na Y, Chang H, et al. Oil absorbing graphene capsules by capillary molding. Chemical Communications. 2012; 48(48): 5968–5970.

66. Huang X, Qian K, Yang J, et al. Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials. 2012; 24(32): 4419–4423.

67. Yao HB, Ge J, Wang CF, et al. A Flexible and Highly Pressure-Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design. Advanced Materials. 2013; 25(46): 6692–6698.

68. Zhu C, Han TYJ, Duoss EB, et al. Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications. 2015; 6(1): 6962.

69. Zhang Q, Zhang F, Medarametla SP, et al. 3D Printing of Graphene Aerogels. Small. 2016; 12(13): 1702–1708.

70. Huang K, Yang J, Dong S, et al. Anisotropy of graphene scaffolds assembled by three-dimensional printing. Carbon. 2018; 130: 1–10.

71. Bai H, Li C, Wang X, et al. On the Gelation of Graphene Oxide. The Journal of Physical Chemistry C. 2011; 115(13): 5545–5551.

72. Jiang X, Ma Y, Li J, et al. Self-Assembly of Reduced Graphene Oxide into Three-Dimensional Architecture by Divalent Ion Linkage. The Journal of Physical Chemistry C. 2010; 114(51): 22462–22465.

73. Cong HP, Ren XC, Wang P, et al. Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process. ACS Nano. 2012; 6(3): 2693–2703.

74. Su Y, Zhang Y, Zhuang X, et al. Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon. 2013; 62: 296–301.

75. Tang Z, Shen S, Zhuang J, et al. Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide. Angewandte Chemie International Edition. 2010; 49(27): 4603–4607.

76. Wu Y, Zhu J, Huang L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon. 2019; 143: 610–640.

77. Mao J, Iocozzia J, Huang J, et al. Graphene aerogels for efficient energy storage and conversion. Energy & Environmental Science. 2018; 11(4): 772–799.

78. Qu Y, Medina H, Wang SW, et al. Wafer Scale Phase-Engineered 1T- and 2H-MoSe2/Mo Core–Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials. 2016; 28(44): 9831–9838.

79. Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis. 2018; 1(12): 909–921.

80. Jin H, Guo C, Liu X, et al. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews. 2018; 118(13): 6337–6408.

81. Kertesz M, Hoffmann R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. Journal of the American Chemical Society. 1984; 106(12): 3453–3460.

82. Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials. 2013; 12(9): 850–855.

83. Voiry D, Salehi M, Silva R, et al. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters. 2013; 13(12): 6222–6227.

84. Zhu J, Wang Z, Yu H, et al. Argon Plasma Induced Phase Transition in Monolayer MoS2. Journal of the American Chemical Society. 2017; 139(30): 10216–10219.

85. Cheng H, Yang N, Liu G, et al. Ligand-Exchange-Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials. 2020; 32(11): 1902964.

86. Merki D, Fierro S, Vrubel H, et al. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science. 2011; 2(7): 1262–1267.

87. Vrubel H, Merki D, Hu X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy & Environmental Science. 2012; 5(3): 6136–6144.

88. Ting LRL, Deng Y, Ma L, et al. Catalytic Activities of Sulfur Atoms in Amorphous Molybdenum Sulfide for the Electrochemical Hydrogen Evolution Reaction. ACS Catalysis. 2016; 6(2): 861–867.

89. Deng Y, Ting LRL, Neo PHL, et al. Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoSx) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H+ Reduction. ACS Catalysis. 2016; 6(11): 7790–7798.

90. Dinda D, Ahmed ME, Mandal S, et al. Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium. Journal of Materials Chemistry A. 2016; 4(40): 15486–15493.

91. Benck JD, Chen Z, Kuritzky LY, et al. Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis. 2012; 2(9): 1916–1923.

92. Cao PF, Hu Y, Zhang YW, et al. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica. 2017; 33(12): 2542–2549.

93. Wang T, Liu L, Zhu Z, et al. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy & Environmental Science. 2013; 6(2): 625–633.

94. Li DJ, Maiti UN, Lim J, et al. Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction. Nano Letters. 2014; 14(3): 1228–1233.

95. Tang YJ, Wang Y, Wang XL, et al. Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials. 2016; 6(12): 1600116.

96. Gao MR, Chan MKY, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications. 2015; 6(1): 7493.

97. Xu Y, Wang L, Liu X, et al. Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production. Journal of Materials Chemistry A. 2016; 4(42): 16524–16530.

98. Zhu H, Zhang J, Yanzhang R, et al. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials. 2015; 27(32): 4752–4759.

99. Xu X, Zhong W, Zhang L, et al. Synergistic effect of MoS2 and Ni9S8 nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science. 2019; 556: 24–32.

100. Du C, Liang D, Shang M, et al. In Situ Engineering MoS2 NDs/VS2 Lamellar Heterostructure for Enhanced Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & Engineering. 2018; 6(11): 15471–15479.

101. Hu J, Zhang C, Zhang Y, et al. Interface Modulation of MoS2/Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis. Small. 2020; 16(28): 2002212.

102. Wu Q, Luo Y, Xie R, et al. Space-Confined One-Step Growth of 2D MoO2/MoS2 Vertical Heterostructures for Superior Hydrogen Evolution in Alkaline Electrolytes. Small. 2022; 18(32): 2201051.

103. Duraisamy S, Ganguly A, Sharma PK, et al. One-Step Hydrothermal Synthesis of Phase-Engineered MoS2/MoO3 Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials. 2021; 4(3): 2642–2656.

104. Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nature Communications. 2019; 10(1): 269.

105. Ren J, Zong H, Sun Y, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm. 2020; 22(8): 1395–1403.

106. Kim M, Anjum MAR, Lee M, et al. Activating MoS2 Basal Plane with Ni2P Nanoparticles for Pt-Like Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials. 2019; 29(10): 1809151.

107. Song L, Wang X, Wen F, et al. Hydrogen evolution reaction performance of the molybdenum disulfide/nickel–phosphorus composites in alkaline solution. International Journal of Hydrogen Energy. 2016; 41(42): 18942–18952.

108. Yang F, Kang N, Yan J, et al. Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution. Metals. 2018; 8(5): 359.

109. Hu J, Zhang C, Jiang L, et al. Nanohybridization of MoS2 with Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media. Joule. 2017; 1(2): 383–393.

110. Zhang B, Liu J, Wang J, et al. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy. 2017; 37: 74–80.

111. Luo Y, Li X, Cai X, et al. Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes. ACS Nano. 2018; 12(5): 4565–4573.

112. Kitchin JR, Nørskov JK, Barteau MA, et al. Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catalysis Today. 2005; 105(1): 66–73.

113. Liu C, Wen Y, Lin L, et al. Facile in-situ formation of high efficiency nanocarbon supported tungsten carbide nanocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy. 2018; 43(33): 15650–15658.

114. Ham DJ, Lee JS. Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells. Energies. 2009; 2(4) :873–899.

115. Velpandian M, Ragunathan A, Ummethala G, et al. Low-Potential Overall Water Splitting Induced by Engineered CoTe2–WTe2 Heterointerfaces. ACS Applied Energy Materials. 2023; 6(11): 5968–5978.

116. Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie International Edition. 2015; 54(1): 52–65.

117. Wang X, Zhang Y, Si H, et al. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2. Journal of the American Chemical Society. 2020; 142(9): 4298–4308.

118. Sun X, Dai J, Guo Y, et al. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale. 2014; 6(14): 8359–8367.

119. Qi K, Yu S, Wang Q, et al. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A. 2016; 4(11): 4025–4031.

120. Wang H, Tsai C, Kong D, et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research. 2015; 8(2): 566–575.

121. Deng J, Li H, Xiao J, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy & Environmental Science. 2015; 8(5): 1594–1601.

122. Sun C, Zhang J, Ma J, et al. N-doped WS2 nanosheets: a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A. 2016; 4(29): 11234–11238.

123. Shifa TA, Wang F, Liu K, et al. Efficient Catalysis of Hydrogen Evolution Reaction from WS2(1−x)P2x Nanoribbons. Small. 2017; 13(16): 1603706.

124. Xie J, Zhang J, Li S, et al. Correction to Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society. 2014; 136(4): 1680–1680.

125. Liu P, Zhu J, Zhang J, et al. P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in MoS2 Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters. 2017; 2(4): 745–752.

126. Zhang G, Zheng X, Xu Q, et al. Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe2/MWNT heterostructure for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A. 2018; 6(11): 4793–4800.

127. Zhang W, Liu X, Liu T, et al. In Situ Investigation on Doping Effect in Co-Doped Tungsten Diselenide Nanosheets for Hydrogen Evolution Reaction. The Journal of Physical Chemistry C. 2021; 125(11): 6229–6236.

128. Merki D, Vrubel H, Rovelli L, et al. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science. 2012; 3(8); 2515–2525.

129. Luo Y, Zhang Z, Chhowalla M, et al. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting. Advanced Materials. 2022; 34(16): 2108133.

130. Lu AY, Yang X, Tseng CC, et al. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small. 2016; 12(40): 5530–5537.

131. Azcatl A, Qin X, Prakash A, et al. Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure. Nano Letters. 2016; 16(9): 5437–5443.

132. Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science. 2010; 36(3): 307–326.

133. Smith RDL, Prévot MS, Fagan RD, et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science. 2013; 340(6128): 60–63.