基于MVMD-SSA-LSTM的建筑短期供暖负荷预测
DOI:
https://doi.org/10.18686/cncest356关键词:
建筑供暖负荷预测;多变量变分模态分解;长短期记忆神经网络;麻雀搜索算法摘要
建筑短期供暖负荷预测是能源系统后续控制的关键步骤,直接影响系统的能耗。然而,由于供暖负荷及其影响因素构成波动的时间序列数据,数据中的噪声干扰显著限制了预测的准确性和稳定性。为了解决这一问题,本文提出了一种新的MVMD-SSA-LSTM模型用于建筑供暖负荷预测,该模型结合了多变量变分模态分解(Multivariate Variational Mode Decomposition, MVMD)、麻雀搜索算法(Sparrow Search Algorithm, SSA)和长短期记忆(Long Short-Term Memory, LSTM)神经网络。首先,对建筑供暖负荷的影响因素进行相关性分析,以确定关键因素。随后,使用MVMD将多维数据集分解为多个模态。然后对这些分解的模态进行相关性分析,提取补充特征,并将其与原始数据结合形成新的数据集,从而减少特征冗余。最后,使用LSTM神经网络作为核心预测模型,并通过SSA算法优化三个关键参数:最大训练迭代次数、隐藏单元数量和初始学习率。将每个供暖负荷模态的预测输出汇总,得到最终预测结果。结果表明,MVMD-SSA-LSTM模型有效缓解了供暖负荷序列预测中的不确定性,克服了噪声干扰,并表现出优于其他常用模型的性能,具有显著更高的准确性和稳定性。
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##参考
1. Ekonomou L, Christodoulou CA, Mladenov V. A short-term load forecasting method using artificial neural networks and wavelet analysis. Int. J. Power Syst. 2016; 1: 64–68.
2. Verbeke S, Audenaert A. Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews. 2018; 82: 2300–2318.
3. Rugani R, Bigazzi M, Fantozzi F, et al. Impact of building thermal inertia in different climates using energy dynamic simulation through a simplified description model. In: Proceedings of the 17th IBPSA Conference; 1–3 September 2021; Bruges, Belgium. Volume 17, pp. 2578–2585.
4. Wu Q, Wang J, Meng X. Influence of wall thermal performance on the contribution efficiency of the Phase-Change Material (PCM) layer. Case Studies in Thermal Engineering. 2021; 28: 101398.
5. Chapaloglou S, Varagnolo D, Marra F, et al. Data-driven energy management of isolated power systems under rapidly varying operating conditions. Applied Energy. 2022; 314: 118906.
6. Luo XJ, Oyedele LO. Forecasting building energy consumption: Adaptive long-short term memory neural networks driven by genetic algorithm. Advanced Engineering Informatics. 2021; 50: 101357.
7. Hu J, Zou Y, Soltanov N. A multilevel optimization approach for daily scheduling of combined heat and power units with integrated electrical and thermal storage. Expert Systems with Applications. 2024; 250: 123729.
8. Wei S, Tien PW, Calautit JK, et al. Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method. Applied Energy. 2020; 277: 115506.
9. Sze V, Chen YH, Yang TJ, et al. Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE. 2017; 105(12): 2295–2329.
10. Pan L, Wang S, Wang J, et al. Research on central air conditioning systems and an intelligent prediction model of building energy load. Energies. 2022; 15(24): 9295.
11. Yildiz B, Bilbao JI, Sproul AB. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renewable and Sustainable Energy Reviews. 2017; 73: 1104–1122.
12. Wang Z, Hong T, Piette MA. Building thermal load prediction through shallow machine learning and deep learning. Applied Energy. 2020; 263: 114683.
13. Zhou C, Fang Z, Xu X, et al. Using long short-term memory networks to predict energy consumption of air-conditioning systems. Sustainable Cities and Society. 2020; 55: 102000.
14. Xu Y, Gao W, Qian F, et al. Potential analysis of the attention-based LSTM model in ultra-short-term forecasting of building HVAC energy consumption. Frontiers in Energy Research. 2021; 9: 730640.
15. Chalapathy R, Khoa NLD, Sethuvenkatraman S. Comparing multi-step ahead building cooling load prediction using shallow machine learning and deep learning models. Sustainable Energy, Grids and Networks. 2021; 28: 100543.
16. Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures. Neural computation. 2019; 31(7): 1235–1270.
17. Zhang L, Wen J, Li Y, et al. A review of machine learning in building load prediction. Applied Energy. 2021; 285: 116452.
18. Das A, Annaqeeb MK, Azar E, et al. Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods. Applied Energy. 2020; 269: 115135.
19. Xue J, Shen B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering. 2020; 8(1): 22–34.
20. Saafan MM, El-Gendy EM. IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems. Expert Systems with Applications. 2021; 176: 114901.
21. An W, Gao B, Liu J, et al. Predicting hourly heating load in residential buildings using a hybrid SSA–CNN–SVM approach. Case Studies in Thermal Engineering. 2024; 59: 104516.
22. Madiniyeti J, Chao Y, Li T, et al. Concrete dam deformation prediction model research based on SSA–LSTM. Applied Sciences. 2023; 13(13): 7375.
23. Huang Z, Huang J, Min J. SSA-LSTM: Short-Term photovoltaic power prediction based on feature matching. Energies. 2022; 15(20): 7806.
24. Gao X, Guo W, Mei C, et al. Short-term wind power forecasting based on SSA-VMD-LSTM. Energy Reports. 2023; 9: 335–344.
25. Han M, Zhong J, Sang P, et al. A combined model incorporating improved SSA and LSTM algorithms for short-term load forecasting. Electronics. 2022; 11(12): 1835.
26. Chen H, Zhang H, Wu S, et al. Numerical simulation and optimisation design for ventilation and heat dissipation in high-temperature and high-load indoor substations. Case Studies in Thermal Engineering. 2024; 59: 104502.
27. Cha YJ, Mostafavi A, Benipal SS. DNoiseNet: Deep learning-based feedback active noise control in various noisy environments. Engineering Applications of Artificial Intelligence. 2023; 121: 105971.
28. Genzel M, Macdonald J, März M. Solving inverse problems with deep neural networks–robustness included? IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022; 45(1): 1119–1134.
29. Leprince J, Madsen H, Miller C, et al. Fifty shades of grey: Automated stochastic model identification of building heat dynamics. Energy and Buildings. 2022; 266: 112095.
30. Bampoulas A, Pallonetto F, Mangina E, et al. A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems. Applied Energy. 2023; 348: 121576.
31. Yeh JR, Shieh JS, Huang NE. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis. 2010; 2(02): 135–156.
32. Wang H, Huang S, Li P, et al. An improved wavelet transform threshold method for denoising fault signals. Measurement Science and Technology. 2016; 27(3): 1–10.
33. Liu H, Wang W, Xiang C, et al. A de-noising method using the improved wavelet threshold function based on noise variance estimation. Mechanical Systems and Signal Processing. 2018; 99: 30–46.
34. Wardana ANI. A comparative study of EMD, EWT and VMD for detecting the oscillation in control loop. In: Proceedings of the 2016 International Seminar on Application for Technology of Information and Communication (ISemantic); 05–06 August 2016; Semarang, Indonesia.
35. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions on Signal Processing. 2014; 62(3): 531–544.
36. Fu J, Cai F, Guo Y, et al. An Improved VMD‐Based Denoising Method for Time Domain Load Signal Combining Wavelet with Singular Spectrum Analysis. Mathematical Problems in Engineering. 2020; 2020(1): 1485937.
37. Bagheri A, Ozbulut OE, Harris DK. Structural system identification based on variational mode decomposition. Journal of Sound and Vibration. 2018; 417: 182–197.
38. ur Rehman N, Aftab H. Multivariate variational mode decomposition. IEEE Transactions on signal processing. 2019; 67(23): 6039–6052.
39. Zhang L, Li J, Xu X, et al. High spatial granularity residential heating load forecast based on Dendrite net model. Energy. 2023; 269: 126787.
40. Salami BA, Abba SI, Adewumi AA, et al. Building energy loads prediction using bayesian-based metaheuristic optimized-explainable tree-based model. Case Studies in Construction Materials. 2023; 19: e02676.
41. Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020; 404: 132306.
42. Awadallah M A, Al-Betar M A, Doush I A, et al. Recent versions and applications of sparrow search algorith. Archives of Computational Methods in Engineering, 2023, 30(5): 2831-2858.
43. Asuero AG, Sayago A, González AG. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry. 2006; 36(1): 41–59.



