低温等离子体在水系锌离子电池关键材料改性中的应用研究综述
DOI:
https://doi.org/10.18686/cncest329关键词:
低温等离子体改性;水系锌离子电池;关键材料;锌负极;二氧化锰摘要
在全球能源转型的背景下,锌离子电池(ZIBs)因其环境友好、成本低廉及安全性高等特点而受到广泛关注。然而,ZIBs的发展面临着一系列挑战,包括锌枝晶生长、正极材料性能衰退以及电极/电解质界面副反应等。这些问题的解决很大程度上依赖于ZIBs关键材料性能的提升。低温等离子体(LTP)技术,凭借其高能、高活性、低温和高效等特点,展现出工艺调控能力强、适用范围广泛、操作条件温和、环境友好等优势,为ZIBs关键材料的改性提供了创新方案。本文综述了LTP技术在锌负极、正极材料及隔膜等ZIBs关键材料改性中的应用,重点阐述了LTP改性技术对锌负极电化学性能的优化。最后,论文展望了LTP技术在ZIBs关键材料改性中面临的问题、挑战和下一步的努力方向。
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##参考
1. He W, Gu T, Xu X, et al. Uniform In Situ Grown ZIF-L Layer for Suppressing Hydrogen Evolution and Homogenizing Zn Deposition in Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces. 2022; 14(35): 40031-40042. doi: 10.1021/acsami.2c11313
2. Ying H, Huang P, Zhang Z, et al. Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries. Nano-Micro Letters. 2022; 14(1). doi: 10.1007/s40820-022-00921-6
3. Yang Z, Hu C, Zhang Q, et al. Bulk‐Phase Reconstruction Enables Robust Zinc Metal Anodes for Aqueous Zinc‐Ion Batteries. Angewandte Chemie International Edition. 2023; 62(35). doi: 10.1002/anie.202308017
4. Zhang Q, Luan J, Huang X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications. 2020; 11(1). doi: 10.1038/s41467-020-17752-x
5. Ming F, Zhu Y, Huang G, et al. Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Journal of the American Chemical Society. 2022; 144(16): 7160-7170. doi: 10.1021/jacs.1c12764
6. Dai Y, Zhang C, Zhang W, et al. Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie International Edition. 2023; 62(18). doi: 10.1002/anie.202301192
7. Zhou J, Xie M, Wu F, et al. Ultrathin Surface Coating of Nitrogen‐Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc‐Ion Batteries. Advanced Materials. 2021; 33(33). doi: 10.1002/adma.202101649
8. Li J, Liu Z, Han S, et al. Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries. Nano-Micro Letters. 2023; 15(1). doi: 10.1007/s40820-023-01206-2
9. Cao Q, Pan Z, Gao Y, et al. Stable Imprinted Zincophilic Zn Anodes with High Capacity. Advanced Functional Materials. 2022; 32(41). doi: 10.1002/adfm.202205771
10. Liu J, Ye C, Wu H, et al. 2D Mesoporous Zincophilic Sieve for High-Rate Sulfur-Based Aqueous Zinc Batteries. Journal of the American Chemical Society. 2023; 145(9): 5384-5392. doi: 10.1021/jacs.2c13540
11. Wang X, Zhang Z, Xi B, et al. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano. 2021; 15(6): 9244-9272. doi: 10.1021/acsnano.1c01389
12. Wu B, Wu Y, Lu Z, et al. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A. 2021; 9(8): 4734-4743. doi: 10.1039/d0ta11841a
13. Liang H, Alshareef HN. A Plasma‐Assisted Route to the Rapid Preparation of Transition‐Metal Phosphides for Energy Conversion and Storage. Small Methods. 2017; 1(7). doi: 10.1002/smtd.201700111
14. Liang H, Ming F, Alshareef HN. Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials. 2018; 8(29). doi: 10.1002/aenm.201801804
15. Shi F, Jiang J, Wang X, et al. Development of plasma technology for the preparation and modification of energy storage materials. Chemical Communications. 2024; 60(20): 2700-2715. doi: 10.1039/d3cc05341e
16. Wang Z, Chen J, Sun S, et al. Plasma-enabled synthesis and modification of advanced materials for electrochemical energy storage. Energy Storage Materials. 2022; 50: 161-185. doi: 10.1016/j.ensm.2022.05.018
17. Yao Y, Jiao X, Xu X, et al. Prospective of Magnetron Sputtering for Interface Design in Rechargeable Lithium Batteries. Advanced Energy Materials. 2024; 14(47). doi: 10.1002/aenm.202403117
18. Nava-Avendaño J, Veilleux J. Plasma processes in the preparation of lithium-ion battery electrodes and separators. Journal of Physics D: Applied Physics. 2017; 50(16): 163001. doi: 10.1088/1361-6463/aa6245
19. Hao J, Li B, Li X, et al. An In‐Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn‐Ion Batteries. Advanced Materials. 2020; 32(34). doi: 10.1002/adma.202003021
20. El-Sayed AR, Mohran HS, Abd El-Lateef HM. Effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution. Journal of Power Sources. 2010; 195(19): 6924-6936. doi: 10.1016/j.jpowsour.2010.03.071
21. Huang S, Zhu J, Tian J, et al. Recent Progress in the Electrolytes of Aqueous Zinc‐Ion Batteries. Chemistry – A European Journal. 2019; 25(64): 14480-14494. doi: 10.1002/chem.201902660
22. Wu TH, Zhang Y, Althouse ZD, et al. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano. 2019; 6: 100032. doi: 10.1016/j.mtnano.2019.100032
23. Chen D, Lu M, Cai D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry. 2021; 54: 712-726. doi: 10.1016/j.jechem.2020.06.016
24. Wang Y, Xie J, Luo J, et al. Methods for Rational Design of Advanced Zn‐Based Batteries. Small Methods. 2022; 6(8). doi: 10.1002/smtd.202200560
25. Jia H, Wang Z, Tawiah B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy. 2020; 70: 104523. doi: 10.1016/j.nanoen.2020.104523
26. An Y, Tian Y, Zhang K, et al. Stable Aqueous Anode‐Free Zinc Batteries Enabled by Interfacial Engineering. Advanced Functional Materials. 2021; 31(26). doi: 10.1002/adfm.202101886
27. Guo N, Huo W, Dong X, et al. A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods. 2022; 6(9). doi: 10.1002/smtd.202200597
28. Jia X, Liu C, Neale ZG, et al. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews. 2020; 120(15): 7795-7866. doi: 10.1021/acs.chemrev.9b00628
29. Fan K, Tsang YH, Huang H. Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications. Materials Reports: Energy. 2023; 3(3): 100213. doi: 10.1016/j.matre.2023.100213
30. Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy & Environmental Science. 2022; 15(12): 5017-5038. doi: 10.1039/d2ee02416k
31. Hao J, Yuan L, Johannessen B, et al. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc‐Ion Batteries. Angewandte Chemie International Edition. 2021; 60(47): 25114-25121. doi: 10.1002/anie.202111398
32. Li B, Zeng Y, Zhang W, et al. Separator designs for aqueous zinc-ion batteries. Science Bulletin. 2024; 69(5): 688-703. doi: 10.1016/j.scib.2024.01.011
33. Han R, Jiang T, Wang Z, et al. Reconfiguring Zn2+ Solvation Network and Interfacial Chemistry of Zn Metal Anode with Molecular Engineered Crown Ether Additive. Advanced Functional Materials. 2024; 35(2). doi: 10.1002/adfm.202412255
34. Qiu M, Liu H, Luo J, et al. Long-life zinc electrodes achieved by oxygen plasma functionalization. Chemical Communications. 2022; 58(7): 993-996. doi: 10.1039/d1cc05849e
35. Jia H, Qiu M, Lan C, et al. Advanced Zinc Anode with Nitrogen‐Doping Interface Induced by Plasma Surface Treatment. Advanced Science. 2021; 9(3). doi: 10.1002/advs.202103952
36. Li M, Zhou X, He X, et al. Controllable CF4 Plasma In Situ Modification Strategy Enables Durable Zinc Metal Anode. ACS Applied Materials & Interfaces. 2023; 15(2): 3017-3027. doi: 10.1021/acsami.2c19863
37. Yang X, Lv J, Cheng C, et al. Mosaic Nanocrystalline Graphene Skin Empowers Highly Reversible Zn Metal Anodes. Advanced Science. 2022; 10(4). doi: 10.1002/advs.202206077
38. Sun M, Cheng Q, Ren X, et al. Electric Field Regulator Constructed by Magnetron Sputtering for Dendrite‐Free and Stable Zinc Metal Anode. Advanced Functional Materials. 2024; 35(3). doi: 10.1002/adfm.202413456
39. Ren Q, Tang X, Zhao X, et al. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy. 2023; 109: 108306. doi: 10.1016/j.nanoen.2023.108306
40. Kim H.J, Kim S, Kim S, et al. Gold-Nanolayer-Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc-Ion Batteries. Advanced Materials, 2024, 36(1): 2308592
41. Zheng J, Liu X, Zheng Y, et al. AgxZny Protective Coatings with Selective Zn2+/H+ Binding Enable Reversible Zn Anodes. Nano Letters. 2023; 23(13): 6156-6163. doi: 10.1021/acs.nanolett.3c01706
42. Zhao F, Feng J, Dong H, et al. Ultrathin Protection Layer via Rapid Sputtering Strategy for Stable Aqueous Zinc Ion Batteries. Advanced Functional Materials. 2024; 34(51). doi: 10.1002/adfm.202409400
43. Guo X, Peng Q, Shin K, et al. Construction of a Composite Sn‐DLC Artificial Protective Layer with Hierarchical Interfacial Coupling Based on Gradient Coating Technology Toward Robust Anodes for Zn Metal Batteries. Advanced Energy Materials. 2024; 14(38). doi: 10.1002/aenm.202402015
44. Yang N, Gao Y, Bu F, et al. Backside Coating for Stable Zn Anode with High Utilization Rate. Advanced Materials. 2024; 36(26). doi: 10.1002/adma.202312934
45. Li R, Du Y, Li Y, et al. Alloying Strategy for High-Performance Zinc Metal Anodes. ACS Energy Letters. 2022; 8(1): 457-476. doi: 10.1021/acsenergylett.2c01960
46. Zheng J, Huang Z, Zeng Y, et al. Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. Nano Letters. 2022; 22(3): 1017-1023. doi: 10.1021/acs.nanolett.1c03917
47. Li B, Yang K, Ma J, et al. Multicomponent Copper‐Zinc Alloy Layer Enabling Ultra‐Stable Zinc Metal Anode of Aqueous Zn‐ion Battery. Angewandte Chemie International Edition. 2022; 61(47). doi: 10.1002/anie.202212587
48. Su Y, Yang X, Zhang Q, et al. Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry. 2022; 904: 115883. doi: 10.1016/j.jelechem.2021.115883
49. Mao C, Chang Y, Zhao X, et al. Functional carbon materials for high-performance Zn metal anodes. Journal of Energy Chemistry. 2022; 75: 135-153. doi: 10.1016/j.jechem.2022.07.034
50. Wu L, Dong Y. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials. 2021; 41: 715-737. doi: 10.1016/j.ensm.2021.07.004
51. Sun X, Bao J, Li K, et al. Advance in Using Plasma Technology for Modification or Fabrication of Carbon‐Based Materials and Their Applications in Environmental, Material, and Energy Fields. Advanced Functional Materials. 2020; 31(7). doi: 10.1002/adfm.202006287
52. Ortiz-Ortega E, Hosseini S, Martinez-Chapa SO, et al. Aging of plasma-activated carbon surfaces: Challenges and opportunities. Applied Surface Science. 2021; 565: 150362. doi: 10.1016/j.apsusc.2021.150362
53. Zhang X, Ruan Q, Liu L, et al. Stable zinc metal anode with an ultrathin carbon coating for zinc-ion batteries. Journal of Electroanalytical Chemistry. 2023; 936: 117357. doi: 10.1016/j.jelechem.2023.117357
54. Hu L, Xiao P, Xue L, et al. The rising zinc anodes for high-energy aqueous batteries. EnergyChem. 2021; 3(2): 100052. doi: 10.1016/j.enchem.2021.100052
55. Zong Q, Wu Y, Liu C, et al. Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Materials. 2022; 52: 250-283. doi: 10.1016/j.ensm.2022.08.007
56. Zhou LF, Du T, Li JY, et al. A strategy for anode modification for future zinc-based battery application. Materials Horizons. 2022; 9(11): 2722-2751. doi: 10.1039/d2mh00973k
57. Wu J, Yang L, Wang S, et al. Triple‐Functional Amorphous In2O3 Anode Protection Layer Design for High‐Performance Aqueous Zinc Ion Batteries. Advanced Functional Materials; 2024.
58. Wang R, Wu Q, Wu M, et al. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Research. 2022; 15(8): 7227-7233. doi: 10.1007/s12274-022-4477-1
59. Wei B, Zheng J, Abhishek, et al. Design Principle of Insulating Surface Protective Layers for Metallic Zn Anodes: A Case Study of ZrO2. Advanced Energy Materials. 2024; 14(24). doi: 10.1002/aenm.202401018
60. Jin H, Dai S, Xie K, et al. Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80%. Small. 2021; 18(4). doi: 10.1002/smll.202106441
61. Gao L, Qin L, Wang B, et al. Highly‐Efficient and Robust Zn Anodes Enabled by Sub‐1‐µm Zincophilic CrN Coatings. Small. 2023; 20(16). doi: 10.1002/smll.202308818
62. Zheng J, Wu Y, Xie H, et al. In Situ Alloying Sites Anchored on an Amorphous Aluminum Nitride Matrix for Crystallographic Reorientation of Zinc Deposits. ACS Nano. 2022; 17(1): 337-345. doi: 10.1021/acsnano.2c08196
63. Meng Y, Wang M, Xu J, et al. Balancing Interfacial Reactions through Regulating p‐Band Centers by an Indium Tin Oxide Protective Layer for Stable Zn Metal Anodes. Angewandte Chemie International Edition. 2023; 62(40). doi: 10.1002/anie.202308454
64. Wu J, Yang L, Zhou S, et al. Long-lasting Zn metal anode coated with an industrially available amorphous InGaZnO layer. Chemical Engineering Journal. 2024; 501: 157729. doi: 10.1016/j.cej.2024.157729
65. Jia H, Qiu M, Tang C, et al. Nano‐scale BN interface for ultra‐stable and wide temperature range tolerable Zn anode. EcoMat. 2022; 4(3). doi: 10.1002/eom2.12190
66. Zheng J, Zhu G, Liu X, et al. Simultaneous Dangling Bond and Zincophilic Site Engineering of SiNx Protective Coatings toward Stable Zinc Anodes. ACS Energy Letters. 2022; 7(12): 4443-4450. doi: 10.1021/acsenergylett.2c02282
67. Zheng J, Cao Z, Ming F, et al. Preferred Orientation of TiN Coatings Enables Stable Zinc Anodes. ACS Energy Letters. 2021; 7(1): 197-203. doi: 10.1021/acsenergylett.1c02299
68. Kim S, Hee Ryu G, An G. Enhanced zinc-ion batteries through the coating of surface-functionalized graphene on the anode: A promising solution for uniform zinc plating. Applied Surface Science. 2023; 635: 157634. doi: 10.1016/j.apsusc.2023.157634
69. Cao J, Wang Z, Yang Z, et al. High-performance zinc anodes enabled by atmospheric plasma enhanced cellulose protective layer for zinc ion batteries. Journal of Power Sources. 2025; 627: 235699. doi: 10.1016/j.jpowsour.2024.235699
70. An Y, Tian Y, Xiong S, et al. Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano. 2021; 15(7): 11828-11842. doi: 10.1021/acsnano.1c02928
71. Jia H, Qiu M, Tang C, et al. Advanced Flexible Carbon-Based Current Collector for Zinc Storage. Advanced Fiber Materials. 2022; 4(6): 1500-1510. doi: 10.1007/s42765-022-00182-3
72. He M, Shu C, Zheng R, et al. Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries. Green Energy & Environment. 2023; 8(1): 318-330. doi: 10.1016/j.gee.2021.04.011
73. An Y, Tian Y, Man Q, et al. Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO2 Batteries. ACS Nano. 2022; 16(4): 6755-6770. doi: 10.1021/acsnano.2c01571
74. Zhu R, Xiong Z, Yang H, et al. Anode/Cathode Dual‐Purpose Aluminum Current Collectors for Aqueous Zinc‐Ion Batteries. Advanced Functional Materials. 2022; 33(8). doi: 10.1002/adfm.202211274
75. Sambandam B, Mathew V, Kim S, et al. An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem. 2022; 8(4): 924-946. doi: 10.1016/j.chempr.2022.03.019
76. Luo H, Wang L, Ren P, et al. Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries. Nano Research. 2022; 15(9): 8603-8612. doi: 10.1007/s12274-022-4689-4
77. Gao S, Li B, Tan H, et al. High‐Energy and Stable Subfreezing Aqueous Zn–MnO2 Batteries with Selective and Pseudocapacitive Zn‐Ion Insertion in MnO2. Advanced Materials. 2022; 34(21). doi: 10.1002/adma.202201510
78. Huang C, Wang Q, Zhang D, et al. Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries. Nano Research. 2022; 15(9): 8118-8127. doi: 10.1007/s12274-022-4498-9
79. Huang C, Wang Q, Tian G, et al. Oxygen vacancies-enriched Mn3O4 enabling high-performance rechargeable aqueous zinc-ion battery. Materials Today Physics. 2021; 21: 100518. doi: 10.1016/j.mtphys.2021.100518
80. Shuai B, Zhou C, Pi Y, et al. Atomic Layer-Deposited ZnO Layer on Hydrated Vanadium Dioxide Cathodes against Vanadium Dissolution for Stable Zinc Ion Batteries. ACS Applied Energy Materials. 2022; 5(5): 6139-6145. doi: 10.1021/acsaem.2c00540
81. Zhang L, Yang S, Fu W, et al. Plasma-induced ε-MnO2 based aqueous zinc-ion batteries and their dissolution-deposition mechanism. Journal of Materials Science & Technology. 2022; 127: 206-213. doi: 10.1016/j.jmst.2022.03.028
82. Jiang W, Xu X, Liu Y, et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. Journal of Alloys and Compounds. 2020; 827: 154273. doi: 10.1016/j.jallcom.2020.154273
83. Wang Z, Xu H, Tao X, et al. Boosting the zinc-ion storage ability of MnO2 cathode by depositing oxygen-deficient CuOx layer. Journal of Energy Storage. 2024; 86: 111257. doi: 10.1016/j.est.2024.111257
84. Yun K, Yoo G, Kang SO, et al. Multichannel Pathways for Electron Transport in Batteries Using Carbon Composite Conductive Materials. ACS Sustainable Chemistry & Engineering. 2024; 12(44): 16229-16238. doi: 10.1021/acssuschemeng.4c05035
85. Hou Z, Gao Y, Tan H, et al. Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nature Communications. 2021; 12(1). doi: 10.1038/s41467-021-23352-0
86. Shen M, Wang A, Chen J, et al. Ion flux regulating with Au-modified separator to realize a homogenize Zn metal deposition. Journal of Colloid and Interface Science. 2025; 683: 892-900. doi: 10.1016/j.jcis.2024.12.117



