新型生物基面板的热湿行为研究:实验与数值模拟

作者

  • 周亚苹 能源与动力工程学院, 长沙理工大学, 长沙市 410114, 中国
  • Abdelkrim Trabelsi CETHIL, UCBL, University of Lyon, 69622 Villeurbanne, France
  • 向莉 能源与动力工程学院, 长沙理工大学, 长沙市 410114, 中国
  • Mohamed El Mankibi LTDS, ENTPE, University of Lyon, 69120 Vaulx-en-Velin, France
Article ID: 248
4 Views

DOI:

https://doi.org/10.18686/cncest248

关键词:

秸秆复合材料;吸湿性材料;液态水渗透率;热湿耦合传递;逆参数估计

摘要

秸秆复合材料因其低碳足迹和良好的热湿性能,正成为一种有前景的建筑替代隔热材料,以促进节能和居住者的舒适度。然而,秸秆复合材料在材料尺度和稳态条件下的热热湿特性不足以全面评估其在实际使用条件下作为建筑构件的性能。本研究重点研究了稻草-海藻酸盐复合材料制成的新型生物基墙体的热湿性能。在不同边界条件下监测了墙内的温度和相对湿度分布。提出了确定液态水渗透率的反演分析方法。在动态测试中,与热湿耦合传递(CHM)模型相比,瞬态传热模型预测的温度分布误差更高,低估了总热通量高达30.6%。此外,在动态条件下,与没有液态水输送的CHM模型预测的结果相比,在28毫米、36毫米和64毫米的深度,具有液态水输送功能的CHM模式的平均绝对误差分别降低了61%、57%和8%。在模拟通过壁的热传递和水分传递时,蒸汽输送和液体输送似乎都是必不可少的。

参考

1. Chen Y, Thomas Ng S. Factoring in embodied GHG emissions when assessing the environmental performance of building. Sustainable Cities and Society. 2016; 27: 244–252. doi: 10.1016/j.scs.2016.03.015

2. Ramlee NA, Naveen J, Jawaid M. Potential of oil palm empty fruit bunch (OPEFB) and sugarcane bagasse fibers for thermal insulation application – A review. Construction and Building Materials. 2021; 271: 121519. doi: 10.1016/j.conbuildmat.2020.121519

3. Muthuraj R, Lacoste C, Lacroix P, et al. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products. 2019; 135: 238–245. doi: 10.1016/j.indcrop.2019.04.053

4. Mati-Baouche N, De Baynast H, Lebert A, et al. Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products. 2014; 58: 244–250. doi: 10.1016/j.indcrop.2014.04.022

5. Nguyen DM, Grillet AC, Bui QB, et al. Building bio-insulation materials based on bamboo powder and bio-binders. Construction and Building Materials. 2018; 186: 686–698. doi: 10.1016/j.conbuildmat.2018.07.153

6. Viel M, Collet F, Lanos C. Development and characterization of thermal insulation materials from renewable resources. Construction and Building Materials. 2019; 214: 685–697. doi: 10.1016/j.conbuildmat.2019.04.139

7. Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology. 2018; 262: 310–318. doi: 10.1016/j.biortech.2018.04.099

8. Liuzzi S, Rubino C, Martellotta F, et al. Characterization of biomass-based materials for building applications: The case of straw and olive tree waste. Industrial Crops and Products. 2020; 147: 112229. doi: 10.1016/j.indcrop.2020.112229

9. Dušek J, Jerman M, Podlena M, et al. Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Construction and Building Materials. 2021; 300: 124036. doi: 10.1016/j.conbuildmat.2021.124036

10. Rojas C, Cea M, Iriarte A, et al. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies. 2019; 20: e00102. doi: 10.1016/j.susmat.2019.e00102

11. Romano A, Bras A, Grammatikos S, et al. Dynamic behaviour of bio-based and recycled materials for indoor environmental comfort. Construction and Building Materials. 2019; 211: 730–743. doi: 10.1016/j.conbuildmat.2019.02.126

12. Ismail B, Belayachi N, Hoxha D. Hygric properties of wheat straw biocomposite containing natural additives intended for thermal insulation of buildings. Construction and Building Materials. 2022; 317: 126049. doi: 10.1016/j.conbuildmat.2021.126049

13. Javaid A, Jain D, Kwatra N. Pre-treatment and its effect on the thermal conductivity of natural lignocellulosic rice straw stubble waste boards: Analysis vis a vis potential for the civil engineering applications. Construction and Building Materials. 2024; 445: 137903. doi: 10.1016/j.conbuildmat.2024.137903

14. Thomson A, Walker P. Durability characteristics of straw bales in building envelopes. Construction and Building Materials. 2014; 68: 135–141. doi: 10.1016/j.conbuildmat.2014.06.041

15. Laborel-Préneron A, Ouédraogo K, Simons A, et al. Laboratory test to assess sensitivity of bio-based earth materials to fungal growth. Building and Environment. 2018; 142: 11–21. doi: 10.1016/j.buildenv.2018.06.003

16. Slimani Z, Trabelsi A, Virgone J, et al. Study of the Hygrothermal Behavior of Wood Fiber Insulation Subjected to Non-Isothermal Loading. Applied Sciences. 2019; 9(11): 2359. doi: 10.3390/app9112359

17. Latif E, Lawrence RMH, Shea AD, et al. An experimental investigation into the comparative hygrothermal performance of wall panels incorporating wood fibre, mineral wool and hemp-lime. Energy and Buildings. 2018; 165: 76–91. doi: 10.1016/j.enbuild.2018.01.028

18. Seng B, Magniont C, Gallego S, et al. Behavior of a hemp-based concrete wall under dynamic thermal and hygric solicitations. Energy and Buildings. 2021; 232: 110669. doi: 10.1016/j.enbuild.2020.110669

19. Chennouf N, Agoudjil B, Alioua T, et al. Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy and Buildings. 2019; 202: 109413. doi: 10.1016/j.enbuild.2019.109413

20. Rahim M, Douzane O, Tran Le AD, et al. Experimental investigation of hygrothermal behavior of two bio-based building envelopes. Energy and Buildings. 2017; 139: 608–615. doi: 10.1016/j.enbuild.2017.01.058

21. Alioua T, Agoudjil B, Chennouf N, et al. Investigation on heat and moisture transfer in bio-based building wall with consideration of the hysteresis effect. Building and Environment. 2019; 163: 106333. doi: 10.1016/j.buildenv.2019.106333

22. Dong W, Chen Y, Bao Y, et al. A validation of dynamic hygrothermal model with coupled heat and moisture transfer in porous building materials and envelopes. Journal of Building Engineering. 2020; 32: 101484. doi: 10.1016/j.jobe.2020.101484

23. Kaoutari T, Louahlia H. Experimental and numerical investigations on the thermal and moisture transfer in green dual layer wall for building. Case Studies in Thermal Engineering. 2024; 53: 103946. doi: 10.1016/j.csite.2023.103946

24. Mendes N, Winkelmann F, Lamberts R, Philippi PC. Moisture effects on conduction loads. Energy and buildings. 2003; 35(7): 631–644.

25. Rouchier S, Busser T, Pailha M, et al. Hygric characterization of wood fiber insulation under uncertainty with dynamic measurements and Markov Chain Monte-Carlo algorithm. Building and Environment. 2017; 114: 129–139. doi: 10.1016/j.buildenv.2016.12.012

26. Dubois S, McGregor F, Evrard A, et al. An inverse modelling approach to estimate the hygric parameters of clay-based masonry during a Moisture Buffer Value test. Building and Environment. 2014; 81: 192–203. doi: 10.1016/j.buildenv.2014.06.018

27. Alioua T, Agoudjil B, Boudenne A, et al. Sensitivity analysis of transient heat and moisture transfer in a bio-based date palm concrete wall. Building and Environment. 2021; 202: 108019. doi: 10.1016/j.buildenv.2021.108019

28. Zhou Y, Trabelsi A, El Mankibi M. Hygrothermal properties of insulation materials from rice straw and natural binders for buildings. Construction and Building Materials. 2023; 372: 130770. doi: 10.1016/j.conbuildmat.2023.130770

29. Hagentoft CE. HAMSTAD—Final report: Methodology of HAM-modeling. Report R. 2002; 2 (8): 19–23.

30. Slimani Z. Experimental and numerical analysis of the hygrothermal behavior of highly hygroscopic walls (French). Lyon 1; 2015.

31. BS EN ISO 12571. Hygrothermal performance of building materials and products-Determination of hygroscopic sorption properties. British Standards Institution; 2013.

32. Künzel HM. Simultaneous heat and moisture transport in building components, One-and two-dimensional calculation using simple parameters. IRB-Verlag Stuttgart. 1995; 65.

33. Branco F, Tadeu A, Simões N. Heat conduction across double brick walls via BEM. Building and Environment. 2004; 39(1): 51–58. doi: 10.1016/j.buildenv.2003.08.005

34. Liu X, Chen Y, Ge H, et al. Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China. Energy and Buildings. 2015; 93: 259–268. doi: 10.1016/j.enbuild.2015.02.016

35. Fang A, Chen Y, Wu L. Transient simulation of coupled heat and moisture transfer through multi-layer walls exposed to future climate in the hot and humid southern China area. Sustainable Cities and Society. 2020; 52: 101812. doi: 10.1016/j.scs.2019.101812

36. Hagentoft CE, Kalagasidis AS, Adl-Zarrabi B, et al. Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for One-dimensional Cases. Journal of Thermal Envelope and Building Science. 2004; 27(4): 327–352. doi: 10.1177/1097196304042436

37. Trabelsi A, Slimani Z, Virgone J. Response surface analysis of the dimensionless heat and mass transfer parameters of Medium Density Fiberboard. International Journal of Heat and Mass Transfer. 2018; 127: 623–630. doi: 10.1016/j.ijheatmasstransfer.2018.05.145

38. Eberhart R, Kennedy J. A new optimizer using particle swarm theory, Micro Mach, Hum. Sci; 1995.

39. Whitley D. A genetic algorithm tutorial. Statistics and Computing. 1994; 4(2): 65–85. doi: 10.1007/bf00175354

40. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE), Geoscientific Model Development Discussions. 2014; 7(1): 1525–1534. doi: 10.5194/gmdd-7-1525-2014

41. Asan H. Numerical computation of time lags and decrement factors for different building materials. Building and Environment. 2006; 41(5): 615–620. doi: 10.1016/j.buildenv.2005.02.020

42. Rafidiarison H, Mougel E, Nicolas A. Laboratory experiments on hygrothermal behaviour of real-scale timber walls. Maderas Ciencia y tecnología. 2012; (ahead): 0-0. doi: 10.4067/s0718-221x2012005000010

##submission.downloads##

已出版

2025-01-02

文章引用

周亚苹, Trabelsi, A., 向莉, & El Mankibi, M. (2025). 新型生物基面板的热湿行为研究:实验与数值模拟. 清洁能源科学与技术, 3(1), 248. https://doi.org/10.18686/cncest248

栏目

原创研究型文章