温度对热天平中水蒸发系数 (E) 的影响:太阳能驱动的蒸汽生成方法
DOI:
https://doi.org/10.18686/cncest.v2i3.234关键词:
蒸发;水;温度;水分分析仪;蒸汽;生成摘要
本研究分析了水蒸发现象随设定的干燥温度和水质量的变化,研究了五个温度水平(50、60、70、80 和 90 ℃),最终建立了温度和蒸发速率之间的相关性。通过研究,确定了水的蒸发速度可在初始质量为 35 克、温度为90 ℃ 的条件下进行计算,而测定所需的时间为 120 分钟。此外,根据使用 Sartorius MA-100 天平进行的实验,确定了蒸发速度与温度呈二次函数关系,且当温度为 80 ℃ 时记录的最大偏差为 0.349 mmol/m2s。研究得出结论,水蒸发速度的测定高度依赖于温度和水的质量。此外,本研究还可以为未来提高蒸汽和电力联合生产等工艺效率的研究提供基础。
参考
Li X, Xie W, Zhu J. Interfacial solar steam/vapor generation for heating and cooling. Advanced Science. 2022; 9(6): e2104181. doi: 10.1002/advs.202104181
Ren J, Ding Y, Gong J, et al. Simultaneous Solar‐driven Steam and Electricity Generation by Cost‐effective, Easy Scale‐up MnO2‐based Flexible Membranes. Energy & Environmental Materials. 2023; 6(3): e12376. doi: 10.1002/eem2.12376
Huang L, Wang Y, He R, et al. Solar-driven co-generation of electricity and water by evaporation cooling. Desalination. 2020; 488: 114533. doi: 10.1016/j.desal.2020.114533
Xu Y, Dong S, Sheng Y, et al. Highly efficient solar driven cogeneration of freshwater and electricity. Journal of Materials Chemistry A. 2023; 11(4): 1866-1876. doi: 10.1039/D2TA08590A
Li X, Cooper T, Xie W, Hsu PC. Design and utilization of infrared light for interfacial solar water purification. ACS Energy Letters. 2021; 6(8): 2645-2657. doi: 10.1021/acsenergylett.1c00869
Xie Z, Duo Y, Lin Z, et al. The rise of 2D photothermal materials beyond graphene for clean water production. Advanced Science. 2020; 7(5): 1902236. doi: 10.1002/advs.201902236
Li Z, Ma X, Chen D, et al. Polyaniline‐coated MOFs nanorod arrays for efficient evaporation‐driven electricity generation and solar steam desalination. Advanced Science. 2021; 8(7): 2004552. doi: 10.1002/advs.202004552
Alvarez PJJ, Chan CK, Elimelech M, et al. Emerging opportunities for nanotechnology to enhance water security. Nature nanotechnology. 2018; 13(8): 634-641. doi: 10.1038/s41565-018-0203-2
Wang G, Fu Y, Ma X, et al. Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon. 2017; 114: 117-124. doi: 10.1016/j.carbon.2016.11.071
Rezaie K, Mehrpooya M, Delpisheh M, et al. Solar-driven chemisorption cogeneration system integrated with thermal energy storage. Journal of Energy Storage. 2024; 76: 109705. doi: 10.1016/j.est.2023.109705
Bai H, Zhao T, Cao M. Interfacial solar evaporation for water production: from structure design to reliable performance. Molecular Systems Design & Engineering. 2020; 5(2): 419-432. doi: 10.1039/C9ME00166B
Dao VD, Choi HS. Carbon‐based sunlight absorbers in solar‐driven steam generation devices. Global Challenges. 2018; 2(2): 1700094. doi: 10.1002/gch2.201700094
Ghasemi H, Ni G, Marconnet AM, et al. Solar steam generation by heat localization. Nature Communications. 2014; 5(1): 4449. doi: 10.1038/ncomms5449
Carrier O, Shahidzadeh-Bonn N, Zargar R, et al. Evaporation of water: evaporation rate and collective effects. Journal of Fluid Mechanics. 2016; 798: 774-786. doi: 10.1017/jfm.2016.356
Eames IW, Marr NJ, Sabir H. The evaporation coefficient of water: A review. International Journal of Heat and Mass Transfer. 1997; 40(12): 2963-2973. doi: 10.1016/S0017-9310(96)00339-0
Heymes F, Aprin L, Bony A, et al. An experimental investigation of evaporation rates for different volatile organic compounds. Process Safety Progress. 2013; 32(2): 193-198. doi: 10.1002/prs.11566
Manzur A, Cardoso J. Water evaporation rate (Spanish). Revista Mexicana de Física E. 2015; 61(1): 31-34.
Sartori E. A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Solar Energy. 2000; 68(1): 77-89. doi: 10.1016/S0038-092X(99)00054-7
Tang R, Etzion Y. Comparative studies on the water evaporation rate from a wetted surface and that from a free water surface. Building and Environment. 2004; 39(1): 77-86. doi: 10.1016/j.buildenv.2003.07.007
Turza R, Füri BB. Experimental measurements of the water evaporation rate of a physical model. Slovak Journal of Civil Engineering. 2017; 25(1): 19-23. doi: 10.1515/sjce-2017-0003
Örvös M, Szabó V, Poós T. Rate of evaporation from the free surface of a heated liquid. Journal of Applied Mechanics and Technical Physics. 2016; 57: 1108-1117. doi: 10.1134/S0021894416060195
Varju E, Poós T. Determination of evaporation rate at free water surface. In: Proceedings of the 8th International Symposium on Exploitation of Renewable Energy Resources and Efficiency (EXPRES 2016); Szabadka, Szerbia.
Chiavazzo E, Morciano M, Viglino F, et al. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nature Sustainability. 2018; 1(12): 763-772. doi: 10.1038/s41893-018-0186-x
Wang W, Shi Y, Zhang C, et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nature Communications. 2019; 10(1): 3012. doi: 10.1038/s41467-019-10817-6
Xu Z, Zhang L, Zhao L, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy & Environmental Science. 2020; 13(3): 830-839. doi: 10.1039/C9EE04122B
Yang L, Sun T, Tang J, et al. Photovoltaic-multistage desalination of hypersaline waters for simultaneous electricity, water and salt harvesting via automatic rinsing. Nano Energy. 2021; 87: 106163. doi: 10.1016/j.nanoen.2021.106163
Neumann O, Feronti C, Neumann AD, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences. 2013; 110(29): 11677-11681. doi: 10.1073/pnas.1310131110
Zhang Y, Zhao D, Yu F, et al. Floating rGO-based black membranes for solar driven sterilization. Nanoscale. 2017; 9(48): 19384-19389. doi: 10.1039/C7NR06861A
Chang C, Tao P, Xu J, et al. High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux. ACS Applied Materials & Interfaces. 2019; 11(20): 18466-18474. doi: 10.1021/acsami.9b04535
Li J, Du M, Lv G, et al. Interfacial solar steam generation enables fast‐responsive, energy‐efficient, and low‐cost off‐grid sterilization. Advanced Materials. 2018; 30(49): e1805159. doi: 10.1002/adma.201805159
Wang Z, Xu L, Liu D, et al. Effects of air temperature and humidity on the kinetics of sludge drying at low temperatures. Energies. 2021; 14(22): 7722. doi: 10.3390/en14227722
Finnerty CTK, Menon AK, Conway KM, et al. Interfacial solar evaporation by a 3D graphene oxide stalk for highly concentrated brine treatment. Environmental Science & Technology. 2021; 55(22): 15435-15445. doi: 10.1021/acs.est.1c04010
Li X, Li J, Lu J, et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule. 2018; 2(7): 1331-1338. doi: 10.1016/j.joule.2018.04.004
Xu X, Ozden S, Bizmark N, et al. A bioinspired elastic hydrogel for solar‐driven water purification. Advanced Materials. 2021; 33(18): 2007833. doi: 10.1002/adma.202007833
Feistel R, Hellmuth O. Thermodynamics of Evaporation from the Ocean Surface. Atmosphere. 2023; 14(3): 560. doi: 10.3390/atmos14030560
Venegas RM, Acevedo J, Treml EA. Three decades of ocean warming impacts on marine ecosystems: A review and perspective. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 212: 105318. doi: 10.1016/j.dsr2.2023.105318
Garcia-Soto C, Cheng L, Caesar L, et al. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science. 2021; 8: 642372. doi: 10.3389/fmars.2021.642372
Djellabi R, Noureen L, Dao VD, et al. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal. 2022; 431: 134024. doi: 10.1016/j.cej.2021.134024
##submission.downloads##
已出版
文章引用
期
栏目
执照
版权声明
##submission.license.cc.by4.footer##