激光-电能转换器热机械可靠性分析
DOI:
https://doi.org/10.18686/cncest316关键词:
激光-电能转换器(LEC);激光功率传输;热机械可靠性;数值分析;实验测试摘要
这篇文章研究了典型激光-电能转换器(Laser-Electricity Converter,LEC)在连续波(Continuous Wave,CW)激光照射下的热力学和机械响应,以及关键传感器在激光照射下的损伤行为,以评估转换器的可靠性。首先,计算并分析了整个LEC中的温升和热应力,找出了易受损的部件,即在无线电力传输过程中用于光路对准的红外探测器。然后,通过一组数值模拟揭示了探测器热机械行为的参数依赖性。最后,进行了典型的实验测试以验证理论分析的结果。
参考
1. Zhang R, Zhou J. Ultrafast-adsorption-kinetics molecular sieving of propylene from propane. Clean Energy Science and Technology. 2024; 2(2): 126. doi: 10.18686/cest.v2i2.126
2. Dai Y, Sun J, Zhang X, et al. Supramolecular assembly boosting the phototherapy performances of BODIPYs. Coordination Chemistry Reviews. 2024; 517: 216054. doi: 10.1016/j.ccr.2024.216054
3. Kabir E, Kumar P, Kumar S, et al. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews. 2018; 82: 894-900. doi: 10.1016/j.rser.2017.09.094
4. Rodgers E, Sotudeh J, Mullins C, et al. Space Based Solar Power. OTPS; 2024.
5. Viswanathan V, Epstein AH, Chiang YM, et al. The challenges and opportunities of battery-powered flight. Nature. 2022; 601(7894): 519–525. doi: 10.1038/s41586-021-04139-1
6. Marouani I. Contribution of renewable energy technologies in combating phenomenon of global warming and minimizing GHG emissions. Clean Energy Science and Technology. 2024; 2(2): 164. doi: 10.18686/cest.v2i2.164
7. Wu CW, Chang RT, Huang CG. Transient coupled model on efficiency prediction of laser power beaming for aerostat. Optics & Laser Technology. 2020; 127: 106140. doi: 10.1016/j.optlastec.2020.106140
8. Wu CW, Wang J, Huang CG. A coupled model on energy conversion in laser power beaming. Journal of Power Sources. 2018; 393: 211–216. doi: 10.1016/j.jpowsour.2018.05.010
9. Zhang M, Zhang G, Liu Y, et al. High-performance PbS detectors sensitized from one-step sensitization. Materials Science in Semiconductor Processing. 2024; 178: 108456. doi: 10.1016/j.mssp.2024.108456
10. Chang RT, Liu C, Huang CG, et al. Behaviors of photovoltaic cells illuminated by a laser of different operation modes. Applied Optics. 2022; 61(19): 5728. doi: 10.1364/ao.460270
11. Xu L, Cai H, Li C, et al. Degradation of responsivity for photodiodes under intense laser irradiation. Optik. 2013; 124(3): 225–228. doi: 10.1016/j.ijleo.2011.11.055
12. Arora VK, Dawar AL. Laser-induced damage studies in silicon and silicon-based photodetectors. Applied Optics. 1996; 35(36): 7061. doi: 10.1364/ao.35.007061
13. Xiao K, Wu X, Song X, et al. Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-020-80879-w
14. Lowe RA, Landis GA, Jenkins P. Response of photovoltaic cells to pulsed laser illumination. IEEE Transactions on Electron Devices. 1995; 42(4): 744–751. doi: 10.1109/16.372080
15. Yao C, Mei H, Xiao Y, et al. Correcting thermal-emission-induced detector saturation in infrared spectroscopy. Optics Express. 2022; 30(21): 38458. doi: 10.1364/oe.466102
16. Jiang T, Zheng X, Cheng XA, et al. The carrier transportation of photoconductive HgCdTe detector irradiated by CW band-off laser. Journal of infrared and millimeter waves. 2012; 31(3): 216–221. doi: 10.3724/sp.j.1010.2012.00216
17. Eliseev PG. Optical strength of semiconductor laser materials. Progress in quantum electronics. 1996; 20(1): 1-82. doi: 10.1016/0079-6727(95)00002-X
18. Bartoli F, Esterowitz L, Kruer M, et al. Irreversible laser damage in ir detector materials. Applied Optics. 1977; 16(11): 2934. doi: 10.1364/ao.16.002934
19. Xi J, Wang X, Tao Z, et al. Enhanced Thermal Stress Reliability of Photodetector Devices Based on Thermal-Mechanical Simulation and Temperature Cycling Experiments. In: Proceedings of the 23rd International Conference on Electronic Packaging Technology (ICEPT); 10–13 August 2022; Dalian, China.
20. Meyer JR, Bartoli FJ, Kruer MR. Optical heating in semiconductors. Physical Review B. 1980; 21(4): 1559–1568. doi: 10.1103/physrevb.21.1559
21. Chen CS, Liu AH, Sun G, et al. Analysis of laser damage threshold and morphological changes at the surface of a HgCdTe crystal. Journal of Optics A: Pure and Applied Optics. 2005; 8(1): 88–92. doi: 10.1088/1464-4258/8/1/014
22. Bartoli F, Esterowitz L, Allen R, et al. A generalized thermal model for laser damage in infrared detectors. Journal of Applied Physics. 1976; 47(7): 2875–2881. doi: 10.1063/1.323064
23. Lin IK, Zhang Y, Zhang X. The deformation of microcantilever-based infrared detectors during thermal cycling. Journal of Micromechanics and Microengineering. 2008; 18(7): 075012. doi: 10.1088/0960-1317/18/7/075012
24. Rajic N, Street N. A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis. Quantitative InfraRed Thermography Journal. 2014; 11(2): 207–221. doi: 10.1080/17686733.2014.962835
25. Titterton DH. A review of the development of optical countermeasures. Technologies for Optical Countermeasures. 2004.
26. Li L, Lu Q. Numerical Simulation of Dynamic Response of PC-Type HgCdTe Detector Irradiated by in-Band and Out-of-Band Laser Beams. Acta Optica Sinica. 2008; 28(10): 1952–1958. doi: 10.3788/aos20082810.1952
27. Noda N. Thermal Stresses. Taylor & Francis; 2003. pp.1.
28. Larson MG, Bengzon F. The Finite Element Method: Theory, Implementation, and Applications. Springer Nature Link; 2013.
29. Lienhard JH IV, Lienhard JH V. A Heat Transfer Textbook (3rd Ed.). Cambridge Massachusetts; 2005.
30. Kiocek P. Handbook of Infrared Optical Materials. Marcel Dekker; 1991.
31. Solymar L, Walsh D. Electrical Properties of Materials. Oxford University Press; 2004.
32. Watkins SE, Zhang CZ, Walser RM, et al. Electrical performance of laser damaged silicon photodiodes. Applied Optics. 1990; 29(6): 827. doi: 10.1364/ao.29.000827
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##