清洁能源电磁设备日常使用的安全环保问题

作者

  • Adel Razek Group of Electrical Engineering—Paris (GeePs), CNRS, University of Paris-Saclay and Sorbonne University, 91190 Gif sur Yvette, France
Article ID: 227
20 Views, 10 PDF Downloads

DOI:

https://doi.org/10.18686/cncest.v2i3.227

关键词:

清洁电磁能;同一健康;负责任的态度;活组织;电磁场;对生物多样性效应

摘要

现代人类的日常生活与各种各样的能源转换设备密切相关。从清洁能源中获得的电磁能是这方面使用最多的设备之一。这些设备的使用反映了预期的结果,但往往伴随着不希望出现的副作用。这些不良副作用来自人工电磁辐射与生物多样性活体组织的相互作用(“同一健康”概念)。相应的生物组织涉及人类、动物(家养的和野生的)、鸟类、植物等等,更广泛地说,涉及了包括生态系统在内的生物多样性。因此,有必要通过对这些设备进行智能化和可持续的建造、维护(“负责任的态度”概念)来减少这些有害影响。本文旨在说明“同一健康”和“负责任的态度”概念在日常使用电磁能无线通信工具以及电力传输设备的管理中的意义。首先讨论了这两个概念。然后以人类、动物和植物为例,分析了暴露于电磁场辐射对生物组织的影响。并审视了影响这些效应的辐射场和受辐射组织的不同特性,以及效应的支配规律和数学模型。此外,还研究了保护生物组织免受电磁辐射的方法。文献中的实例为本文的分析提供了支持。

参考

World Health Organization. One Health. Available online: https://www.who.int/europe/initiatives/one-health (accessed on 14 March 2024).

Petroulakis N, Mattsson MO, Chatziadam P, et al. NextGEM: Next-Generation Integrated Sensing and Analytical System for Monitoring and Assessing Radiofrequency Electromagnetic Field Exposure and Health. International Journal of Environmental Research and Public Health. 2023; 20(12): 6085. doi: 10.3390/ijerph20126085

Cirimele V, Freschi F, Giaccone L, et al. Human Exposure Assessment in Dynamic Inductive Power Transfer for Automotive Applications. IEEE Transactions on Magnetics. 2017; 53(6): 1-4. doi: 10.1109/tmag.2017.2658955

Tran NT, Jokic L, Keller J, et al. Impacts of Radio-Frequency Electromagnetic Field (RF-EMF) on Lettuce (Lactuca sativa)—Evidence for RF-EMF Interference with Plant Stress Responses. Plants. 2023; 12(5): 1082. doi: 10.3390/plants12051082

Sivani S, Sudarsanam D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem – a review. Biology and Medicine. 2012; 4(4): 202-216.

Vishnuram P, Ramachandiran G, Sudhakar Babu T, et al. Induction heating in domestic cooking and industrial melting applications: A systematic review on modelling, converter topologies and control schemes. Energies. 2021; 14(20): 6634. doi: 10.3390/en142066

Sekkak A, Pichon L, Razek A. 3-D FEM magneto-thermal analysis in microwave ovens. IEEE Transactions on Magnetics. 1994; 30(5): 3347-3350. doi: 10.1109/20.312655

Zastrow E, Hagness SC, Van Veen BD, et al. Time-Multiplexed Beamforming for Noninvasive Microwave Hyperthermia Treatment. IEEE Transactions on Biomedical Engineering. 2011; 58(6): 1574-1584. doi: 10.1109/tbme.2010.2103943

Razek A. Biological and Medical Disturbances Due to Exposure to Fields Emitted by Electromagnetic Energy Devices—A Review. Energies. 2022; 15(12): 4455. doi: 10.3390/en15124455

Lagorio S, Blettner M, Baaken D, et al. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A protocol for a systematic review of human observational studies. Environment International. 2021; 157: 106828. doi: 10.1016/j.envint.2021.106828

Razek A. Analysis and control of ornamental plant responses to exposure to electromagnetic fields. Ornamental Plant Research. 2024; 4(1): 0-0. doi: 10.48130/opr-0024-0007

Guidelines For Limiting Exposure To Time-Varying Electric And Magnetic Fields (1 Hz TO 100 kHz). Health Physics. 2010; 99(6): 818-836. doi: 10.1097/hp.0b013e3181f06c86

Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Physics. 2020; 118(5): 483-524. doi: 10.1097/hp.0000000000001210

C95.1-2019 - IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE; 2019. doi: 10.1109/IEEESTD.2019.8859679

U.S. Food and Drug Administration. Scientific Evidence for Cell Phone Safety. Available online: www.fda.gov/radiation-emitting-products/cell-phones/scientific-evidence-cell-phone-safety (accessed on 4 January 2024).

Council of the European Union. EU Recommendation 1999/519/EC on the Limitation of Exposure of the General Public to Electromagnetic Fields (0 Hz to 300 GHz). Available online: https://eur-lex.europa.eu/eli/reco/1999/519/oj (accessed on 4 January 2024).

Pennes HH. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology. 1998; 85(1): 5-34. doi: 10.1152/jappl.1998.85.1.5

Zang Z, Guo Z, Fan X, et al. Assessing the performance of the pilot national parks in China. Ecological Indicators. 2022; 145: 109699. doi: 10.1016/j.ecolind.2022.109699

Díaz S, Settele J, Brondízio ES, et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 2019; 366(6471). doi: 10.1126/science.aax3100

Coad A, Nightingale P, Stilgoe J, et al. Editorial: the dark side of innovation. Industry and Innovation. 2020; 28(1): 102-112. doi: 10.1080/13662716.2020.1818555

Kruželák J, Kvasničáková A, Ušák E, et al. Rubber magnets based on NBR and lithium ferrite with the ability to absorb electromagnetic radiation. Polymers for Advanced Technologies. 2020; 31(7): 1624-1633. doi: 10.1002/pat.4891

Qin M, Zhang L, Wu H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Advanced Science. 2022; 9(10). doi: 10.1002/advs.202105553

Lestari M, Sulhadi S, Sutikno S. The Effect of Ornamental Plants on Reducing the Intensity of Electromagnetic Wave Radiation. Physics Communication. 2023; 7(1): 35-42. doi: 10.15294/physcomm.v7i1.41534

Ilmiawati A, Falestin M, Maddu A, et al. Films from PVA and Sansevieria trifasciata Leaves Extracts as a Smartphone Protector with Radiation Reducing Property and Its LC-MS Analysis. Indonesian Journal of Chemistry. 2023; 23(3): 594. doi: 10.22146/ijc.76809

Kim JH, Lee JK, Kim HG, et al. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomolecules & Therapeutics. 2019; 27(3): 265-275. doi: 10.4062/biomolther.2018.152

Scientific Committee on Emerging and Newly Identified Health Risks. Opinion on Potential Health Effects of Exposure to Electromagnetic Fields (EMF), European Commission: Luxembourg. Available online: https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_041.pdf (accessed on 10 January 2024).

Wust P, Kortüm B, Strauss U, et al. Non-thermal effects of radiofrequency electromagnetic fields. Scientific Reports. 2020; 10(1). doi: 10.1038/s41598-020-69561-3

Zradziński P, Karpowicz J, Gryz K. Electromagnetic Energy Absorption in a Head Approaching a Radiofrequency Identification (RFID) Reader Operating at 13.56 MHz in Users of Hearing Implants Versus Non-Users. Sensors. 2019; 19(17): 3724. doi: 10.3390/s19173724

Jalilian H, Eeftens M, Ziaei M, et al. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. Environmental Research. 2019; 176: 108517. doi: 10.1016/j.envres.2019.05.048

Leach V, Weller S, Redmayne M. A novel database of bio-effects from non-ionizing radiation. Reviews on Environmental Health. 2018; 33(3): 273-280. doi: 10.1515/reveh-2018-0017

U.S. Food & Drug. Review of Published Literature between 2008 and 2018 of Relevance to Radiofrequency Radiation and Cancer. Available online: https://www.fda.gov/media/135043/download (accessed on 18 February 2024).

WHO. World Cancer Report, 2020, Cancer Research for Cancer Prevention, IARC/OMS: Lyon, France. Available online: https://www.aws.iarc.who.int/featured-news/new-world-cancer-report/ (accessed on 11 January 2024).

Point S. Advocacy for A Cognitive Approach to Electro hypersensitivity Syndrome. Skeptical Inquirer. 2020; 44: 47-50.

Rubin GJ, Nieto‐Hernandez R, Wessely S. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly ‘electromagnetic hypersensitivity’): An updated systematic review of provocation studies. Bioelectromagnetics. 2009; 31(1): 1-11. doi: 10.1002/bem.20536

Huang PC, Chiang J chin, Cheng YY, et al. Physiological changes and symptoms associated with short-term exposure to electromagnetic fields: a randomized crossover provocation study. Environmental Health. 2022; 21(1). doi: 10.1186/s12940-022-00843-1

Genuis SJ, Lipp CT. Electromagnetic hypersensitivity: Fact or fiction? Science of The Total Environment. 2012; 414: 103-112. doi: 10.1016/j.scitotenv.2011.11.008

Barth A, Ponocny I, Gnambs T, et al. No effects of short‐term exposure to mobile phone electromagnetic fields on human cognitive performance: A meta‐analysis. Bioelectromagnetics. 2011; 33(2): 159-165. doi: 10.1002/bem.20697

Curcio G. Exposure to Mobile Phone-Emitted Electromagnetic Fields and Human Attention: No Evidence of a Causal Relationship. Frontiers in Public Health. 2018; 6. doi: 10.3389/fpubh.2018.00042

Valentini E, Ferrara M, Presaghi F, et al. Systematic review and meta-analysis of psychomotor effects of mobile phone electromagnetic fields. Occupational and Environmental Medicine. 2010; 67(10): 708-716. doi: 10.1136/oem.2009.047027

Sunstein CR. Beyond the Precautionary Principle. SSRN Electronic Journal. Published online 2002. doi: 10.2139/ssrn.307098

Nunes AS, Dular P, Chadebec O, et al. Subproblems Applied to a 3-D Magnetostatic Facet FEM Formulation. IEEE Transactions on Magnetics. 2018; 54(8): 1-9. doi: 10.1109/tmag.2018.2828786

Li G, Ojeda J, Hoang E, et al. Thermal–Electromagnetic Analysis for Driving Cycles of Embedded Flux-Switching Permanent-Magnet Motors. IEEE Transactions on Vehicular Technology. 2012; 61(1): 140-151. doi: 10.1109/tvt.2011.2177283

Piriou F, Razek A. Numerical simulation of a nonconventional alternator connected to a rectifier. IEEE Transactions on Energy Conversion. 1990; 5(3): 512-518. doi: 10.1109/60.105275

Bernard L. Electrical Caracterization of Biological Tissues and Computing of Phenomena Induced in the Human Body by Electromagnetic Fields Below 1 GHz [PhD thesis]. Universities of Ecole Centrale de Lyon, France and Universidade federal de Minas Gerais; 2007

Freschi F, Giaccone L, Cirimele V, et al. Numerical assessment of low-frequency dosimetry from sampled magnetic fields. Physics in Medicine & Biology. 2017; 63(1): 015029. doi: 10.1088/1361-6560/aa9915

Piriou F, Razek A. Calculation of saturated inductances for numerical simulation of synchronous machines. IEEE Transactions on Magnetics. 1983; 19(6): 2628-2631. doi: 10.1109/tmag.1983.1062831

##submission.downloads##

已出版

2024-08-29

文章引用

Razek, A. (2024). 清洁能源电磁设备日常使用的安全环保问题. 清洁能源科学与技术, 2(3), 227. https://doi.org/10.18686/cncest.v2i3.227

栏目

观点